
Chapter 2

Historical Overview

Abstract This chapter provides a brief review of the literature on decision diagrams,
primarily as it relates to their use in optimization and constraint programming. It
begins with an early history of decision diagrams and their relation to switching
circuits. It then surveys some of the key articles that brought decision diagrams into
optimization and constraint solving. In particular it describes the development of
relaxed and restricted decision diagrams, the use of relaxed decision diagrams for
enhanced constraint propagation and optimization bounding, and the elements of a
general-purpose solver. It concludes with a brief description of the role of decision
diagrams in solving some Markov decision problems in artificial intelligence.

2.1 Introduction

Research on decision diagrams spans more than five decades, resulting in a large
literature and a wide range of applications. This chapter provides a brief review of
this literature, primarily as it relates to the use of decision diagrams in optimization
and constraint programming. It begins with an early history of decision diagrams,
showing how they orginated from representations of switching circuits and evolved
to the ordered decision diagrams now widely used for circuit design, product
configuration, and other purposes.

The chapter then surveys some of the key articles that brought decision diagrams
into optimization and constraint programming. It relates how decision diagrams
initially played an auxiliary role in the solution of some optimization problems
and were subsequently proposed as a stand-alone optimization method, as well as

11© Springer International Publishing Switzerland 2016 
D. Bergman et al., Decision Diagrams for Optimization, Artificial Intelligence: 
Foundations, Theory, and Algorithms, DOI 10.1007/978-3-319-42849-9_2



12 2 Historical Overview

a filtering technique in constraint programming. At this point the key concept of a
relaxed decision diagram was introduced and applied as an enhanced progagation
mechanism in constraint programming and a bounding technique in optimization.
These developments led to a general-purpose optimization algorithm based entirely
on decision diagram technology. The chapter concludes with a brief description of
the auxiliary role of decision diagrams in solving some Markov decision problems
in artificial intelligence.

This discussion is intended as a brief historical overview rather than an exhaus-
tive survey of work in the field. Additional literature is cited throughout the book as
it becomes relevant.

2.2 Origins of Decision Diagrams

The basic idea behind decision diagrams was introduced by Lee [110] in the form
of a binary-decision program, which is a particular type of computer program that
represents a switching circuit. Shannon had shown in his famous master’s thesis
[144] that switching circuits can be represented in Boolean algebra, thus bringing
Boole’s ideas into the computer age. Lee’s objective was to devise an alternative
representation that is more conducive to the actual computation of the outputs of
switching circuits.

Figure 2.1, taken from Lee’s article, presents a simple switching circuit. The
switches are controlled by binary variables x, y and z. The symbol x′ in the circuit
indicates a switch that is open when x = 0, while x indicates a switch that is open
when x = 1, and similarly for the other variables. The output of the circuit is 1 if
there is an open path from left to right, and otherwise the output is 0. For instance,
(x,y,z) = (1,1,0) leads to an output of 1, while (x,y) = (0,0) leads to an output of
0, irrespective of the value of z.

A binary-decision program consists of a single type of instruction that Lee calls
T , which has the form

T : x; A,B.

The instruction states: if x= 0, go to the instruction at address A, whereas if x= 1,
go to the instruction at address B. The switching circuit of Fig. 2.1 is represented by
the binary-decision program



2.2 Origins of Decision Diagrams 13

x

x′

y z′

y z

y′

Fig. 2.1 Example of a switching circuit from [110].

1. T : x; 2,4
2. T : y; θ ,3
3. T : z; θ , I
4. T : y; 3,5
5. T : z; I,θ

(2.1)

where θ is Lee’s symbol for an output of 0, and I for an output of 1. The five
instructions correspond conceptually to the nodes of a decision diagram, because
at each node there is a choice to move to one or two other nodes, and the choice
depends on the value of an associated variable. However, the nodes need not be
organized into layers that correspond to the variables, and a given assignment to the
variables need not correspond to a path in the diagram. A BDD representation of
(2.1) appears in Fig. 2.2. In this case, the nodes can be arranged in layers, but there
is no path corresponding to (x,y,z) = (0,0,1).1

Lee formulated rules for constructing a switching circuit from a binary-decision
program. He also provided bounds on the minimum number of instructions that
are necessary to represent a given Boolean function. In particular, he showed that
computing the output of a switching circuit with a binary-decision program is in
general faster than computing it through Boolean operations and, or, and sum, often
by orders of magnitude.

