
Chapter 1
Law 1: Attackers Will Always Find Their
Way

The major difference between a thing that might go wrong and
a thing that cannot possibly go wrong is that when a thing that
cannot possibly go wrong goes wrong it usually turns out to be
impossible to get at or repair.

ADAMS D., Mostly Harmless [5]

1.1 Examples

Attackers will always find their way. This statement is cruel and pessimistic!
Unfortunately, it reflects the brutal bare reality of the world of security. No secure
system is invulnerable. This is common knowledge and has been used well in the
literature and the movie industry. One well-known Scottish saying is “Three can
keep a secret if twa be awa.”1 This saying highlights that secrets never remain
hidden. They will leak out eventually 1 day.

The belief that invulnerability is a myth was already known in antiquity. In his
Iliad, the Greek author Homer provided an illustration of this law with the Greek
mythological hero Achilles [6]. At the birth of Achilles, his mother, the nymph Thetis,
bathed him in the Styx, one of Hell’s rivers. Styx’s water had the magical power to
make someone invulnerable. No weapon could hurt Achilles. Unfortunately, Thetis
had to hold her son by his heel during the bath to immerse him in the Styx. Therefore, a
tiny part of Achilles’s body, one heel, remained vulnerable. During the Trojan War,
Achilles was the terror of the Trojans as he slaughtered many of them. His most
famous victory was against Hector, son of the Trojan King Priam. As vengeance,
Hector’s brother, Paris, killed Achilles with an arrow guided by the God Apollo to the
unique, vulnerable spot of Achilles’s heel. Interestingly, the coward Trojan Paris
defeated the mighty Greek warrior with the help of an insider: Apollo. Indeed, only a
God could know the existence of this vulnerability. This classical scheme implies an
insider is commonly encountered in the security arena. An insider, here the God

1Three can keep a secret if two are away (sometimes also found as “Three can keep a secret if two
are dead”).

© Springer International Publishing Switzerland 2016
E. Diehl, Ten Laws for Security, DOI 10.1007/978-3-319-42641-9_1

1



Apollo, will reveal the lethal secret or will partake in the plot of the attacker.
Section 4.3.5 will explore this important scheme.

This myth of one single point of vulnerability appears in many other mytholo-
gies, such as with Sigurd in Norse mythology.2

Before the era of information technology (IT), many historical events demon-
strated the truth of this law. The sinking of RMS Titanic is an iconic example. In
1912, the British company White Star Line built the largest cruiser of its time. Not
only was RMS Titanic the largest ship, but she was also claimed to be the safest in
naval history. White Star Line declared that Titanic was designed to be unsinkable
with her sixteen watertight compartments. Her maiden journey from Southampton
to New York began on April 10, 1912. During the night of April 14, 1912, the
Titanic struck a colossal iceberg. The supposedly unsinkable ship sank in less than
3 h. Of the 2224 passengers and crewmembers, only 722 survived. The ship did
indeed have sixteen watertight compartments. The purpose of watertight com-
partments is to isolate a section of the boat’s hull from the rest of the vessel. If this
part of the hull were to be ripped open, then water would fill only this compartment.
The flooding would not reduce the boat’s buoyancy significantly. Thus, at least in
theory, sixteen watertight compartments should have prevented the ship from
sinking. Unfortunately, the iceberg ripped off more compartments than foreseen by
the naval designers. Therefore, the incoming quantity of water exceeded the
buoyancy threshold, and the Titanic sank, like an ordinary boat.

Rule 1.1: Always Expect the Attacker to Push the Limits

The attacker never obeys the rules; nor does she comply with the behavior expected
by the designer of the system. A common method of attack is to take the system out
of its nominal cases with the hope either of provoking a failure or of gaining some
advantages. A buffer overflow attack is such an example, where the attacker inputs
information longer than expected. Fault injection attacks are another example,
where the attacker changes the operating environment (Sect. 1.2.2) so that the
system cannot operate properly anymore.

In 2014, Joseph Hemanth designed a simple denial of service (DoS) attack on
the Pebble, a smartwatch [7]. Each time the Pebble receives a notification from the
email service, Twitter, or any social network, it vibrates and displays the corre-
sponding notification message on its small screen. Unfortunately, the Pebble does
not check the length of the message that it displays. If an attacker sends a few
hundred emails or Facebook notifications in five seconds to the targeted user, then
the display buffer overflows. The display of the targeted user’s Pebble becomes dull
with many white lines. After a while, the overflown Pebble resets to factory
defaults, deleting all configuration settings and stored messages. The attack does

2Sigurd killed the dragon Fafnir. Following the advice of the God Odin, he bathed in its blood to
become invulnerable. Unfortunately, a leaf sticking on his shoulder created a weak point in this
otherwise armored skin. Of course, his opponent, Gottrum, would defeat him through this unique
vulnerable point.
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not only DoS the device, but also wipes out the targeted device. Hemanth pushed
the limits of the Pebble.

The number of examples that could illustrate this first law is vast. Every day,
new exploits occur. The book will present many other illustrations.

1.2 Analysis

There is a strong asymmetry in this war between security defenders and attackers.
The attacker has many advantages over the defender. First, the attacker needs to
succeed only once, whereas the defender has to succeed every time. The attacker
can afford many defeats. The defender cannot afford one. Furthermore, the attacker
may reuse the winning strategy or technique against many different defenders.
Second, the attacker benefits from all the security technologies and tools that the
defender may use. She can twist these technologies to become weapons rather than
armors. Furthermore, the attacker does not share the same constraints as the
defender. She does not have to obey a bureaucracy, follow processes, and generally
obey rules. She has the freedom to act outside of the established context and rules.
Furthermore, nature favors the attacker. The second law of thermodynamics states
that entropy tends not to decrease. It highlights that it is easier to break a system
than to build it. Building a system increases the order and decreases chaos.
Therefore, it reduces entropy. Breaking a system increases the chaos and thus
increases entropy. The remainder of this chapter illustrates this sad reality.

1.2.1 Should Vulnerabilities Be Published?

These anecdotes may seem far from the IT world. Unfortunately, the current
information era has a plethora of failure stories. The first example is from World
War II (WWII): Enigma M4. For many centuries, nations have used some form of
cryptography to protect their vital communication. Even Julius Caesar encrypted his
messages.3 During WWII, every country used its own proprietary encryption

3Julius Caesar’s substitution algorithm was extremely rudimentary. The encrypted character is the
original character shifted by a fixed value within the alphabet. For instance, if the shift value is 3,
A becomes D, B becomes E, …, and X becomes A. With this key, “WHQ ODZV IRU VHFXULWB”
is the cipher text of “TEN LAWS FOR SECURITY.” Obviously, this type of encryption can be
easily broken. The easiest method is to make a statistical analysis of the frequency of occurrence of
the encrypted characters in the cipher text and then try to match their distribution with the
Gaussian distribution of the supposed language. For instance, in English, the three most frequent
characters are E, T, and A, whereas in French they are E, S, and A. The analysis is even more
efficient when using pairs of characters or groups of three characters. If the encrypted message is
long enough, then the identification of these most frequent characters is easy. The correspondence
reveals the “key” and thus the original message. Al Kindi introduced this statistical method for
cryptanalysis in the ninth century [8].
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algorithm. Of course, each camp attempted, often successfully, to break the
enemy’s cipher [9]. They used cipher machines to encrypt and decrypt their con-
fidential messages. Usually, these cipher machines were rotor-based. The Swiss
Hagelin was the most renowned manufacturer of these cipher machines [10]. The
best-known cipher machine is Enigma. Germans were inspired by the Hagelin
machines to design their military, version Enigma G, by adding their own propri-
etary enhancements. Thus, they produced the Enigma M3 and later the Enigma M4
(with a fourth supplemental rotor), as illustrated in Fig. 1.1.

An Enigma machine looks like a typewriter with an extra set of rotors and
switchboards. The rotors and switchboards serve for setting the secret key. The
keyboard is used to enter the clear text to encrypt, or the ciphertext to decrypt. The
entered text has no punctuation or spacing. Letters replace numbers. The nine letters

Fig. 1.1 Four-rotor Enigma machine
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at the top (Q, W, E, R, T, Z, U, I, and O) also represent nine digits. 0 is associated
with letter P. Therefore, Q may mean the letter Q or the digit 1. Lightbulbs, one per
letter, display the decrypted or encrypted result. Figure 1.2 depicts a simplified
Enigma machine using only five letters and three rotors. The real devices use the
full 26-character Latin alphabet, no punctuation, no digits, and no space. By con-
vention, the input has uppercase characters, whereas the output has lowercase
characters. Each rotor has 26 entry points physically wired to 26 exit points (one
point per character). Rotors A, B, and C have different wiring. Of course, the rotors
are identical in Enigma machines of the same model. The physical connection lights
the corresponding letter’s bulb. Rotor A moves one position each time the operator
dials a new character. After a full rotation of rotor A, i.e., after 26 characters, rotor
B moves one position. After a full rotation of rotor B, rotor C moves one position.
The switchboard allows a fixed reshuffling of the keyboard. To decrypt a message
correctly, the operator has to reproduce the initial conditions of the encrypting
machine, i.e., the same configuration of the switchboard and the same initial
position of the rotors. The secret key was the combination of the switchboard’s
configuration and the rotors’ position.

During the war, Germans believed that no enemy could break their cipher. Most
countries accepted this statement, and not many nations tried to challenge this
assumption. However, in 1932, Polish cryptanalysts had the conviction that
mathematics could be used to solve the problem. Through reverse engineering, they
had already understood the particular wiring of the four rotors. They developed an
electromechanical device, called the Bomba, which allowed accelerating the code
breaking. With the help of these tools, they found two crucial design flaws in
Enigma. Nevertheless, continuous improvements of Enigma kept it ahead in the

Fig. 1.2 Simplified view of Enigma M3
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ensuing race. In 1939, when Germans invaded Poland, the Polish cryptanalysts sent
all their work, with a few replicas of Enigma machine, to their British and French
counterparts. This contribution would prove to be invaluable.

In 1940, the team established at Bletchley Park succeeded in breaking the cipher.
Under the lead of Alan Turing and Gordon Welchman, the team partly automated
the cracking process using their own electromechanical device: Colossus. The
German forces continuously improved their Enigma machines, making each version
harder to crack than the previous one. For instance, in 1942, the German naval
forces deployed the four-rotor Enigma M4 on their submarines (called U-boats) in
replacement of the three-rotor version. Nevertheless, during most of the WWII,
Bletchley Park was able to decrypt German ciphertexts. This success seriously
influenced the outcome of WWII. Some historians estimate that it reduced the
duration of the war by 3 years and saved thousands of lives. For instance, the
German Air Force lost the Battle of England in 1940 partly because it entrusted
bomber-target information to the insecure Air Force Enigma [11]. Thanks to
Bletchley Park, the British Royal Air Force knew in advance the targets that
German bombardiers would bomb during the coming night raid. The German Navy
lost a staggering number of submarines for the same reason because Bletchley Park
could break German Navy Enigma-encrypted messages.

The way the Allied forces treated the decrypted messages is interesting. The
decrypted messages were called Ultras. The handling of Ultras was restricted to a
limited set of dedicated, trained, trusted officers. The German could never become
aware that the Allies had cracked their Enigma codes. Thus, the exploitation of
information collected from Ultras was extremely sensitive and tightly controlled.
The Allied high command decided that military operations should never exploit
Ultras unless there was another potential source of disclosure of the corresponding
information. Because of this clever strategy, the German forces never discovered
that the Allied forces could read their secret encrypted communications. Despite its
losing many U-boats, the German naval high command always thought that its
losses were due to the Allies’ better radar and direction capabilities rather than a
weak cipher. The Germans systematically incriminated the second source of
information rather than questioning the secrecy of their communication.

