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Abstract. In this paper, we propose a method for ameliorating the
state-space explosion that can occur in the context of multiagent rein-
forcement learning. In our method, an agent considers other agents’
states only when they interfere with each other in attaining their goals.
Our idea is that the initial state-space of each agent does not include
information about other spaces. Agents then automatically expand their
state-space if they detect interference states. We adopt the information
theory measure of entropy to detect the interference states for which
agents should consider the state information of other agents. We demon-
strate the advantage of our method with respect to the efficiency of global
convergence.

Keywords: Multiagent system · Reinforcement learning · Conflict
resolution

1 Introduction

In general, multiagent systems are applied to large and complex problems. It
is often difficult to design the behavior rules of each agent beforehand, so they
are expected to learn adaptively and autonomously. Multiagent Reinforcement
Learning (MARL) is an effective approach for this design problem, and has
attracted the attention of many researchers. In many existing MARL stud-
ies, it is assumed that the state of the environment is observable, including
the selected actions and states of all other agents [3–7]. This method does not
scale well, because the state-space that agents must learn is usually exponen-
tial with respect to the number of agents. In addition, the solution will often
be sub-optimal or instable because of the agents’ simultaneous and independent
learning [16].

To solve these problems, recent research has proposed the observation of only
a limited part of the other agents’ state-spaces [9,11]. However, the detection
of which part of the state-space should be considered relies on a heuristic app-
roach, which requires different knowledge for different problems. In this paper,
we propose a novel approach to detect the states in which extra information from
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other agents is necessary. Our method adopts the information theory measure
of entropy to reduce the state-space properly, thus achieving good performance
in both learning speed and solution quality.

The remainder of this paper is organized as follows. In Sect. 2, we give the
basic background information needed to understand our approach. In Sect. 3, we
explain the class of problems, introduce some related work in this domain, and
explain the main differences with our approach. Section 4 presents the proposed
method. Experimental results are presented in Sect. 5, before our conclusions
and ideas for future work are given in Sect. 6.

2 Glossary

In this section, we review the Markov Decision Process framework, Q-learning,
Markov Game framework, and multiagent Q-learning, which are the basic con-
cepts behind our proposed method.

2.1 Markov Decision Processes and Q-learning

Markov Decision Processes (MDPs) provide a theoretical framework for single-
agent decision making, and are the basis on which reinforcement learning is built.
An MDP can be described as a tuple < S,A,P,R >, where S is a finite set of
states, A is a set of actions available to the agent, P : S × A × S → [0, 1] is
the transition function that describes the probability P (s′|s, a) of ending up in
state s′, and R : S ×A → R is a reward function that returns the reward R(s, a)
for taking action a in state s.

An agent’s policy is defined as a mapping π : S → A. The objective is to find
the optimal policy π∗ that maximizes the expected discounted future reward
U∗(s) = maxπ E[

∑∞
t=0 γtR(st)|π, s0 = s] for each state s. The expectation oper-

ator E[·] is averaged over the reward and stochastic transitions, and γ ∈ [0, 1) is
the discount factor. This objective can also be expressed using Q-values, which
store the expected discounted future reward for each state s and action a:

Q∗(s, a) = R(s, a) + γ
∑

s′
P (s′|s, a)max

a′
Q∗(s′, a′) (1)

The optimal policy for a state s is the argument of maxaQ∗(s′,a′) that maximizes
the expected future discounted reward. Watkins [2] described a Q-learning algo-
rithm to iteratively approximate Q∗. Q-learning starts from some initial estimate
Q(s, a) for each state-action pair. When an exploration action a is taken in state
s, the reward R(s, a) is received and the next state s′ is observed. The Q-values
are updated according to the following update rule:

Q(s, a) ← (1 − α)Q(s, a) + α(R(s, a) + γV (s′)) (2)

V (s′) ← max
a′

Q(s′, a′) (3)

where α ∈ (0, 1) is an appropriate learning rate. Under certain conditions,
Q-learning is known to converge to the optimal Q∗(s, a) [2].
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2.2 Markov Games and Multiagent Q-learning

Markov Games (MGs) [3] multiagent decision making. An MG can be described
by a tuple < N ,S,A1, . . . ,An,P, R1, . . . ,Rn >, where N is the set of (n = |N |)
agents, S is the finite set of states, and Ai(i ∈ 1, . . . , n) is the set of actions
available to agent i. The transition function P : S × A1 × · · · × An × S → [0, 1]
represents the probability P (s′|s, a) that the state will transit from state s to s′

after performing the joint action a ∈ A1 × · · · × An, and Ri : S×A1×· · ·×An →
R is the reward function that returns the reward Ri(s, a) for agent i after joint
action a is taken in state s. Note that, when n = |N | = 1, the MG is equivalent
to an MDP.

Table 1 classifies MGs by the relationship between Ri, and summarizes their
existing multiagent Q-learning algorithms. In these algorithms, it is necessary
for an agent to observe the state-space consisting of its own state and those of
other agents at all times.