The graphical structure we call a binary decision diagram, as well as the term,
were introduced by Akers [3]. Binary-decision programs and BDDs are equivalent
in some sense, but there are advantages to working with a graphical representation.
It is easier to manipulate and provides an implementation-free description of a
Boolean function, in the sense that it can be used as the basis for different algorithms

1 There is such a path, in this case, if one treats the arc from y to 0 as a “long arc,” meaning that z
can take either value on this arc.



14 2 Historical Overview

x

y y

z z

0 1

0 1

1

0

0
1

0

1 1

0

Fig. 2.2 Binary decision diagram corresponding to the binary-decision program (2.1).

for computing outputs. Akers used BDDs to analyze certain types of Boolean
functions and as a tool for test generation; that is, for finding a set of inputs which
can be used to confirm that a given implementation performs correctly. He also
showed that a BDD can often be simplified by superimposing isomorphic portions
of the BDD.

The advance that led to the widespread application of BBDs was due to Bryant
[37]. He adopted a data structure in which the decision variables are restricted
to a particular ordering, forcing all nodes in a layer of the BDD to correspond
to the same decision variable. The result is an ordered decision diagram (which
we refer to simply as a decision diagram in this book). For any given ordering
of the variables, all Boolean functions can be represented by ordered BDDs, and
many ordered BDDs can be simplified by superimposing isomorphic portions of
the BDD. A BDD that can be simplified no further in this fashion is known as a
reduced ordered binary decision diagram (RO-BDD). A fundamental result is that
RO-BDDs provide a canonical representation of Boolean functions. That is, for any
given variable ordering, every Boolean function has a unique representation as an
RO-BDD. This allows one to check whether a logic circuit implements a desired
Boolean function, for example, by constructing an RO-BDD for either and noting
whether they are identical.

Another advantage of ordered BDDs is that operations on Boolean functions,
such as disjunction and conjunction, can be performed efficiently by an appropriate
operation on the corresponding diagrams. The time complexity for an operation is
bounded by the product of the sizes of the BDDs. Unfortunately, the BDDs for some
popular circuits can grow exponentially even when they are reduced. For example,



2.3 Decision Diagrams in Optimization 15

the RO-BDD grows linearly for an adder circuit but exponentially for a multiplier
circuit. Furthermore, the size of a reduced BDD can depend dramatically on the
variable ordering. Computing the ordering that yields the smallest BDD is a co-
NP-complete problem [71]. Ordering heuristics that take into account the problem
domain may therefore be crucial in obtaining small BDDs for practical applications.

The canonical representation and efficient operations introduced by Bryant led
to a stream of BDD-related research in computer science. Several variants of the
basic BDD data structure were proposed for different theoretical and practical
purposes. A monograph by Wegener [157] provides a comprehensive survey of
different BDD types and their uses in practice. Applications of BDDs include formal
verification [99], model checking [50], product configuration [5]—and, as we will
see, optimization.

2.3 Decision Diagrams in Optimization

Decision diagrams initially played an auxiliary role in optimization, constraint
programming, and Markov decision processes. In recent years they have been
proposed as an optimization technique in their own right. We provide a brief survey
of this work, focusing primarily on early contributions.

2.3.1 Early Applications

One of the early applications of decision diagrams was to solution counting in
combinatorial problems, specifically to the counting of knight’s tours [111]. A BDD
is created to represent the set of feasible solutions, as described in the previous
chapter. Since the BDD is a directed acyclic graph, the number of solutions can then
be counted in linear time (in the size of the BDD) using a simple recursive algorithm.
This approach is impractical when the BDD grows exponentially with instance size,
as it often does, but in such case BDDs can be combined with backtracking and
divide-and-conquer strategies.

Lai, Pedram and Vrudhula [108] used BDDs to represent the feasible sets of
0/1 programming subproblems while a search tree is under construction. Their
solution algorithm begins by building a search tree by a traditional branch-and-
cut procedure. After some branching rounds, it generates BDDs to represent the



16 2 Historical Overview

feasible sets of the relatively small subproblems at leaf nodes. The optimal solutions
of the subproblems are then extracted from the BDDs, so that no more branching is
necessary. Computational experiments were limited to a small number of instances
but showed a significant improvement over the IP methods of the time. We remark
in passing that Wegener’s monograph [157], mentioned earlier, proposes alternative
methods for formulating 0/1 programming problemswith BDDs, although they have
not been tested experimentally. It also studies the growth of BDD representations for
various types of Boolean functions.