The design of a robust cryptographic system requires, at least, two different skill
sets: cryptography and cryptanalysis. Cryptography, practiced by cryptologists, is
the art of designing the actual algorithms, whereas cryptanalysis, practiced by
cryptanalysts, is the art of breaking the designed algorithms. Cryptology encom-
passes both cryptography and cryptanalysis. The real robustness of the encryption
depends on the quality of both teams. A skilled cryptographer may develop a
suitable algorithm. Nevertheless, only skilled cryptanalysts can give reasonable
assurance that this algorithm is robust. According to American military experts, the
German cryptographic systems were brilliantly conceived [11]. German cryptolo-
gists were brilliant. Unfortunately, the Allied cryptanalysts were better than the
German cryptanalysts. At the end of the war, the German forces had new encryption
devices ready for rollout. The Allied cryptanalysts would not have been able to
crack them. Fortunately, until the end of the war, the German forces were always
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convinced that Enigma was robust, and they did not see the need to deploy the most
robust version. Hence, the special treatment of Ultras was a winning strategy.

Unfortunately, this strategy is not a good one anymore. The designer of a secure
system must request other skilled people to attack his system. Furthermore, it is
essential to look continuously for evidence that the system can be eventually
broken. This search of proof requires monitoring the Internet, dedicated forums
such as Doom9 [12], security contests such as Pwn2Own, and hacking conferences
such as Defcon or Black Hat. This continuous monitoring may reveal attacks
applied to another system but also applicable to yours. Having researchers and
ethical hackers publish exploits is essential to the process of designing more secure
systems. This practice is called full disclosure policy. Some people claim that
publishing vulnerabilities benefits attackers and is dangerous for consumers, and so
disclosing vulnerabilities should not be allowed. According to them, software
vulnerabilities should be kept secret. Indeed, once a vulnerability is publicly dis-
closed, the number of attacks based on this vulnerability may multiply by up to five
orders of magnitude [13]. Jason Lanier, one of the fathers of virtual reality, called
the full disclosure policy the ideology of violation [14]. According to him, the only
purpose of the researchers was to seek glory. I disagree. I believe that refusing to
disclose vulnerabilities is a poor strategy. Indeed, publishing exploits has three
positive consequences.

• Disclosure of the Vulnerability: The designers of the vulnerable system can now
implement a countermeasure that will close the hole. That a given vulnerability
has not been publicly revealed does not mean that an attacker is not already
exploiting it. Maybe an attacker already knows and exploits this vulnerability
but keeps this knowledge to herself. In that case, this stealthy attacker may
exploit the vulnerability without her victims being aware and with no chance of
seeing this hole fixed.
An unknown vulnerability is called a 0-day vulnerability. 0-day vulnerabilities
are the quintessence of vulnerability for attackers, as there is yet no available
defense. Thus, the attack will be taking place off the radar. Therefore, there is a
black market for trading 0-day vulnerabilities. Their price is ranging from $5000
to $250,000 depending on the criticality of the exploit [15, 16]. Furthermore, it
is claimed that some private companies, such as ReVuln [17], Vupen Security,
FinFisher, and the Hacking Team, purchase such 0-day vulnerabilities from
hackers. Later, these enterprises sell these vulnerabilities to interested customers
[18]. The sale of these vulnerabilities is secret to give a competitive edge to the
customer. The potential clients of such 0-day vulnerabilities are private corpo-
rate teams looking for new attack vectors or attempting to set up an advanced
persistent threat (APT), as well as government agencies. For instance, in 2012,
the US National Security Agency (NSA) paid Vupen Security for a 1-year
supply of 0-day vulnerabilities. Vupen Security provided both the vulnerabilities
and the pieces of software needed to exploit those security flaws to attack
electronic systems [19].
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Interestingly, many companies may reward the private disclosure of vulnera-
bilities in their products or services [20]. Since November 2010, Google fostered
responsible disclosure through its vulnerability reward program [21]. The
reward ranges from $100 for a new cross-site scripting (XSS) to $20,000 for
unknown remote code execution. As an extremely smart incentive, it also
publishes the name of the contributors in its security hall of fame. In September
2012, Google had rewarded about 250 persons. On June 26, 2013, Microsoft
launched a similar program, called “mitigation bypass and blue hat defense,”
with bounties of up to $100,000 [22]. In January 2014, Facebook paid a $33,500
bounty to a Brazilian security researcher who found one remote code vulnera-
bility [23]. These bounty programs have started to become popular, well
attended, and well funded. In 2013, Facebook received 14,763 submissions.
This number was an increase of about 250 % compared to the previous year
[24]. Among them, only 687 submissions were valid vulnerabilities. About 40
of them were critical vulnerabilities. Google went even one step further. In
2015, Google launched the Vulnerability Research Grant program [25].
Researchers may apply for this grant program to look for potential vulnerabil-
ities within sensitive Google applications. The grant ranges from $500 to
$3133.70. The application clearly states that some researchers might not find
any vulnerability. In other words, the grant is not contingent on the discovery of
any actual vulnerability. Many forms of reward are in use. For example, United
Airlines rewards the vulnerability discoverers with air miles [26].
Nevertheless, the bounty is not necessarily the primary driver of the disclosure,
as many ethical hackers are motivated by fame rather than by monetary reward.
Reputation is a powerful motivation. The Web site HackerOne.com is a hub for
about 100 of such vulnerability discovering programs. The programs range from
large companies or projects (Adobe, OpenSSL, Python, Twitter, or Yahoo) to
small sites or projects. A little less than half of these projects offer pecuniary
rewards. Furthermore, the site provides a federated hall of fame. Some
security-oriented conferences also organize contests. For instance, the annual
Pwn2Own contest is an organized challenge to crack the security of the four top
browsers.4

Of course, responsible disclosure requires careful scheduling. Known, pub-
lished, responsible disclosure policies exist, such as the Coordinated
Vulnerability Disclosure [27] or the Zero Day Initiative [28]. Without such
policies, the disclosure of vulnerabilities would subscribe to the ideology of
violation. The ethical hacker must first disclose the vulnerability to the product
owner/developer. The product owner should negotiate a reasonable delay with
the ethical hacker or security researcher before the public disclosure. During this
grace period, the product owner will fix the vulnerability and provide a security
patch to its customers. Then, customers must apply the security patch, which

4In 2015, Jung Hoon Lee was rewarded $225,000 for three successful exploits on Chrome, Safari,
and Internet Explorer 11.
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may take many months. A recent study evaluated the average duration of one
0-day vulnerability in the field to 312 days. In extreme cases, it lasted up to
30 months [13]. Later, the ethical hacker publishes the exploit. Unfortunately, as
exploits are often described immediately after the delivery of the corresponding
patch, and as people do not immediately update their systems, a flurry of
exploits may be launched during this transitional period [29]. Late in 2014, with
its Project Zero, Google unilaterally decided that its researchers should disclose
within 7 days the critical vulnerabilities they discovered [30] and that less
critical vulnerabilities should be disclosed within 90 days. The claimed objec-
tive was to accelerate the availability of a patch or, at least, the publication of a
security advisory bulletin. After some hiccups, Google added a potential grace
period of 14 days if the software editor needed it to complete the security patch
[31].

• Availability of the Patch for Vulnerability: Public disclosure gives a strong
incentive to the software editor to fix the vulnerability. Avoiding bad mouthing
that may ruin the reputation of a firm can be a powerful inducement for
developing a new security patch. The more secure the deployed pieces of
software or the Web services will be, the more secure the digital world will
become [32]. Having all systems patched correctly is of general public interest.
See Rule 6.2: Patch, Patch, Patch.

• An Excellent Educational Tool for Students and Especially for Practitioners: A
new vulnerability may use a new type of attack and technique. It is hard to
defend against an attack that you are not aware of. Knowledge is paramount to
security. The disclosed attack may apply to targets other than the original one.
Designers of such potential targets can preventively address these vulnerabili-
ties. They do not need to wait until the exploits are deployed on these targets.
Furthermore, designers can avoid the same mistakes in new designs.

Rule 1.2: Responsibly Publish Vulnerabilities

In the role of dissemination and education, the Computer Emergency Response
Teams (CERTs) are key players. CERTs are primarily dedicated to helping
enterprises and administrations rather than end users. Nevertheless, most of the
time, the CERT information is available to everyone. Their primary missions are to
analyze all reported threats, to maintain a database of all disclosed vulnerabilities,
and to provide support and advice for implementing mitigation plans for these
vulnerabilities. The first CERT was created in 1988 in Pittsburgh at Carnegie
Mellon University under the lead of the US Defense Advanced Research Projects
Agency (DARPA) following the appearance of the Morris worm. As CERT is a
trademark of Carnegie Mellon University, the community should instead use the
generic term Computer Security Incident Response Team (CSIRT). There are
several hundreds of CSIRTs in the world. The CERT from Carnegie Mellon
University remains the most famous CSIRT.
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1.2.2 Jailbreaking and Secure Bootloaders

During World War II, the cryptanalysts at Bletchley Park succeeded in breaking the
algorithms that the Enigma machines implemented. The next example describes
another hack applied to a different type of device. This time, it is a consumer device
rather than a military apparatus. Many modern devices execute only pieces of
software approved by the device’s manufacturer. This is the case, for instance, for
game consoles, set-top boxes (STBs), and some smartphones. There are two main
rationales for this design decision.

• Security: Controlling what software executes on a platform is a way to ensure
that no malware contaminates the platform. This method is especially efficient
for closed garden environments such as STBs and even smart cards. It ensures
that the device behaves as expected or that no forged piece of software can
extract secrets or misbehave. In the case of game consoles, it is a theoretical,
copy protection method, as only signed, controlled pieces of software can
execute on the platform. If usual ripping tools cannot make a pristine, complete
copy of the genuine game, then it is not possible to produce illegal copies of
genuine game. Usually, the corresponding physical media uses a logical format
that is different from the format used by the media industry for movies, in order
to thwart ripping tools. For instance, the logical format of a game DVD is
different from the format of DVD-Video. Furthermore, it uses a proprietary
format, whereas DVD-Video’s one is public.

• Business: Enforcing what software executes on a platform is a way to control
how the market distributes the corresponding software. The manufacturer is a
gatekeeper who may charge a fee to the software editors for authorizing the
execution of their applications on its platform. This is the case, for instance, with
Apple with its Apple Store, or the manufacturers of game consoles. They create
controlled vertical markets.

Whatever the reason to implement such restriction methods, these systems use the
same enforcement mechanism: a secure bootloader. The secure bootloader is quasi
the first piece of software executed by the device. It has two functions.

• The secure bootloader checks the integrity of the system. It typically verifies
whether the operating system and the drivers have been tampered with. For that
purpose, it compares the hash value5 of the binary code of these elements with
the corresponding stored reference values. Obviously, the stored reference hash
values should not be rewritable by an attacker. Why use a hash function rather
than a lightweight checksum, given the fact that the hash function requires much
more calculation? Under the assumption that the stored reference hash values
cannot be modified, if the attacker changes even one bit of the software’s binary
code, the corresponding hash value changes drastically. The attacker will not be

5Section 15.3 provides an explanation of the hash function.
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able to forge a proper piece of code whose corresponding hash value will match
the reference value. This feature is intrinsic to the hash function. With a
checksum, it is easy to forge a piece of binary code that will present a corre-
sponding checksum by appending a few dumb bytes. If the attacker modifies
one bit of the software, she has just to adjust one of the dumb bytes to obtain an
invariant checksum.

• This solution is applicable only to applications and drivers that the bootloader
knows before runtime. For dynamically loaded applications, thus unknown to
the bootloader beforehand, integrity checking needs another mechanism.
Section 4.2.5 describes a potential solution to this problem.

• Once the integrity of the system is established, the bootloader checks the
integrity and the origin of the piece of software to be executed. Usually, it
verifies that the originator cryptographically signed this piece of software
(Sect. 4.3.6). Of course, the bootloader has to store the public, signing, root key
of the expected originator securely. This public root key has not to be secret.
Nevertheless, it must not be rewritable by the attacker. If an attacker could
change this public root key, then she could replace it with her own public root
key and so execute arbitrary code signed by her corresponding private root key.
It is beneficial to note that the signature empowers two verifications. The first
verification is that nobody tampered with the software package. The second
check is whether the authority who knows the private, signing, root key issued
this software package. In other words, checking the signature verifies both the
integrity and the origin of the piece of software before executing it.