Hachtel and Somenzi [81] showed how BDDs can help solve maximum flow
problems in large-scale 0/1 networks, specifically by enumerating augmenting
paths. Starting with a flow of 0, a corresponding flow-augmenting BDD is compiled
and analyzed to compute the next flow. The process is repeated until there are no
more augmenting paths, as indicated by an empty BDD. Hachtel and Somenzi were
able to compute maximum flows for graphs having more than 1027 vertices and 1036

edges. However, this was only possible for graphs with short augmenting paths,
because otherwise the resulting BDDs would be too large.

Behle [19] showed how BDDs can help generate valid inequalities (cutting
planes) for general 0/1 programming.He first studied the reduced BDD that encodes
the threshold function represented by a 0/1 linear inequality, which he called a
threshold BDD. He also showed how to compute a variable ordering that minimizes
the size of the BDD. To obtain a BDD for a 0/1 programming problem, he conjoined
the BDDs representing the individual inequalities in the problem, using an algorithm
based on parallel computation. The resulting BDD can, of course, grow quite large
and is practical only for small problem instances. He observed that when the BDD
is regarded as a flow network, the polytope representing its feasible set is the convex
hull of the feasible set of the original 0/1 problem. Based on this, he showed how
to generate valid inequalities for the 0/1 problem by analyzing the polar of the flow
polytope, a method that can be effective for small but hard problem instances.

2.3.2 A Discrete Optimization Method

Decision diagrams were proposed as a stand-alone method for discrete optimization
by Hadžić and Hooker [82, 86], using essentially the approach described in the
previous chapter, but initially without the concept of a relaxed diagram. They noted
that decision diagrams can grow exponentially but provide two benefits that are



2.3 Decision Diagrams in Optimization 17

not enjoyed by other optimization methods: (a) they are insensitive to whether
the constraint and objective function are linear or convex, which makes them
appropriate for global optimization, and (b) they are well suited to comprehensive
postoptimality analysis.

Postoptimality analysis is arguably important because simply finding an optimal
solution misses much of the information and insight encoded in an optimization
model. Decision diagrams provide a transparent data structure from which one can
quickly extract answers to a wide range of queries, such as how the optimal solution
would change if certain variables were fixed to certain values, or what alternative
solutions are available if one tolerates a small increase in cost. The power of this
analysis is illustrated in [82, 86] for capital budgeting, network reliability, and
portfolio design problems.

In subsequent work [83], Hadžić and Hooker proposed a cost-bounding method
for reducing the size of the decision diagram used for postoptimality analysis.
Assuming that the optimal value is given, they built a BDD that represents all
solutions whose cost is within a given tolerance of the optimum. Since nearly all
postoptimality analysis of interest is concerned with solutions near the optimum,
such a cost-bounded BDD is adequate. They also showed how to reduce the size of
the BDD significantly by creating a sound cost-bounded BDD rather than an exact
one. This is a BDD that introduces some infeasible solutions, but only when their
cost is outside the tolerance. When conducting sensitivity analysis, the spurious
solutions can be quickly discarded by checking their cost. Curiously, a sound BDD
can be substantially smaller than an exact one even though it represents more
solutions, provided it is properly constructed. This is accomplished by pruning and
contraction methods that remove certain nodes and arcs from the BDD. A number
of experiments illustrated the space-saving advantages of sound BDDs.

Due to the tendency of BDDs to grow exponentially, a truly scalable solution
algorithm for discrete optimization became available only with the introduction of
relaxed decision diagrams. These are discussed in Section 2.3.4 below.

2.3.3 Decision Diagrams in Constraint Programming

Decision diagrams initially appeared in constraint programming as a technique for
processing certain global constraints, which are high-level constraints frequently
used in constraint programming models. An example of a global constraint is



18 2 Historical Overview

ALLDIFFERENT(X), which requires that the set X of variables take distinct values.
Each global constraint represents a specific combinatorial structure that can be
exploited in the solution process. In particular, an associated filtering algorithm
removes infeasible values from variable domains. The reduced domains are then
propagated to other constraints, whose filtering mechanisms reduce them further.2

Decision diagrams have been proposed as a data structure for certain filtering
algorithms. For example, they are used in [70, 90, 107] for constraints defined on
set variables, whose domains are sets of sets. They have also been used in [44, 45] to
help filter “table” constraints, which are defined by an explicit list of allowed tuples
for a set of variables.