Sometimes, the bootloader is more complex and has several stages. The two
initial stages are the ones described above. The following stage loads a signed
middleware. This middleware will load the dynamic application once it successfully
checks that the signature of the application is valid. In this configuration, it is good
practice to sign the dynamic applications with a different key hierarchy than the one
used to sign the middleware. This differentiation allows distributing application-
signing keys to external, trusted, software developers while keeping control and
limiting the risk of forgery of its proprietary middleware. With such a key distri-
bution mechanism, only in-house developers have access to the process that signs
the middleware.

The secure bootloader should be a tamper-resistant, carefully crafted, piece of
software. Ideally, to prevent any modification, the secure bootloader should be
stored in a non-writable memory. With such a secure bootloader, it seems impos-
sible for an attacker to execute an arbitrary piece of software. Unfortunately, Law 1:
Attackers Will Always Find Their Way is always true. Attackers sometimes find a
way to unlock such devices. This kind of attack is often called jailbreaking. The
objective is to find a vulnerability that grants root access to the device. With these
elevated privileges, the attacker can modify the secure loader so that it accepts any
binary code, even if not signed by the manufacturer [33]. The next example
examines such a jailbreaking exploit.

1.2 Analysis 11

http://dx.doi.org/10.1007/978-3-319-42641-9_4
http://dx.doi.org/10.1007/978-3-319-42641-9_4


The Devil Is in the Detail A very sophisticated secure bootloader protects
Microsoft’s game console: Xbox 360 [34]. It uses a three-stage system with
the initial bootloader being signed by RSA and being encrypted with RC4.
The bootloader securely launches a hypervisor. The hypervisor starts the
signed games once their signature is verified. Some early versions of this
hypervisor had flaws that allowed executing unsigned code. Microsoft sys-
tematically issued a newly revised version of the hypervisor that was immune
to the weakness. Microsoft forced the update of Xbox 360 to enforce the
systematic use of the most current hypervisor that is not crippled with vul-
nerability. Every known hack of Xbox 360 uses one of the flawed hypervi-
sors. The enforcement of the use of immune hypervisors should prevent the
existing attacks. Thus, the goal of the attacker is to launch a defective
hypervisor instead of a flawless new one. The bootloader checks whether the
signature of the hypervisor is legitimate. The flawed hypervisors are genuine
Microsoft pieces of software. Therefore, they are duly signed. If the boot-
loader would only verify the signature, it would not ban the defective
hypervisors. Therefore, Microsoft modified the bootloader to check whether it
attempts to execute one of these flawed hypervisors. In addition to validating
the signature, it calculates the hash of the hypervisor and checks whether the
calculated hash belongs to a blacklist of forbidden hashes. Hackers must
bypass this additional control to install a flawed hypervisor.

Gligli and four hacking colleagues implemented a hardware attack based
on hardware fault injection. Fault injection is a sophisticated but devastating
class of attack [35]. The objective of fault injection is to make a piece of
software act in a different way than expected by its designers. The source of
the fault is external stimuli in the environment of the hardware component.
Typical stimuli can be glitches in the external clock signal, variations in the
voltage supply, tiny pulses in the reset signal, low temperature, and even
X-rays and ion beams. These attacks are not intrusive, as they do not require
modifying the piece of software or using a debugger or injecting signals
inside the chip.6 The stimulus should generate a fault in the processor,
resulting in the program execution’s derailing. It does not anymore follow the
expected flow of execution.

The hackers found that a tiny pulse in the reset signal of the main pro-
cessor while the C function memcmp7 executes resulted in it always returning
a true Boolean value, regardless of the compared values. Unfortunately,
developers often use the standard C function memcmp to compare two hash
values to check whether their signatures match. To trick the bootloader, the

6Some fault injection attacks are more intrusive as they require the depackaging of the component.
Depackaging is the operation that removes the silicon die package and sometimes removes some
physical layers. This is the case with white light and laser attacks.
7memcmp is a standard function of the libc library that compares two blocks of consecutive
bytes. If the blocks are the same, the returned value is true; else the returned value is false.
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attackers have to generate a glitch in the reset signal at the proper time. Even
if the signature of the forged software is to differ from the expected one, the
comparison will indicate that it matches the expected result. Consequently,
the bootloader may authorize the execution of the banned, flawed hypervisor.
The bootloader believes that the presented hash does not belong to the
blacklist and thus permits execution of the defective hypervisor. The difficult
trick is to find the exact timing of when to apply the glitch.

The Xbox 360 comes in two versions: flat and slim. On the flat version of
Xbox 360, the attackers discovered that pulling up a pin of the processor
reduces its speed by about 120 times. Thanks to this trick, they profiled the
bootloader to find the precise moment of the occurrence of the memcmp
function that compares the hash of the executing hypervisor with the refer-
ence values. After many trials, they designed a successful hack.

1. Wait for the beginning of the execution of the memcmp function that
compares the two hash values.

2. Slow down the processor when it starts the hash comparison by pulling up
the corresponding pin.

3. Wait for a precise duration and then apply a 100-nS pulse to the reset pin
of the processor. The slowing down of the processor increases the relia-
bility of the hack as it requires less accurate timings.

4. Let the processor return to nominal speed by releasing the pin’s voltage.

For the slim version of the Xbox 360, the hackers did not find a similar pin
that would slow down the clock of the processor. Nevertheless, they found
that a programmable phase-locked loop (PLL) chip drove the clock using an
I2C bus. The I2C bus is a cheap, two-line, standardized, serial bus widely
used in hardware design for many decades. The I2C bus is not protected and
is well documented. The previous hack evolved into:

1. Wait for the beginning of the execution of the memcmp function that
compares the two hash values.

2. Through the I2C bus, command the PLL to slow down the clock of the
processor.

3. Measure exact duration and then apply a 20-nS pulse to the reset pin of the
processor.

4. Through the I2C bus, command the PLL to return the processor to its
nominal speed.

Fault injection attacks are not easily reproducible. They often require
many successive failed attempts until one is successful. Nevertheless, these
attacks are devastating. Moreover, they are difficult to prevent. In the case of
the described hack, the attackers claimed that their average success rate was
about 25 %. For this reason, successfully booting an unsigned code may
require a few minutes of automatic trials before the Xbox is successfully
fooled. Furthermore, fast and accurate hardware is required to generate pulses
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as small as 20-nS. In other words, this attack is not easy and not practicable
by newbies. Nevertheless, the outcome is that the attackers succeed in run-
ning an arbitrary piece of software on Xbox 360. Once the flawed hypervisor
is running, it is possible to trick it to accept any arbitrary piece of code. This
exploit is a physical attack as it requires access to the device and some
physical equipment. At the time of writing this book, there was no known
purely software-based attack.

Lesson: Attackers are resourceful. Even garage hackers may use sophisti-
cated attacks. All sophisticated attacks do not require expensive, sophisticated
tools. All attacks are not easy to reproduce repeatedly. Thus, some attacks may
not have an enormous business impact and affect reputationmore than finances.

Fault injections are extremely powerful attacks. They are often wrongly cate-
gorized as a type of side-channel attack. Side-channel attacks collect information
leaking from side channels, and through careful analysis, they retrieve secret
information. For instance, the side channel can be the duration needed to perform
encryption, measurement of power consumption which gives an idea of how many
transistors commute, or measurement of local electromagnetic radiations. Since the
publication in 1996 of the famous, first timing attack by Paul Kocher [36],
side-channel attacks became more sophisticated than that seminal one. They have
extensively proven to be devastating and have forced manufacturers to design and
implement dedicated countermeasures (Sect. 6.2.2).

The previous insert describes a hack dedicated to the Microsoft Xbox 360.
Microsoft is not the only hacked game console manufacturer. At the time of this
writing, every game console has been broken. The Nintendo Wii [37] and
Nintendo DS have been broken for each new generation of product.

There was no protection in the initial versions of the Sony Play Station (PS).
Their design allowed running any piece of software. Soon the hobbyist community
became enthusiastic and extremely active. With its PS3, Sony decided to restrict the
execution to approved pieces of software. The latest versions of Sony PS3 have also
been successfully jailbroken. At the December 2010 Chaos Computer Club (CCC)8

conference, George Hotz, by the nickname of GeoHot, disclosed the digital sig-
nature algorithm (DSA) private key used to sign the firmware of all PS3 devices
[39]. Normally, it is impossible to guess a private key while knowing only its public
key. The usual security assumption is that this private key never leaks out. Usually,
private root keys are hosted in Hardware Secure Modules (HSMs) and stored in a
safe. Strictly enforced, security policies govern access to the HSM. The absolute
secrecy of the private key is the cornerstone assumption of most trust models.

8For over 25 years, the CCC has been the largest European hacker’s group. The activities of the
club extend from technical research and dissemination to political engagement [38]. Each year, its
December conference gathers many of the most influential hackers worldwide. Many new exploits
are disclosed during this event.
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GeoHot could not get access to the HSM. Then, how did he find this private key?
The mistake was a poor implementation of the signing software. In a proper
implementation of the DSA signature, the signing process uses a different random
value for each new signature. Unfortunately, Sony used the same fixed value within
its DSA implementation. Every signature employed the same “random” value. This
mistake, well known by the cryptographic community, allows guessing the private
key [40] with a few valid signatures. Indeed, GeoHot explored this option and
discovered that he could retrieve the signing key. Nevertheless, this was not the
ultimate key as it protected “only” the firmware. In October 2012, hackers by the
nickname of “The Three Musketeers” went a step further [41]. They guessed and
released the private key used for the bootloader LV0. With this key, it was possible
to sign and install any arbitrary software on the console. Unfortunately, the
Musketeers did not disclose how they discovered this private key.

The game industry is under continuous attack from the hacking community.
Sadly, the game industry made many mistakes with its security systems. Copy
protection systems regularly applied to games anger consumers. Nevertheless, in
Sect. 2.3.1, we will come back to the world of game consoles, but this time with a
positive example.

Jailbreaking applies to devices other than game consoles. Indeed, the phone
industry initially coined the word jailbreaking. Historically, jailbreaking a mobile
phone has meant circumventing the system that enforces that the mobile phone uses
only a given operator’s network and subscription. Many operators subsidize the
cost of the mobile phone. Therefore, they want to guarantee their return on
investment by restricting the use of the subsidized phone to its own carrier network
(and associated carrier networks when roaming). Jailbreaking removes this
restriction. At the end of July 2010, the US Copyright Office and the Librarian of
Congress announced six new exemptions to the Digital Millennium Copyright Act
(DMCA)9 [43, 44]. Exemptions authorize circumventing protection measures as
defined by the DMCA under very specific conditions. One of these exemptions
states that jailbreaking mobile phones is legal if the purpose is to enable the use of
the phone on other carrier networks.

With the advent of smartphones, and especially the Apple iPhone, jailbreaking
took on a second meaning: allowing the execution of arbitrarily downloaded
applications on the smartphone. This operation is sometimes called “rooting.” For
instance, Apple iPhone, Apple iTouch, and Apple iPad can exclusively execute
applications downloaded from the Apple App Store. Apple applies extremely tight
control on these applications. As usual when restricting usage, this was a challenge
for hackers. An arms race started between Apple and the hacking community. Until
iOS 9.0.2,10 hackers offered a solution to run arbitrary applications on these

9Since October 28, 1998, the DMCA [42] defines the US copyright laws. Normally, under the
DMCA, it is illegal to circumvent any security measure. Nevertheless, there are some exemptions
to this rule. Since its inception, five such amendments were issued in 2000, 2003, 2006, 2010, and
2014, defining new exemptions to the DMCA rules.
10iOS 9.0.2 was the latest version of iOS at the time of editing this chapter.
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devices. They used pieces of software such as redsn0w, Absinthe,
JailBreakMe [45], and Pangu [46]. Rooting enabled using an alternate appli-
cation store: Cydia [47].

Other manufacturers also attempt to control their execution environment.
Nevertheless, the advent of Android has tended to reduce this practice. Having
access to a vast library of applications is an excellent selling argument.11

Unfortunately, rooting introduces other security issues, such as opening the door to
malware.