It is important to note that in this research, decision diagrams help to filter
domains for one constraint at a time, while information is conveyed to other
constraints in the standardmanner through individual variable domains (i.e., through
a domain store). However, decision diagrams can be used for propagation as well,
as initially pointed out by Andersen, Hadžić, Hooker and Tiedemann [4]. Their
approach, and the one emphasized in this book, is to transmit information though a
“relaxed” decision diagram rather than through a domain store, as discussed in the
next section. Another approach is to conjoin MDDs associated with constraints that
contain only a few variables in common, as later proposed by Hadžić, O’Mahony,
O’Sullivan and Sellmann [87] for the market split problem. Either mechanism prop-
agates information about inter-variable relationships, as well as about individual
variables, and can therefore reduce the search significantly.

2.3.4 Relaxed Decision Diagrams

The concept of a relaxed decision diagram introduced by Andersen, Hadžić, Hooker
and Tiedemann [4] plays a fundamental role in this book. This is a decision diagram
that represents a superset of the feasible solutions and therefore provides a discrete
relaxation of the problem, as contrasted with the continuous relaxations typically
used in optimization. A key advantage of relaxed decision diagrams is that they can
be much smaller than exact ones while still providing a useful relaxation, if they
are properly constructed. In fact, one can control the size of a relaxed diagram by
specifying an upper bound on the width as the diagram is built. A larger bound
results in a diagram that more closely represents the original problem.

2 Chapter 9 describes the filtering process in more detail.



2.3 Decision Diagrams in Optimization 19

Andersen et al. originally proposed relaxed decision diagrams as an enhanced
propagation medium for constraint programming, as noted above. They developed
two propagation mechanisms: the removal of arcs that are not used by any solu-
tion, and node refinement, which introduces new nodes in order to represent the
solution space more accurately. They implemented MDD-based propagation for a
system of ALLDIFFERENT constraints (which is equivalent to the graph coloring
problem) and showed experimentally that it can result in a solution that is order of
magnitude faster than using the conventional domain store. MDD-based propagation
for equality constraints was studied in [85]. Following this, generic methods were
developed in [84, 94] for systematically compiling relaxed decision diagrams in a
top-down fashion. The details will described in the remainder of the book, but the
fundamental idea is to construct the diagram in an incremental fashion, associating
state information with the nodes of the diagram to indicate how new nodes and arcs
should be created.

This kind of MDD-based propagation can be added to an existing constraint
programming solver by treating the relaxed decision diagram as a new global
constraint. Ciré and van Hoeve [49] implemented this approach and applied it to
sequencing problems, resulting in substantial improvements over state-of-the-art
constraint programming, and closing several open problem instances.

Relaxed decision diagrams can also provide optimization bounds, because the
shortest top-to-bottom path length in a diagram is a lower bound on the optimal
value (of a minimization problem). This idea was explored by Bergman, Ciré, van
Hoeve and Hooker in [25, 28], who used state information to build relaxed decision
diagrams for the set covering and stable set problems. They showed that relaxed
diagrams can yield tighter bounds, in less time, than the full cutting plane resources
of commercial integer programming software. Their technique would become a key
component of a general-purpose optimization method based on decision diagrams.

2.3.5 A General-Purpose Solver

Several elements converged to produce a general-purpose discrete optimization
method that is based entirely on decision diagrams. One is the top-down compilation
method for generating a relaxed decision diagram already discussed. Another is
a compilation method for restricted decision diagrams, which are important for
obtaining good feasible solutions (i.e., as a primal heuristic). A restricted diagram is



20 2 Historical Overview

one that represents a proper subset of feasible solutions. Bergman, Ciré, van Hoeve
and Yunes [27] showed that restricted diagrams are competitive with the primal
heuristics in state-of-the-art solvers when applied to set covering and set packing
problems.

A third element is the connection between decision diagrams and dynamic pro-
gramming, studied by Hooker in [97]. A weighted decision diagram, which is one in
which costs are associated with the arcs, can be viewed as the state transition graph
for a dynamic programming model. This means that problems are most naturally
formulated for an MDD-based solver as dynamic programming models. The state
variables in the model are those used in the top-down compilation of relaxed and
restricted diagrams.

One advantage of dynamic programming models is that they allow for state-
dependent costs, affording a great deal of flexibility in the choice of objective
function. A given state-dependent cost function can be represented in multiple
ways by assigning costs to arcs of an MDD, but it is shown in [97] that if the
cost assignment is “canonical,” there is a unique reduced weighted diagram for the
problem. This generalizes the uniqueness theorem for classical reduced decision
diagrams. A similar result is proved by Sanner and McAllester [138] for affine
algebraic decision diagrams. The use of canonical costs can reduce the size of a
weighted decision diagram dramatically, as is shown in [97] for a textbook inventory
management problem.