1.2.3 Flawed Designs

In the case of side-channel attacks and Xbox attacks, the success came from a new
attack that was unknown to the designers. Unfortunately, often the attack succeeds
because the design has serious security flaws [49]. Sometimes, poor design choices
of the security designer are the cause of such defects. The following is a grotesque
example. Wi-Fi routers currently use a secure protocol, WPA2-PSK, to protect the
wireless communications against eavesdropping. This protocol uses a secret sym-
metric key that should be unique for each router. Usually, the router manufacturer
stores on the device a random key generated by the factory. This key (or the
passphrase that will generate this key) is often printed together with the network
name (SSID12) on a label affixed to the router. The key is a long set of hexadecimal
digits that the user might have to enter when joining a network for the first time.13

Best security practice assumes that this WPA2-PSK key is random so that an
eavesdropper cannot guess the key needed to join a network stealthily. On some of
its models, the manufacturer Belkin did not respect this rule [51]. Rather than being
truly random, the key was derived from the wide area network (WAN) medium
access control (MAC) address of the router. By construction, the WAN MAC
address is public information. The router broadcasts it. Thus, this address is
available to any attacker. Unfortunately, the algorithm that derived the key from the
WAN MAC address was far too simplistic. Each digit of the key was the result of a
static substitution of one digit of the WAN MAC address. Once the substitution
table was guessed, it was easy to calculate this pseudorandom key. Furthermore,
Belkin’s passphrase used only eight hexadecimal digits, i.e., 32 bits of entropy.

11Nevertheless, there are also “rooting” exploits available for Android. One example is
Towelroot, designed by GeoHot [48].
12The Secure Set Identifier (SSID) is the alphanumeric string that is part of the header of the
packets over wireless local area networks.
13A new protocol called Wi-fi Protected Setup (WPS) allows users to bypass this clumsy, complex
phase of dialing long passwords. Unfortunately, once more, some weak implementations of this
protocol undermined the security of some devices [50].
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Exploring by brute force14 32 bits of entropy is currently just a matter of a few
hours. For a symmetric key to be safe, this key should be at least 90 bits long [52].
This too short length was another significant design error.

It is interesting to consider why a manufacturer uses a deterministic algorithm
rather than a true random number generator for creating the secret key. The reason
is the ability to restore default values in the case of a problem. If the manufacturer
were to use a random number generator, then it would have no way to provide the
passphrase to Alice if ever the sticker of her router was destroyed or erased. The
only solution would be to store all the generated passphrases in a database securely.
The manufacturer or the operator has to offer through its hotline a sophisticated
retrieval service. First, the operator must assess whether that the calling customer
owns the device. Once this ownership is verified, the operator can deliver the value
of the forgotten passphrase. This manual operation is expensive. Using a pseudo-
random number generator (PRNG) with a known seed simplifies the logistics and
reduces the cost. Nevertheless, this money-driven design choice requires a strong
PRNG, which was not the case for Belkin (Chap. 3).

In the previous example, the motivation driving the error was the manufacturer’s
convenience and cost constraints. One of the leading causes of this flaw comes from
a bad balance between user-friendly, marketable features and security constraints.
For instance, for increased user-friendliness, car manufacturers introduced a new
breed of car keys: the Passive Keyless Entry and Start (PKES) system. These car
keys use radio frequency identification (RFID) wireless communication with the car
over a secure protocol. The idea is that every automobile and its car key are paired.
The vehicle automatically detects the presence of the right paired car key and acts
correspondingly. For instance, when the car key is in the range of two meters of the
car, the car will authorize the driver to open the doors with the handle (without his
having to use the physical key). If the driver is inside the car, it authorizes his
starting of the engine. As the car key remains in the driver’s pocket or bag, the
interaction with the car’s access control is invisible to the driver. Obviously, this
feature is extremely user-friendly.

Unfortunately, in 2011, three researchers from ETH Zurich, Aurélien Francillon,
Boris Danev, and Srdjan Capkun, demonstrated a simple attack: a classical relay
attack [53]. In a relay attack, the messages are retransmitted to make the commu-
nicating entities believe that they are closer than in reality. Thus, the weakness was
not in the protocol itself, but in the initial concept. In PKES, the car initiates the
challenge. The researchers exploit this specificity. They place a first antenna near
the car to capture the emitted message of the car (as the antenna of the car key
would do). Then, these messages are relayed to a second antenna close to the car
key (8–10 m). Thus, the second antenna mimics the car emitter’s behavior. This
message relaying is independent of any logical protocol. A simple cable or RF

14Brute force attacks explore systematically every possible value of the key until one succeeds.
Thus, in the case of 32 bits, it means at maximum 4,294,967,296 trials. Unfortunately, with current
computers, exploring a 32-bit space is extremely fast. A brute force attack is the simplest attack.
The defense is to increase the length of the key.
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transmission links the two antennas. In other words, the system transmits messages
between the car and the physical key a longer distance than intended. Consequently,
if the attacker knows the location of the car, and if the attacker comes reasonably
close to the car’s owner, she may steal the signal of the car key. Near this targeted
car, her accomplice can unlock the car and steal it. The researchers demonstrated
this attack on ten car models from eight manufacturers. A few years later, high-tech
thieves used this attack in the street [54].

The design is flawed because it assumes that the presence of the signal means
that the emitting device is nearby. The researchers suggested one first simple
countermeasure: Deactivate the car key with a physical switch. Unfortunately, this
countermeasure has two issues. First, it does not take into account human factors.
Without doubt, some people will forget to deactivate the key when leaving their car.
Other users may not remember that they had disabled the car key and thus will
struggle when trying to open the car, expecting it to automatically open despite their
having deactivated the feature previously. The second issue is that adding a switch
button would annul the perceived benefit of this system: being buttonless. This is
most probably the heart of the problem. Unlocking the car is done without con-
scious action by the owner. Is it wise from a security point of view? The security
designer should never neglect human factors (Chap. 7).

The researchers proposed a second countermeasure more complicated than the
previous one. This solution requires accurately measuring the trip time, i.e., the
duration needed for a message to reach the target point. The relay attack increases
the trip time. Therefore, the car could detect its interception of the communication
channel. Unfortunately, the trip time of wireless communication is not stable and
precise. The dispersion of values is high. A class of secure protocols called distance
bounding protocols attempts to prevent relay attacks [55, 56].

Sometimes, a feature of a system is an intrinsic vulnerability by design, as users
may employ it in a way that its designers did not foresee. For example, Microsoft
designed a proprietary file format, the Advanced Systems Format (ASF), for storing
and playing digital media content. It is a container format used for Windows Media
Audio (.wma) and Windows Media Video (.wmv). In addition to the audio and
video streams, an ASF file may also contain text streams, Web pages, and script
commands. One script command is extremely attractive to attackers:
URLANDEXIT (code value 81). This command requires the player to open the
Web page whose uniform resource locator (URL) is following the command code.
The Web page is accessed automatically without any user interaction. The initial
purpose was to be able to download transparently a new breed of codec that was not
yet supported by the host. Unfortunately, in 2008, attackers used this documented
feature to access sites that would distribute malwares [57]. For instance, the Trojan
Win32.ASF-Hijacker.A searched the hard drive of the infected computer for
ASF files [58]. Once the malware found them, it injected into these files the
URLANDEXIT command pointing to a remote Web site controlled by its
designers. The infected media file was ready to spread the infection. Many variants
and malwares used this URLANDEXIT command.
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Unfortunately, this dangerous feature is enabled by default. Microsoft released
an update patch that allowed disabling this feature by manually updating some
registry keys. Such operation requires some skill and is not user-friendly.
Interestingly, the Trojan Win32.ASF-Hijacker.A disabled this feature for its
infection to remain unnoticed by the computer that created the forged content. Not
all players are vulnerable. For instance, the widely deployed, open source multi-
media player VLC does not support the script commands of ASF.

As specified by Microsoft, this issue was not a security vulnerability but rather
was a feature by design [59].

When a content owner creates an audio or a video stream, that content owner can add script
commands (such as URL script commands and custom script commands) that are
embedded in the stream. When the stream is played back, the script commands can trigger
events in an embedded player program, or they can start your Web browser and then
connect to a particular Web page. This behavior is by design.

Sometimes, an excellent feature may turn into an exploitable hole. The Thunderbolt
port is an Apple proprietary port that combines both the DisplayPort for displays
and PCIe for connecting devices using one unique physical connector. At the
December CCC 2014 conference, Trammel Hudson disclosed the first known proof
of concept of a bootkit for Mac OS X [60] using the Thunderbolt port. Bootkits are
a particular category of rootkits that stealthily infect the master boot record or the
volume boot record. The master boot record is the piece of software that the Basic
Input/Output System (e 1st occ. expansion given) loads to initiate the boot.
The volume boot record holds in the first partition the piece of software that loads
the OS. In other words, a bootkit is a rootkit that installs itself in the boot system
of the machine before the installation of the OS. Thus, the loaded OS is unaware of
the presence of the bootkit.

Hudson’s exploit uses several weaknesses in the boot system of Mac OS X.

• A CRC32, rather than a cryptographic signature, protects the integrity of the
boot Read-Only Memory (ROM).15 Unfortunately, the purpose of a cyclic
redundancy code (CRC) is to check that the data is not corrupted (i.e., there is no
mistake due to transmission). The goal of CRC is not to verify whether a
principal modified a piece of data. Forging a CRC that matches an altered piece
of software is extremely straightforward. The attacker can modify the boot
process software and bypass the control of integrity by just calculating the new
CRC and replacing the previous value with the calculated one.

• The firmware that is to be upgraded with the Extensible Firmware Interface
(EFI) is signed with RSA 2048. However, the verification of the signature is
done by the boot software. The previous vulnerability may alter this bootloader.
The attacker may load her forged firmware at boot time using EFI if she can

15In the case of Mac OS, the ROM is indeed an electrically erasable programmable Read-Only
Memory (EEPROM). This allows a potential upgrade of after its deployment.
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deliver it to the machine to infect. Nevertheless, this attack requires physical
access to the machine.

• Hudson used an attack that was disclosed in 2012 [61]. At boot time, EFI
queries external devices that are connected through PCIe about whether they
have any Option ROMs to execute. An Option ROM or expansion ROM is a
piece of firmware that the BIOS launches at boot time. The Apple Thunderbolt
port also supports the PCIe interface. The Thunderbolt port allows this function
to load an arbitrary firmware from a connected device that would announce it
has an Option ROM.

• Hudson fooled the boot firmware by replacing Apple’s public key with his public
key. Thus, the Apple software checks the signature of his malware and decides
that it is legitimate, as the replaced key pair, used to verify the signature, and
signed the malware. The legitimate Apple software then executes the malicious
Option ROM. Later, the attacker’s public key is written down in the ROM,
preventing any Apple-authorized firmware upgrade from occurring. The com-
promised device will only accept firmware updates signed with the attacker’s
private key.

The potential attack is to design a forged Thunderbolt device with the expected
malware as an Option ROM. The attacker needs physical access to the target
computer. Then, she boots the device with the connected forged Thunderbolt
device. In a few minutes, the attacker owns the machine. The entire attack is fast.
Apple prepared fixes that prevent Option ROM execution during a firmware
upgrade.

In 2014, Luyi Xing and his colleagues disclosed a new class of attack, which
they coined pileup [62]. The attack uses an update of the OS to create new vul-
nerabilities. The researchers used Android to demonstrate the concept.
Nevertheless, the attack may apply to other OSs. Google issues a new version of
Android about every year. Each update usually features new system applications,
new permissions, and new attributes. An increment of the application programming
interface (API) level index signals this evolution. An attacker knows the history of
this development. She designs a malicious application that uses selected permis-
sions and attributes that are only available in the version of Android with the
highest API level. The versions of the OS with a lower API level do not know these
permissions. Thus, at installation time, they do not ask the user to grant this
unknown permission. The forged application is installed on a device running a
version of Android with a lower API level. The malicious application cannot use
these newer unsupported features. Later, the device may be updated to the latest
version of Android. When upgrading, Android automatically grants the previously
claimed permissions, privileges, or attributes without asking for confirmation from
the user again. It would not be user-friendly for the OS to request permission from
the end user for each application he previously installed. This systematic request for
each application would make the upgrade process tedious. The researchers gave
some demonstrations of pileup attacks. For instance, Android 2.3 (so-called
Gingerbread with API level 9) does not have permission to receive Google
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Voice SMS.16 This permission has been only present since Android 4.0 (so-called
Ice Cream Sandwich with API level 14). Using such a pileup attack, the malicious
application could read SMS messages of Google Voice without the user being
aware once he upgraded to a version of Android greater than 4.0.

Another method is to claim some package name that the system will use in a
future upgraded version. Once the OS is upgraded, the previous data will be kept. If
malicious, this data may contaminate the system application. Pileup attacks may be
dangerous in an extremely fragmented environment such as Android’s.

Modern designs are extremely complex. Exploring all the use cases is difficult, if
not impossible. It is even harder to foresee scenarios that will benefit from the
evolution of the product. Flaws are ineluctable in elaborate designs. The attackers
will use such flawed designs to create exploits.

1.2.4 Advanced Persistent Threats

There are two categories of attacks: opportunistic attacks and targeted attacks. In the
case of opportunistic attacks, the attacker randomly selects her targets. For each
random target, she checks whether she can successfully apply her exploit. If it is the
case, then she perpetrates the attack, intrudes on the system, and attempts to dive
deeper into it. If she fails, she looks for another victim. Usually, this type of attacker
does not invest much effort into breaking into targets. If a target does not easily
surrender, then the attacker moves to another random target. For example, this
routinely occurs on Internet routers. Attackers scan IP addresses to find open ports,
usually using automated tools, such as nmap or the Shodan search engine. Then,
the reported open ports are analyzed to check whether their corresponding protocols
are vulnerable to widely known exploits. Perimetric defense tools prevent attackers
from breaching the perimeter defined by a company. They include firewalls,
intrusion detection systems, and antiviruses. As long as they are up to date, typical
perimetric defense tools are usually sufficient to deter opportunistic attacks.
Opportunistic attackers always look for the weakest preys.

In the case of targeted attacks, the attacker focuses on a precise target or at least
on a category of targets. The attacker’s goal is to fulfill a particular task. For that
purpose, the attacker uses a broad range of techniques. The attack may be
sophisticated and encompasses many steps. The first step collects maximum amount
of information about the target. This step uses all available resources, such as
published information, stolen or leaked proprietary information, and information
gathered through social engineering [63]. Business intelligence tools such as
Maltego may help the attacker to cross-check the collected information. During the
second step, the attacker attempts to breach the target using the collected infor-
mation. Depending on the actual security of the target, this second step can be

16The permission is com.google.googlevoice.RECEIVE_SMS.
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extremely complex and may involve multiple attacks spread over different systems.
The new term advanced persistent threats (APTs) describes the most sophisticated
attacks of this category. The most interesting recent ATP was the attack against
RSA Ltd.

SecurID is a widely used two-factor authentication token. The system is usually
used to authenticate a user, either to grant him access to a remote service or system
or to establish a virtual private network (VPN) with his company’s network. The
token displays a six-digit number that changes every few seconds following a secret
proprietary algorithm (Fig. 1.3). Each token is associated with one person. When
receiving her token from her IT department, Alice is also attributed a four-digit
personal identification number (PIN). To authenticate with SecurID, Alice provides
her login identity (for instance, her email address), her four-digit PIN, and the six
digits currently displayed by the SecurID token. The authenticating server checks
whether these three parameters fit together. If they do, then the server authenticates
Alice. The SecurID system is a two-factor authentication mechanism because it
checks:

1. Something Alice knows, e.g., her PIN; this renders the theft of the SecurID
token useless. The thief would not know her four-digit PIN.

2. Something that Alice owns, e.g., the token itself; the continuously changing
value of the six digits proves that she currently holds it. This solution renders
shoulder surfing useless because the validity of the code has an extremely short
life (a few seconds).

On March 18, 2011, Art Coviello, the executive chair of RSA Ltd., announced to
his customers that his company had been attacked, and some information leaked out
[64]. The stolen information may have reduced the security of the SecurID tokens.
RSA Ltd. did not disclose what information the intruders took. Nevertheless [65],

Fig. 1.3 RSA SecurID
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we may infer that the intruders have now a method to impersonate Alice’s SecurID
token or a way to fool the authentication server into believing that the login user is
Alice.

RSA Ltd. properly managed this crisis. The company had a positive, responsible
reaction regarding the hack. It provided some details and timely visibility on the
issue. Therefore, this APT teaches us many interesting lessons.

The Devil Is in the Detail The attackers penetrated the company RSA Ltd.
through a targeted phishing email using a malicious Excel file [66]. Over
2 days, two small groups of EMC17 employees received two spear phishing
emails [67]. Phishing emails are emails that attempt to impersonate a known
user or entity. Attackers specifically craft spear phishing emails to target an
organization or specific individuals within the targeted organization. On
March 19, 2011, one employee of EMC opened one of these emails, which
were copied to three other employees. This email was sent supposedly by a
recruiting Web site: beyond.com. This site is a certified partner of RSA Ltd.,
making the phishing email less suspicious and even plausible. The subject of
the email, the 2011 recruiting plan, had an attached file, 2011 recruiting
plan.xls. The attack used a typical social engineering ploy: exploiting
human curiosity and greed. It always works. The inquisitive employee
opened the attached object.

The malicious, poisonous Excel file embeds an Adobe Flash object that
Excel executes automatically when the file is opened. Using the vulnerability
CVE-2011-0609 [68], the Flash object installs a malware: PoisonIvy
Backdoor. This vulnerability allows remote attackers to execute arbitrary code
using a crafted Flash object. The vulnerability was first disclosed on March 15,
2011, i.e., 4 days before the attack. The malevolent Flash object installed the
backdoor. PoisonIvy practically gives the attacker full control of the infected
computer [69]. For example, PoisonIvy can rename, delete, execute, upload, or
download files, read and edit the Windows registry, manage services, and
access remote drives. In the RSA attack, the instance of PoisonIvy connected
back to the domain good.mincesur.com. For many years, the domain
mincesur.com was known to be associated with illegal activities [70].
Ideally, a firewall or proxy server should have blocked this domain. The
compromised account was not one of a critical IT staff member. Nevertheless,
the attacker succeeded in escalating her rights by looking for other more
privileged accounts. Then, the attacker was able to gain access to critical
information concerning SecurID tokens. She compressed the collected data
into several password-protected rar files. Using encrypted files may allow
passing under the radar of eventual data loss prevention (DLP) tools that
analyze the semantics and structure of exported files. Finally, the attacker

17EMC is the company that owns RSA Ltd.
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exfiltrated the stolen data using one File Transfer Protocol
(FTP) server.

Was RSA Ltd. guilty of not being up to date? When the attack occurred,
RSA had no means to patch this vulnerability. Adobe announced that the
corresponding patch would be available only on March 21, 2011, i.e., 2 days
after the infection [71]. The problem was that the targeted employee opened
the infected file. We would expect that employees of a security-dedicated
company would be extremely careful about spam and phishing emails.

Lesson: Increase the security awareness of all employees. As there will
always be 0-day vulnerabilities in the field, the defense of antiviruses is not
sufficient. Perimetric defenses are necessary but not anymore sufficient. Only
vigilance may thwart 0-day email attacks.

This is not the end of the story. At the end of May 2011, Lockheed Martin, one
of the largest US defense contractors, was under a “significant and tenacious”
online attack. Some attackers attempted to penetrate Lockheed Martin’s network
[72]. It seems they tried to enter through Lockheed Martin’s VPN which was
protected by RSA SecurID. Apparently, the attackers possessed the seeds, serial
numbers of valid tokens, and the underlying algorithm used to secure SecurID.
Lockheed Martin immediately detected the attack and took drastic, preventive
measures. The company disconnected all remote accesses to its corporate network.
All employees were requested to work only from the office for 1 week.
Telecommuting was banned. The VPN was disabled. All SecurID tokens were
replaced. Every Lockheed Martin employee had to change his network password.
The proximity in time to the RSA Ltd. hack, the intrusion vector (RSA SecurID),
and the target itself (a defense contractor) tend to indicate a high correlation
between the two events. The first stage of the attack would have been the theft of
the secret information of the SecurID. The second stage used this information to try
to penetrate Lockheed Martin’s systems stealthily. This attack is perhaps the first
publicly widely known instance of an APT.

The term APT comes from the military defense domain. Initially, APT was
defined as a cyberattack launched by nation-state-funded organizations to steal,
over a prolonged period, critical nation information using sophisticated, stealthy
techniques. Currently, APT transcends the specialized realm of warfare to extend
into business intelligence [73]. APT is an advanced attack because it employs an
extensive set of tools and techniques to perform attacks. The attackers are well
informed, well equipped, highly skilled, and well funded. They may design custom
tools to succeed in their attacks. APT is persistent because the threat is not
opportunistic, but it is intended to fulfill a specifically defined objective. The
attackers will use all the time necessary to succeed. The cost of the operation is not
an issue. APT is a dangerous threat because human beings fully manage the attack
rather than robots or botnets. Human attackers are more opportunistic and reactive
than robots. Usually, the life cycle of an APT has eight steps.
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1. Collecting the target company: Information concerns the employees as well as
the IT infrastructure. The objective of this step is twofold.

• A better understanding of the network topology, the materials used, and the
different pieces of software employed by the targeted company. This car-
tography can be done using exploration tools such as SinFP [74] and
Metasploit [75] and by gathering public information available on the
Internet. Data stolen via social engineering may be another worthwhile
source of information.

• A better understanding of the organization of the company; it is valuable to
identify people who may have the “nearest” possible access to the targeted
data. Obviously, IT administrators are ideal targets. The social engineer uses
all available sources. There are many potential sources of names. Social
networks are excellent hunting places. Furthermore, professional social
networks such as LinkedIn are even better locations to identify and collect
information about potential, initial entry points [76]. It is easy to find the
name of the chief information officer of an organization and the key mem-
bers of the IT staff of a company via professional social networks.

2. The analysis of data collected during the previous step provides a list of
potentially interesting targets. Through social engineering, the attacker targets
the identified users. This step uses the full panoply of methods, such as
spamming, spear phishing, and impersonating calls. See Chap. 7.

3. The attacker attempts to intrude the target. Once a gullible user found, the
attacker uses vulnerabilities (often 0-day vulnerabilities) to install a Trojan horse
on the victim’s computer. This backdoor will be the entry point of the hack. Of
course, the installation and the operation of the infecting malware have to be
stealthy. This is true for modern Trojans.
Spear phishing remains the favorite method for initial infection. New
file-sharing sites, such as DropBox, have become fashionable in the hacking
world [77]. The phishing email points to a document shared through such a
service. Such cloud-based services can offer efficient anonymity to the attacker.
Tracing back the owner of the account is hard for forensic investigators.
A waterhole attack is another example of a method employed to inject a
backdoor [78]. Once the attacker has profiled the victim in step 2, she can
identify a list of Web sites the victim will most likely visit. Then, the attacker
analyzes these Web sites to find vulnerable ones. In the vulnerable ones, she
attempts to implement some malware that will try to infect the victim’s com-
puter. The attacker’s malware waits until the victim visits the Web site, like a
lion waiting for its prey to come to the waterhole. During the victim’s visit to a
compromised site, the trapped malware attempts to infect the visiting computer.
Infected files are often powerful vectors of infection. Some sophisticated mal-
wares identify the victim and affect only the targeted victim and not the visitors
that the APT did not target. This trick reduces the risk of being detected as only
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a limited number of computers will be infected. Thus, they reduce their own
attack surface as malware detection tools do not see them.

4. Once inside the system, if the victim has no access to the servers that the
attacker was targeting, she expands laterally to roam around the network. In
other words, the attacker looks for other vulnerable computers on the internal
network that would allow her to come nearer to her final target.

5. Escalate privileges (social engineering, access to administrators’ encrypted
passwords, etc.): As the targeted data is sensitive, we may expect them to be
protected strongly. Only higher privileged principals should be granted access to
them.