A solver based on these elements is described in [26]. It uses a branch-and-
bound algorithm in which decision diagrams play the role of the linear programming
relaxation in traditional integer programmingmethods. The solver also uses a novel
search scheme that branches on nodes of a relaxed decision diagram rather than on
variables. It proved to be competitive with or superior to a state-of-the-art integer
programming solver on stable set, maximum cut, and maximum 2-SAT problems,
even though integer programming technology has improved by orders of magnitude
over decades of solver development.

The use of relaxed decision diagrams in the solver has a superficial resem-
blance to state space relaxation in dynamic programming, an idea introduced by
Christofides, Mingozzi and Toth [47]. However, there are fundamental differences.
Most importantly, the problem is solved exactly by a branch-and-bound search
rather than approximately by enumerating states. In addition, the relaxation is
created by splitting or merging nodes in a decision diagram (state transition graph)
rather than mapping the state space into a smaller space. It is tightened by filtering



2.3 Decision Diagrams in Optimization 21

techniques from constraint programming, and it is constructed dynamically as the
decision diagram is built, rather than by defining a mapping a priori. Finally, the
MDD-based relaxation uses the same state variables as the exact formulation, which
allows the relaxed decision diagram to serve as a branching framework for finding
an exact solution of the problem.

2.3.6 Markov Decision Processes

Decision diagrams have also played an auxiliary role in the solution of planning
problems that arise in the artificial intelligence (AI) literature. These problems
are often modeled as stochastic dynamic programming problems, because a given
action or control can result in any one of several state transitions, each with a given
probability. Nearly all the attention in AI has been focused on Markov decision
processes, a special case of stochastic dynamic programming in which the state
space and choice of actions are the same in each period or stage. A Markov decision
process can also be partially observable, meaning that one cannot observe the
current state directly but can observe only a noisy signal that indicates that the
system could be in one of several possible states, each with a known probability.

The solution of stochastic dynamic programmingmodels is complicated not only
by the large state spaces that characterize deterministic models, but by the added
burden of calculating expected immediate costs and costs-to-go that depend on
probabilistic outcomes.3 A natural strategy is to simplify and/or approximate the
cost functions, an option that has been explored for many years in the optimization
world under the name approximate dynamic programming (see [129] for a survey).
The AI community has devised a similar strategy. The most obvious approximation
technique is state aggregation, which groups states into sets and lets a single state
represent each set. A popular form of aggregation in AI is “abstraction,” in which
states are implicitly grouped by ignoring some of the problem variables.

This is where decision diagrams enter the picture. The cost functions are sim-
plified or approximated by representing them with weighted decision diagrams, or
rather algebraic decision diagrams (ADDs), which are a special case of weighted
decision diagrams in which costs are attached to terminal nodes. One well-known

3 The expected immediate cost of an action in a given state is the expected cost of taking that action
in that state. The expected cost-to-go is the expected total cost of taking that action and following
an optimal policy thereafter.



22 2 Historical Overview

approach [95] uses ADDs as an abstraction technique to simplify the immediate cost
functions in fully observable Markov decision processes. Some related techniques
are developed in [63, 143].

Relaxation is occasionally used in these methods, but it is very different from the
type of relaxation described above. Perhaps the closest analog appears in [146],
which uses ADDs to represent a relaxation of the cost-to-go function, thereby
providing a valid bound on the cost. Specifically, it attaches cost intervals to leaf
nodes of an ADD that represents the cost function. The ADD is reduced by merging
some leaf nodes and taking the union of the associated intervals. This does not create
a relaxation of the entire recursion, as does node merger as employed in this book,
but only relaxes the cost-to-go in an individual stage of the recursion. The result is
a relaxation that embodies less information about the interaction of stages.

On the other hand, the methods we present here do not accommodate stochastic
dynamic programming. All state transitions are assumed to be deterministic. It
is straightforward to define a stochastic decision diagram, in analogy with the
transition graph in stochastic dynamic programming, but it is less obvious how to
relax a stochastic decision diagram by node merger or other techniques. This poses
an interesting research issue that is currently under study.



http://www.springer.com/978-3-319-42847-5


	2
Historical Overview
	2.1 Introduction
	2.2 Origins of Decision Diagrams
	2.3 Decision Diagrams in Optimization
	2.3.1 Early Applications
	2.3.2 A Discrete Optimization
Method
	2.3.3 Decision Diagrams in Constraint Programming
	2.3.4 Relaxed Decision Diagrams
	2.3.5 A General-Purpose Solver
	2.3.6 Markov Decision Processes