6. Compromise the system holding the targeted data.
7. Exfiltrate the data stealthily: Usually, the attacker encrypts the exfiltrated data to

avoid detection by DLP tools, deep packet inspection, or any filtering proxies.
Of course, the data transmission uses covert channels, i.e., hiding among
legitimate communications. Sometimes, these covert channels are throttled
down to avoid triggering detection of anomalies in the communication. The
overall transfer takes longer, but it is less visible to monitoring than the open
channel. APTs are persistent, and time is usually not an issue. The exfiltration
occurs either by using the available communication channels or via the back-
door installed during step 3. Often, communication and control (C&C) servers
are used in a similar way for botnet management.

8. Clean up to avoid being traced back: An APT should not be detectable. Stolen
data has even more value when the victim is not aware of the leak. Therefore,
the attacker clears the logfiles but also may remove the backdoors that she
installed. Sometimes, she may keep under control the compromised computer
that she used to infiltrate the system. This control allows her getting back to
collect information later. For instance, the alleged Chinese APT group called
APT1 or comment crew keeps control of the victims’ system for an average of
200 days [79].

In summary, the attacker studies the system in steps 1 and 2. She gains access to
it in step 3. She enhances this access in steps 4 and 5. She exploits this access in
steps 6 and 7. Eventually, she closes this access in step 8. In the literature, these
eight steps are sometimes condensed into five steps: scouting (steps 1–2), intrusion
(step 3), discovery (steps 4–5), capture (step 6), and exfiltration (steps 7–8).

An APT may be more complex than described in the previous section. For
instance, an APT may first need an APT against another target to acquire some
critical information or find external access to the final target. This was probably the
case with the Lockheed Martin attack, which required first stealing information
from RSA Ltd. to penetrate Lockheed Martin’s system. In 2012, Adobe announced
that it discovered two pieces of malware that presented a valid Adobe signature
[80]. Attackers compromised a build server of Adobe and through it requested
Adobe to sign the pieces of malware. As one of the pieces of malware was not
“publicly” available, the likelihood that this was part of a larger APT is extremely
high.
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Defending against APT is a complex and costly endeavor. The traditional
perimetric defense tools are insufficient. More sophisticated tools are mandatory,
such as [81]:

• Automated sandboxing that analyzes every received file in a safe, isolated
environment,

• Whitelisting applications that exclusively authorize execution of known trusted
applications on a given device,

• Deep network traffic inspection that checks whether the communication is
compliant with established protocols and acceptable patterns.

The ultimate defense is the human analysis by experts who carefully monitor
activities and logfiles looking for anomalies and swiftly react. See Chap. 9.

APT should not be a concern for consumers. APT usually affects companies that
handle strategic or critical infrastructures or organizations that have high-value
intellectual properties. Third parties that work for such targets may become ancil-
lary victims.

1.3 Takeaway

The previous sections highlight that attackers will always find a way to break the
system. Once this fact is accepted, the security designer has to take this reality into
account in all his designs. In a white paper, Kaspersky Lab identify that “assuming
everything is OK” is one of the ten enablers of the IT department facilitating
cybercrime [82]. Overconfidence is the worst weakness of the security designer.
The security designer must never forget that the attackers will defeat him. The next
sections present how the design must reflect this persistent threat.

1.3.1 Design Your System for Renewability

“Even if the Allies lost this battle, we should not have lost the war.” The British
Minister of Information, Duff Cooper, noted this sentence on May 28, 1940, after
the defeat of the Battle of France. Every security designer should endorse this
sentence. The system must be able to recover after any successful attack. In other
words, the system must be able to renew itself. This section starts by examining a
class of systems that were designed with renewability as a core feature.

In 1984, the French broadcaster Canal+ launched its first subscription-based
Pay TV channel. A few months later, the first schematics of pirate decoders were
published. In 1985, the US operator HBO used Videocipher II to protect its satellite
programs. Once more, pirate decoders were available soon on the market. The
piracy market was organized as quasi-industrial organizations [83]. These first
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commercial deployments of Pay TV highlighted the need for longer keys and
renewability. Two European Conditional Access Systems (CASs), Eurocrypt and
Videocrypt, built the foundations of modern content protection. The Union
Européenne de Radiodiffusion (UER) established Eurocrypt as an international
standard. The Eurocrypt specifications created the vocabulary that is still in use
today in Pay TV systems [84]. News DataCom and Thomson codesigned
Videocrypt [85]. These systems created a new generic scheme for content protec-
tion [86] that is still in use today.

The main significant improvement over previous Pay TV systems came from the
use of smart cards. Smart cards are removable secure processors. Figure 1.4 pro-
vides an overview of the utilization of the smart card within a Pay TV system. The
set-top box receives a scrambled video stream multiplexed with encrypted infor-
mation: entitlement control messages (ECMs) and entitlement management mes-
sages (EMMs). An ECM contains the decryption key, the so-called control word
(CW), used to scramble the video, whereas an EMM carries the credentials that
manage user rights. The STB extracts the ECM and EMM from the stream and
transmits them to the attached smart card. The smart card holds in its secure
memory both the secret keys and the algorithms used by the Pay TV system. It
decrypts the ECM and checks whether the holder of the smart card is entitled to
watch the current program. If this is the case, then the smart card returns the control
word to the STB. The STB descrambles the scrambled video using the returned
CW.

Set Top Box

Smart Card

D
em

ux Descrambler
Scrambled

Video
Stream

Scrambled
Video Clear

Video

ECM EMM CW

Fig. 1.4 Simplified view of a card-based Pay TV system
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The initial assumption behind the trust model of modern Pay TV was that
crackers would ultimately break the system and, in particular, the key management
component. The assumption was that nobody would crack the scrambling method.
In other words, the design assumption was that it was impossible to build a pirate
decoder without first breaking the key management. Thus, the smart card imple-
mented the entire key management and the management of entitlement rights.
Changing the smart cards was a powerful way to address potential future hacks of
the key management. This approach has proven to be successful.

Eurocrypt and Videocrypt survived many years. They were phased out by
obsolescence of the video technology rather than by crackers. In 1995, the Digital
Video Broadcasting (DVB) group standardized a way to protect MPEG2 transport
streams. It employed the same smart card-based architecture. For more than
30 years, despite several successful hacks, most smart card-based CASs recovered.

The Digital Video Disc (DVD) was hacked in less than 2 years [87] after its
launch. Unfortunately, its protection mechanism was not renewable. The hole could
never be closed. Therefore, when the entertainment industry decided to design the
Blu-ray Disc, renewability of the security was one of the main requirements of the
future systems. In addition to the encryption mechanism [called Advanced Access
Control System (AACS)], the Blu-ray Disc Association specified an additional
layer of security, called BD+. The purpose of this layer is to enable recovery from
potential security breaches occurring in the AACS. BD+ disks contain a
title-specific piece of software, called the applet, which executes on a BD+ player
before and during the movie playback. The program is written in self-protecting
digital content (SPDC) language, a dedicated interpreted language designed by

Fig. 1.5 Basic synoptic of SPDC
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Cryptography Research Incorporated18 [88]. Figure 1.5 describes its main elements.
SPDC is mainly a virtual machine (VM) and a media transform block. The VM is
far simpler than Java’s, another well-known VM. The media transform block can
apply simple modifications to the compressed video. When reading a BD+ disk, the
player loads the applet from the disk. Then, the player executes the applet. Usually,
this applet first checks whether the host player is compliant and not revoked. Then,
the applet provides configuration parameters to the media transform block. This
block deterministically modifies, using the supplied parameters, the compressed
content, for instance, by swapping some bytes in the stream.

In the BD+ environment, the applet is stored on the disk. This applet modifies
the AACS-decrypted content before video decoding. This downloadable applet
ensures the renewability of the security of BD+; if ever AACS or one of its
implementations were to be hacked, the use of an applet would allow the broken
AACS to heal. At the authoring stage, the essence is modified with a function
f before being AACS-encrypted. Thus, on the disk, there is AACS f essenceð Þð Þ. The
applet that defines the reverse transformation, i.e., f−1, is delivered within the
Blu-ray Disc. When the disk is played back, the applet will apply f−1 to the
AACS-decrypted essence, i.e., f essenceð Þ. It is assumed that non-compliant players
will not properly execute this applet or that the applet will detect non-compliant
players. Thus, if the applet does not execute, the non-compliant player will try to
render f essenceð Þ rather than the essence itself; hence, the rendering will fail. The
applet may also enforce a given manufacturer’s model to perform some operations
that will patch a security hole.

Rule 1.3: Design Renewable Systems

Renewing security is possible in three ways.

1. Renewing the piece of software that handles the security: This is useful if the
algorithm or its implementation has been broken. This either replaces the
compromised algorithm by a secure one or replaces the weak implementation of
the algorithm by a more secure one.

2. Renewing the cryptographic material used by the system: This is mandatory
when a secret key leaked out. Of course, the transfer to the host, as well as the
installation of the new cryptographic material, has to be secure. The secret data
may be changed for the entire installed base in the case of a class attack or only
for a set of principals if the attack is more localized.

3. Renewing the complete system, i.e., both the algorithms and the secrets: This is
in the case of extremely severe attack.

In the example of Pay TV, as a smart card encompasses the execution envi-
ronment, the software, and the secrets, all three kinds of renewability are extremely

18Cryptography Research Incorporated (CRI) is the company founded by Paul Kocher who
designed the first side-channel attacks: timing analysis and power analysis. In 2013, Rambus
acquired CRI.
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simple to activate. In the extreme case, renewability just requires the replacement of
the physical element (although this replacement may imply serious challenges of
logistics). Of course, the secure download of software and data may also be used for
partially renewing security in smart cards. In the case of embedded devices, such as
consumer products, methods 1 and 2 are possible but require a root of trust.
Usually, the secure loader builds this Root of Trust (Sect. 1.2.2). If the secure loader
is compromised, then it is not possible anymore to renew the system. In the case of
computers, often the third method is preferred. Replacing an entire system is rather
easy in this configuration. Only the new version of the piece of software needs to be
downloaded. This ease of replacement has, of course, a price: the lack of hardware
Root of Trust (Sect. 4.2.5). There is no way to guarantee execution in a trusted
environment. Malware may compromise the newly downloaded software. In cur-
rent general computers, no trusted software or trusted hardware checks the signature
of a piece of software.19 The verification of the signature may not operate in a
trusted environment and can itself be the victim of an attack.

Some people wrongly associate revocation to a mechanism of renewability. The
aim of revocation is to disable a principal whose security has been compromised or
who is not anymore trusted. No compliant system should interact with a revoked
principal. Revocation is a major weapon in the battle against attacks, but it does not
replace renewability. Indeed, once a secret revoked, there is a need to replace the
revoked secret by a new valid one. This is the role of renewability. Existing
standards handle revocation, such as X509 [89]. Unfortunately, there is no standard
for renewability mechanisms.

1.3.2 Design for Secure Failure

The previous framework for in-depth defense recommends addressing any conse-
quences of an attack. A smart way to cure is to prevent the failure from impairing
the system. In other words, the system should fail securely in the case of a suc-
cessful hack. When the system is hacked, the attacker should not gain undue
advantages. Her benefits while gaining access should be annulled or at least min-
imized. Safe failure is a concept widely used in the safety of systems. Critical
systems are built so that if a failure occurs, the system may still operate correctly,
or, at least, its critical, vital functions should be maintained. Nuclear power units,
aircraft, and automotive systems are all designed with a strong requirement in mind
to fail safely, i.e., avoiding putting users in danger. There is a clear distinction
between failing safely and failing securely. For instance, a fail-safe lock will be
unlocked in the case of power shutdown for people to leave the room safely. Under

19To be precise, many modern computers have the possibility to implement such a Root of Trust
because they are equipped with Trusted Platform Modules (TPMs). Unfortunately, the major
operating systems do not take advantage of this feature.
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the same conditions, a fail-secure lock will remain closed to prevent attackers from
entering the room. Safety and security are sometimes opposites.

HSMs present such secure failing defense. HSMs are highly secure devices
dedicated to cryptographic operations. They have two key features.

• Dedicated, embedded cryptographic coprocessors, which perform exponentia-
tion, drastically accelerate public key cryptography.

• Highly secure components that, like smart cards, they include many
tamper-resistant features. These devices prevent the disclosure of stored secrets.

Particular care is given to protecting the most valuable assets of the HSM, i.e., the
private or secret key(s) stored in its secure memory. A typical security measure is the
safe erasure of these keys whenever the HSM suspects that an attack is occurring.
The range of monitored attacks includes power attacks, as when glitching the power
supply to attempt fault injection; timing attacks, as when slowing down the CPU
clock to better analyze the datagrams; chemical, as when depassivating the chip, for
instance, with nitrofluoric acid; and physical attacks, through microprobing. Thus,
even if the attacker succeeds in her attack, she will only access random data rather
than the actual keys.

Securely failing is important also when designing secure protocols. One of the
difficult challenges relies on the so-called atomicity of the protocol. If ever a pro-
tocol is interrupted before its normal completion, it should fail safely. An attacker
should not benefit from such an interruption. In 2015, a black-box device was
available to brute-force the PIN of iPhones without triggering the restriction of ten
failed attempts [90]. The hack used an optical sensor that checked the screen, a
relay to command the power supply, and a USB cable. The box tries a PIN number
and sends it to the iPhone using the USB port. If the dialed PIN is wrong, the
optical sensor detects the error message, and the box turns off immediately the
power supply of the iPhone and reboots it. The box tries another potential PIN. As
the phone has to reboot after each trial, each failed attempt took about 40 s. Brute
forcing a four-digit PIN took about 4 days.

Figure 1.6a represents the mistake. The iPhone likely checks first the validity of
the PIN. If the dialed PIN is wrong, it displays the result. Then, it updates the failed
attempt counter and checks whether the counter reached the maximum number of
authorized failed attempts. The black box switches off the power supply before the
iPhone can update the failed attempt counter in its nonvolatile memory. When
rebooting, the failed attempt has not been registered in the nonvolatile memory.
Fault injections often exploit this classical known mistake in the design.
Figure 1.6b represents a potential countermeasure. The initial value of the failed
attempt counter is set to the maximum number of trials. The failed attempt counter
should be decremented before the verification of the PIN occurs. If the PIN is
correct, the failed attempt counter is set back to the top limit. In this order of
operations, the protocol fails safely. If the hacker switches off the power supply
after the verification of the PIN, then the counter is already decremented. She gains
nothing.
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The designer should think how the attacker might derail his implementation for
her advantage by injecting fault. Several techniques are possible for making the
execution flow more robust against fault injection. Usually, the objective of a fault
injection is to counter a Boolean test. One such technique is to split one Boolean
test into a set of successive Boolean tests. For instance, rather than performing a
comparison on the full data, the designer may use successive comparisons on
subparts of the complete data. The attacker has to identify the occurrence of each
comparison rather than one unique occurrence. The needed effort increases pro-
portionally, and the likelihood decreases proportionally.

Securely failing is also important when writing security policies. There is no
possible sound security in an organization if there are no well-documented security
policies. The policy defines, at a high level, what is authorized and what is for-
bidden. It is essential that there be as little ambiguity as possible. Gray areas are
always potential weak points in a security policy. The likelihood is extremely small
that the editors have explored thoroughly and defined all the possible situations
exhaustively. This likelihood may even be zero. Therefore, it is necessary to state
that if a situation is not expressly permitted, it is prohibited by default [91]. This is a
secure-fail condition. Good security policies ban an unknown legitimate situation

Fig. 1.6 Implementing a PIN verification
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rather than authorize an unknown dangerous situation [92]. Afterward, it is always
possible to update the policy to cope with unforeseen legitimate situations without
having to heal after the wreckage of an attack.

1.3.3 Defense in Depth

Medieval castle builders had substantive notions of security. Figure 1.7 illustrates a
typical castle from the Middle Ages. Most of the fortified castles followed the same
architectural core principles. A first, outer rampart protected the castle. Often a deep
ditch surrounded this wall, or, even better, the castle was on top of a cliff.
A portcullis protected the access to the inside of the castle. Defenders lifted the
portcullis in the case of an attack. Usually, the houses and common infrastructures,

Fig. 1.7 Medieval castle
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such as the blacksmith’s workshop or shops, were located behind this first outer
wall. A second concentric wall, which was higher than the previous rampart, iso-
lated from the common infrastructures the most critical infrastructures, such as the
armory, the warehouses, and soldiers’ barracks. The ultimate protection was the
keep (location F in Fig. 1.7): a highly fortified inner tower. The noblemen and their
families lived in the keep. In the case of a siege, the attackers had to defeat each
successive protection before being able to reach the commander. Each successive
wall was expected to be easier to defend and harder to breach than the previous one.

What are the lessons from this medieval architecture? The first lesson is that the
medieval builders of castles knew about Law 1. They knew that they would
inevitably lose the outer walls in the case of a siege. Therefore, they used several
successive walls. Furthermore, they also knew which asset was the most precious
one. In their context, this asset was the life of their Lord and his family (Chap. 2).
They put this asset within the ultimate wall, i.e., the keep. Therefore, the lordship
benefitted from all the successive defensive layers. This principle of successive
in-depth defenses is still valid in our modern IT world. An attacker should have to
breach many protections before reaching the most valuable assets.

Rule 1.4: Design In-depth Defense

The second example is about how to protect data centers, secure rooms, or vaults
against physical intrusions. Physical security obeys to the rule of “security in
depth.” Physical security must create a set of successive zones isolated by physical
barriers and gates [93]. Only the users who are the most privileged should access
successive zones. The following example illustrates this rule. A facility receives
visitors and handles sensitive assets in dedicated areas. Of course, most visitors
should never approach these sensitive assets. Physical security may suggest a layout
delimiting different zones.

• Zone 0: This zone is the external world where the security of the site does not
apply. Everybody can freely access this area. The tenants of the facility have no
control over this zone.

• Zone 1: Usually, the site is isolated from the external world (Zone 0) by a fence.
Ideally, a clear area should be around the fence. This clear zone creates an
unobstructed view to detect illegal intrusion. Furthermore, the fence drives
traffic to one or a set of controlled entrances. Physical access controls the
entrances to the site. Guards or receptionists monitor this access. Employees
have company access badges. Visitors receive dedicated guest access badges.

• Zone 2: In this area, the visitors and employees can interact. Automatic gates
control its access from Zone 1. Demonstration rooms and meeting rooms are in
this area.

• Zone 3: This area is limited to employees. Visitors should not enter into this
zone. Physical access controls admission to this area. Visitors’ badges do not
grant access to Zone 3. It is only accessible from Zone 2 area.

• Zone 4 (and above): This area is restricted to a limited set of employees. Only
employees who need to access it should be granted corresponding access rights.
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The access control may be more sophisticated than a badge reader. For instance,
it may use two-factor authentication with biometrics. It is only accessible from
Zone 3 area. Usually, vaults and data centers are located in such zones. Few
people should be granted access to them.

The defense and control mechanisms between the successive layers should not be
identical. The defense mechanisms of each zone should be more restrictive than the
one protecting the previous zone. The mechanisms act as a sieve. Ideally, the con-
secutive defenses should feature increasing robustness. Indeed, the goal of the “inner”
defense is to stop attackers who succeeded in defeating the “outer” defense. An
attacker who manages to reach the “inner” defense already has proven that she is
stronger than the “outer” defense. Were the “inner” defense to be weaker or equal to
than the “outer” one, then the attacker would also easily defeat the inner defense if
defeating the “outer” one. Indeed, in such unrestrained configuration, the only ade-
quate defense would be the outer one. The builders of castles knew this
design principle. The inner walls were larger and higher than the outer walls and thus
stronger. Each successive defense slowed down the attackers. In network security, the
use of firewalls and DMZs is a perfect illustration of in-depth defense (Sect. 8.2.1).

In-depth defense should not be limited to successive layers of increasing similar
protection. It should also use a set of complementary defenses. Then, the security
widens the defense perimeter. Diversity is a good security attribute.

In 2014, the Council on Cyber Security published the fifth version of its critical
security controls [94]. It defines 20 security controls. Any organization should
mandatorily establish these twenty control points. The variety of control points
ensures that attacks are detected and remedied, guarantees that already compro-
mised systems are identified, and prevents disrupting attacks. They constitute a
comprehensive list of in-depth defenses. The ordered twenty critical security con-
trols are as follows:

1. Inventory of authorized and unauthorized devices,
2. Inventory of authorized and unauthorized software,
3. Secure configurations for hardware and software on mobile devices, laptops,

workstations, and servers,
4. Continuous vulnerability assessment and remediation,
5. Malware defenses,
6. Application software security,
7. Wireless access control,
8. Data recovery capability,
9. Security skills assessment and appropriate training to fill gaps,

10. Secure configurations for network devices such as firewalls, routers, and
switches,

11. Limitation and control of network ports, protocols, and services,
12. Controlled use of administrative privileges,
13. Boundary defense,
14. Maintenance, monitoring, and analysis of audit logs,
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15. Controlled access based on the need to know,
16. Account monitoring and control,
17. Data protection,
18. Incident response and management,
19. Secure network engineering,
20. Penetration tests and red team exercises.

An organization that implements all these twenty controls has both an in-depth
defense and a wide defense.

Content protection within an audio/video professional postproduction environ-
ment is another example of in-depth complementary defenses. In the professional
environment, there should ideally be four different types of protection—each ful-
filling a different goal. The goals are as follows:

1. Control access to the asset; in this case, the video in preparation,
2. Protect the asset itself,
3. Trace the asset,
4. Limit illegal use of the asset.

Controlling Access: The first defense involves controlling access to a digital
asset. This control was already in place during the analog era. It uses the principles
of physical security described in the previous example, such as guards, physical
access controls, and vaults. In the digital world, the type of access control is IT
security. Typically, the IT department defines a perimeter that it defends against
intruders using firewalls, DMZs, or virtual private networks (VPNs). Within this
perimeter, IT segregates the access of corporate users to data using tools such as
access control lists and role-based policies. Only authorized corporate users should
be able to access the assets legitimately.

Protecting the Asset: The second defense targets direct attacks on the asset, such
as theft, alteration, or replacement. The deployed tools widely use encryption and
cryptographic signature. Encryption enforces the confidentiality of the asset,
whereas cryptographic signature enforces its integrity.

Trace the Asset: The third barrier complements the previous one. Ultimately, any
digital content has to be rendered in the analog world where the protection provided
by encryption does not work anymore. Video content has to be displayed on a
screen. Audio content has to be played on loudspeakers or earphones. It is prone to
being captured by recording devices. Forensic marking appends information about
the source that rendered the content. The protection technology used is digital
watermarking [95]. A digital watermark is a message embedded into digital content
that can be detected or extracted later. Watermarks are imperceptible or perceptible.
Imperceptible watermarks are harder to defeat than perceptible ones.

Typical watermark information includes copyright details and the identifier of
the expected recipient of the watermarked piece of content. In the case of a leak,
watermark detectors can extract this information and thus trace the source of the
non-legitimate disclosure. Forensic marking is useful in numerous contexts: spot-
ting leakage in the postproduction environment, “protecting” screeners used for
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award selection or reviewing, or detecting the source of illegal rebroadcasting of
content by identifying the infringing STB.

Thwarting Illegal Distribution: Unfortunately, as stated by Law 1, content will
always leak. So, this fourth barrier attempts to limit the incurred losses. The first
step is to detect illegal content. Fingerprinting is the most efficient technology for
this operation. A reference database includes fingerprints that contain unique
characteristics of every referenced content [96]. These characteristics may use
visual hashes, distributions of color, time stamps, or points of interests.
Fingerprinting may be audio-based or video-based or employ both media. Then, the
system extracts the relevant fingerprints of suspicious content and compares them
with those in the reference database of copyrighted content.

Once illegal content is identified, the corrective action taken depends on the
context. Currently, some user-generated content (UGC) sites filter the submitted
candidates. In the case of peer-to-peer (P2P) networks and file-sharing sites, a
takedown notification may be sent to the sharers. In this context, fingerprinting is a
superior solution than identification using cryptographic hash values because fin-
gerprinting is robust to geometrical modifications, mashups, and camcording.

The second step is to slow down the dissemination of the stolen content. The first
objective is to deter the downloaders, for instance, by delivering a bad piece of
content instead of the expected one. Typical poisoning techniques spread decoys,
fake content, or even encrypted content that requires payment. The second objective
is to inhibit access either by slowing down the bandwidth or by routing the
requester to controlled peers.

Using this second example, we can define an in-depth defensive framework as
illustrated in Fig. 1.8. The proposed framework uses three complementary actions.

1. Defend: The assets have to be protected by any means. The employed defensive
tactics should be numerous, varied, and complementary. One unique class of
protection is not sufficient because it will be defeated eventually. This defeat is
the inevitable consequence of Law 1. The defenses should encompass physical
security, network security (such as firewalls, intrusion detection systems
(IDSs), and DLPs), antivirus and anti-malware software, encryption, authenti-
cation, and reputation-based protection.

2. Monitor: As ultimately the attacker will win, it is crucial to know as soon as
possible when she succeeded and what benefits she gained from her exploit.
Acquiring this knowledge requires carefully monitoring the system (Law 9:
Quis Custodiet Ipsos Custodes?). The purpose is to know which asset was
affected and how (theft, alteration, destruction, or substitution). As speed is of
essence, practitioners should not wait until a breach happens to trigger the
monitoring; rather, monitoring should be active and continuously enabled.

3. Cure: This action is, unfortunately, sometimes forgotten. Limiting the impact of
the exploit is paramount. Defining strategies of mitigation for every critical
asset should be part of any strategy of defense. Furthermore, once the exploit is
analyzed, a new set of protections should be designed and deployed, or the
existing ones should be enhanced to defeat this class of attack in the future.
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1.3.4 Backup

Around 2005, a new type of malware, coined ransomware, appeared. The noun
ransomware is from the combination of two nouns: ransom and malware.
Ransomware is a kind of malware that disables some functionality of the infected
system [97]. Then, the ransomware requests payment to reactivate the blocked
feature. The first generation of ransomware encrypted the files of the infected
computer. Since 2009, a new generation of ransomware has also blocked the user’s
display20 rather than just encrypting files [99]. More recently, a new generation of
ransomware blocked the functionality of some applications such as browsers. In
2014, ransomware extended its target field from computers to specialized hardware.
For instance, the ransomware Synolocker attacked Synology’s Network as Storage
solutions [100], encrypting remotely stored files. In 2015, ransomware extended its
reach to Web sites. A new type of ransomware started progressively to encrypt the
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Fig. 1.8 Framework for active, in-depth defense

20In some reported cases, ransomware blocked the screen by displaying pornographic pictures or
even pedophilia [98] to shame the blackmailed person. The authors of such ransomware expected
that the hacked person would not dare to call for help. It seems that this tactic was rather efficient
as the ratio of paid ransoms was rather high. This is a very nice, dirty piece of social engineering.
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database used by Web sites. During this encryption period, the ransomware
decrypted the data so that the administrators of the infected Web sites were not
aware of the ongoing attack. This lasted several weeks. Before the full backup,
blackmailers removed the decryption key and asked for the ransom. Unfortunately,
the incremental backup contained encrypted data [101], and the decryption was
inactive. The ransomed Web site lost all data produced since the last full backup.

Typically, ransomware uses three stages:

• Seek a target: This is the usual step to finding a victim. Usually, the attacker
randomly looks for an easy target to penetrate. The targets are often individuals
or small companies rather than larger organizations, which are expected to be
better protected.

• Enable blackmailing by disabling some functionality such as access to the files.
• Claim for the ransom to reactivate the blocked feature.

The operating mode for claiming the ransom is interesting. The first phase
explains to the attacked user why he does not have access anymore to his computer,
smartphone, or files. The initial strategy was to announce openly that the attacker
had taken control of victim’s device. Recently, ransomware used another technique
by “impersonating” a legal authority [for instance, the Federal Bureau of
Investigation (FBI)]. The ransomware claimed that the computer had been blocked
due to illegal activities conducted from the machine [102, 103] (Fig. 1.9). In the
second phase, the blackmailer proposes a method of anonymous payment. The
blackmailer does not want the payment to trace back to her to avoid retaliation and
potential prosecution. Anonymous payment is the trickiest part of her attack.
Obviously, traditional electronic payment means such as credit cards, electronic
transfers, or PayPal cannot be used. Investigators could find who received the
money. The recent advent of prepaid electronic payment such as MoneyPak and
WebMoney and digital currency such as BitCoin eliminates this risk. The recipient
of the payment remains entirely anonymous.21 Therefore, many instances of ran-
somware use these new types of payments. Once the victim has paid, he waits
(often uselessly) for the blackmailer to enable again the blocked functionality. In
2014, a UK online survey demonstrated that about 40 % of the victims of
CryptoLocker22 paid the ransom [105]. In 2015, an annual report evaluated the
return on investment (ROI) of ransomware at 1425 % [106]. This is an excellent
lucrative business.

The Devil Is in the Detail On June 8, 2008, Kaspersky Lab, the Russian
antivirus editor, detected a variant of the virus GPcode. GPcode is a ran-
somware that has many variants. The initial versions mainly renamed some
files. They replaced the original names by random-looking names. Later,

21Indeed, cryptocurrencies such as Pecunix, AlertPay, PPcoin, Litecoin, Feathercoin, or Zerocoin
are the payment methods used by the black market of the Darknet [104].
22CryptoLocker is the most well-known ransomware.
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variants became more sophisticated and started to employ cryptography, often
not very smartly. This newly discovered variant encrypts some data files on
the victim’s hard drive, renames them with extension ._CRYPT, and adds the
file !_README_!.txt in their folder. Then, it displays a ransom message
announcing the encryption of the data and giving a contact email. The ran-
somware claims to use RSA-1024. Thus, it is out of the reach of brute force
attacks against the private key. The pirated individual must contact the pirate,
pay the ransom, and may receive in return a decryption tool.

Through reverse engineering, Kaspersky Lab extracted the public keys
used by the ransomware to encrypt the files. The ransomware uses two public
keys depending on the version of the OS. On June 10, 2008, Kaspersky Lab
called for the help of the cryptographic community to try to crack the private
key. This attempt was illusory. It would have required too much calculation
power (or it would mean that RSA-1024 is not safe anymore). Moreover,
there were two keys to crack!

One week later, Kaspersky Lab withdrew their challenge. Nevertheless,
thanks to one “common” mistake of the ransomware’s authors, there may be
some hope for careless users who did not back up their data. When encrypting
a file, the virus creates a new file that it renames with the expected extension
and then deletes the original file. The method used was a standard deletion
rather than a secure deletion. Indeed, it is common knowledge (at least in the
security community) that a simple deletion does not erase the file [107]. It
mainly clears the data fields of the file system’s indexing tables.
Consequently, the deleted files are still present on the hard drive as long as a
new file has not overwritten them. Therefore, if there has not been too much
activity on the hard drive since the infection, usual commercial recovery tools
may be able to retrieve the “deleted” files. Kaspersky Lab proposed such a
tool issued by the open source community. If the ransomware would have
used secure deletion, then this fix would have been impossible. Usually,

Fig. 1.9 An example of a ransomware screen
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secure deletion requires overwriting several times the physical location on the
hard drive of the deleted sections with random data. The US National Institute
of Standards and Technology (NIST) published a guideline for media sani-
tization (still in draft version) [108].

Lesson: Even the bad guys make mistakes. Law 1 also applies to viruses
and malware. Furthermore, deleting data is not a straightforward operation
(Sect. 6.3.3).

In the previous example, it was possible to retrieve the clear files. Sometimes, it
is also possible to retrieve the keys used by the ransomware. In June 2014, the FBI
brought down the infrastructure of the Gameover ZeuS botnet and the initial
CryptoLocker. The investigation teams seized the databases used by the malware.
Among them was the database of RSA private keys that encrypt the AES
encryption keys used by CryptoLocker. Using this information, security companies
FireEye and Foxit provided an online tool that potentially may decrypt
CryptoLocker-encrypted files [109]. Unfortunately, access to the decryption key is
not available for most ransomwares. The best and unique response to ransomware is
still periodic, frequent backup.

Rule 1.5: Back up Your Files

This book will never repeat this recommendation enough: Back up your data.
Usually, people believe that the purpose of a backup is merely to recover from a
crashed system. A backup is also the ultimate tool for recovering from a successful
attack. Of course, there will be disenchantment of the affected people and loss of
productivity, but at least the entire past work will not be lost. The recovery is only
possible if the backup is regularly performed and with a sufficient periodicity.
Furthermore, as some recent instances of ransomware can reach networked direc-
tories [110], it is safer to use both non-local physical storage and cloud-based
storage. In other words, the best defense is to use an air-gapped backup. Malware
cannot step over air gaps.

On June 17, 2014, the company Code Spaces suffered from a well-orchestrated
distributed denial of service (DDoS) attack [111]. The blackmailer(s) requested a
ransom to stop the attack. The problem was not limited to the denial of service. The
attackers succeeded in getting access to the company’s Amazon EC2 control panel.
Thus, they owned the cloud infrastructure.23 As the management team of Code
Spaces refused to pay the ransom, the attackers started to delete large chunks of
random file directories and backups. Only after Code Spaces succeeded in
retrieving access to its control panel, could it assess that it had lost most of the
software repositories of its customers, as well as all the backups irremediably. With
this disaster, Code Spaces could never get back into business. This story highlights

23Amazon Elastic Compute Cloud (Amazon EC2) is a Web service that provides resizable
computational capacity in a cloud.
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the need for air-gapped backup. If an attacker who penetrated a system also gains
access to the backups, then these backups only play their safety role but not their
security role.

After a severe attack, the best solution is to rebuild the hacked system from
scratch. First, install a new genuine OS, updated with the latest security patches.
Then, install the usual security tools such as an antivirus and a personal firewall.
After setting up a genuine, protected environment, install the applications from
genuine sources and apply all applicable security patches. Once the applications are
properly running, restore the data from the backup. It may be wise to sanitize the
backup data with a scan by an up-to-date antivirus. Some backuped data may have
been infected.

1.4 Summary

Law 1: Attackers Will Always Find Their Way
No secure system is infallible. Any secure system is doomed to fail. Attackers will
always find a way to defeat it. Security designers must not deny this fact, but rather
put this heuristic at the heart of their design.

Rule 1.1: Always Expect the Attacker to Push the Limits Any design operates
within a set of limits defined by its initial requirements. The system should work
correctly within these boundaries. An attacker may attempt to operate outside these
limits to get unexpected behavior. The security designer should ensure either that
these limits are out of reach or at least that the system should detect the violation of
these boundaries to react accordingly.

Rule 1.2: Responsibly Publish Vulnerabilities Publishing vulnerabilities is one
of the best methods to reach a safer cyber world. Not only will the solution provider
close the holes, but the publication of the vulnerability will also educate the
designers. Obscurity is dangerous for security (Chap. 3). Nevertheless, imple-
menters must have a reasonable amount of time to fix the issue before the public
disclosure of the vulnerability.

Rule 1.3: Design Renewable Systems As any system will be broken, the designed
system must be ready to survive by the updating of its defense mechanisms.
Without renewability, the system will be definitively dead.

Rule 1.4: Design In-depth Defense As any defense will fail, a secure system
should implement many defenses. It should construct successive obstacles that the
attacker has to cross successfully. Diversity in protection makes the exploit harder
to perform.

Rule 1.5: Back up Your Files As any system will be broken one day, data may be
corrupted or lost. Regular, frequent air-gapped backup of all non-constructible data
is the ultimate defense.

1.3 Takeaway 43

http://dx.doi.org/10.1007/978-3-319-42641-9_3


http://www.springer.com/978-3-319-42639-6


	1 Law 1: Attackers Will Always Find Their Way
	1.1 Examples
	1.2 Analysis
	1.2.1 Should Vulnerabilities Be Published?
	1.2.2 Jailbreaking and Secure Bootloaders
	1.2.3 Flawed Designs
	1.2.4 Advanced Persistent Threats

	1.3 Takeaway
	1.3.1 Design Your System for Renewability
	1.3.2 Design for Secure Failure
	1.3.3 Defense in Depth
	1.3.4 Backup

	1.4 Summary