Table 1. Markov Games and existing algorithms

Reward Classification Algorithms

R1 + R2 = 0 Zero-sum MGs Minimax Q-learning [3]

Σn
k=1Rk=Const. General-sum MGs Nash Q-learning [6], Correlated-Q [7]

R1 = · · · = Rn = R Team MGs Team-Q [4], OAL [5]

3 Problem Domain

In the existing MARL research discussed in Sect. 2.2, the states of other agents
must be observed at all times. However, as mentioned in Sect. 1, such approaches
do not scale well, as the state-space often becomes exponential in the number
of agents. In addition, the experimental results of Busoniu et al. [1] showed that
agents tend to learn slowly, and the solution will often be sub-optimal due to
this explosion in the state-space.

In reality, it is difficult to observe the states of other agents at all times [8].
Further, in general, as the multiagent system relies upon the sparse interaction
between agents, there should be no need to observe the complete state of the
other agents. If complete observation is necessary, we can achieve a control sys-
tem via the central management of a super-agent. Therefore, in a multiagent
system with sparse interaction between agents, recognizing which state-spaces
should be considered becomes an important issue.

3.1 Definition of Terminology

In this paper, we divide the state-space of the agent into collision states,
interference states, and non-interference states. In collision states and
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interference states, agents interact with each other. There is no interaction among
agents in the non-interference state. The set of collision states is defined as the
set in which agents may be present in the same state transition simultaneously.
The set of interference states is defined as the set of states prior to the
transition to collision states. In addition, we call the actions such that agents
transit from interference states to collision states. A conceptual diagram of the
collision states and interference states is shown in Fig. 1.

Consider the state transition shown in Fig. 1. Here, the observation of agenti
is si, and that of other agents’is s−i. Because the destination state of the transi-
tion from interference states is dependent on the action of other agents, different
rewards will be given depending on the transition to a collision state or non-
interference state. These are marked by ric, rin, respectively, in Fig. 1. An agent
recognizes a transition to the same state, and the action value in the interference
state will be updated by the different rewards. Therefore, incorrect Q-values will
propagate through the interference states and their previous states, and lead to
uncertain policies in these states. Thus, we should observe the state of other
agents in interference states, but not necessarily in the other states. Recently,
research has shown that it is possible to detect these interference states. In this
paper, we propose a novel method for detecting the interference states, and
develop a learning algorithm for different types of states.
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3.2 Related Work

In this section, we present a brief overview of the most relevant existing work in
this problem domain, and describe the differences, as well as some similarities,
between our proposed method and these approaches.

Kok et al. [9] described an approach in which agents know which states are
interference states beforehand, allowing the successful reduction of state-spaces.
In [10], Kok et al. use Coordination Graphs (CGs) to represent the relationship
between agents in interference states and interference actions. They propose
an approach for learning the CGs during the learning process, which enables
the detection of interference states and reduction of state-spaces. However, this
approach is limited to Team MGs.

Melo et al. introduced interaction-driven MGs, which contain a set of states
in which interaction occurs between agents. The list of interference states was
then applied to the agents beforehand [11]. In their later work, an algorithm was
proposed in which agents learn to detect the interference states autonomously,
rather than being given them [12]. In other words, agents detect the states in
which interaction is necessary via a learning process. To achieve this, the action
space of each agent is augmented with a pseudo-coordination action that per-
forms an active perception step. In this perception step, agents observe the states
of other agents, and determine whether the other agents’ states should be con-
sidered. Because the penalty for collision is bigger than the cost of this active
perception, the agents learn to take this action in interference states. However,
determining the cost of using active perception is a challenge, because it is nec-
essary to consider the penalty of collision comprehensively.

De Hauwere et al. succeeded in detecting the interference states using a
Generalized Learning Automaton (GLA) [13]. The GLA receives the Manhattan
distance between two agents as input, and the agents can then learn which are
the interference states. In addition, De Hauwere et al. introduced an effective
statistical method that focuses on the reward sequence given in each state for
detecting the interference states [14,15]. Although similar to the approach of [10],
this method further reduces the state-space. However, although this approach
is effective when considering immediate rewards, it is not applicable under a
delayed-reward environment.

Busoniu et al. [8] proposed a method for detecting interference states by
focusing on the differences in Q-value convergence between the interference states
and non-interference states. Their approach does not consider rewards, unlike
[14,15]. However, to analyze the convergence of the Q-values, many parameters
must be set appropriately, which is a challenging task.

In this paper, we propose an approach in which agents learn to detect inter-
ference states autonomously during the learning process, but have no knowledge
of the interference states beforehand. Our approach focuses on the fluctuation of
the Q-values, which is similar to the approach of [8] and different from those of
[10,14,15]. Our approach formulates the variation of the Q-values as the entropy
of information theory, and detects the interference states by observing fluctua-
tions in the entropy.
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4 Proposed Method

4.1 Entropy Based Approach

In information theory, entropy is a measure of the uncertainty in a random
variable. The information entropy is defined as H(S) = −∑m

i=1 pi log pi, where
{p1, p2, . . . , pm} is the probability distribution of random variable S on a discrete
set with m elements. We developed a measure based on information theory
[16] for evaluating the degree of interaction in a multiagent system during the
learning process. In this paper, we detect the interference states by adopting the
information theory measure of entropy, in accordance with this quantification.
The quantification of the uncertainty of a specific policy is summarized as follows.

Consider the state set S = {s1, . . . , sh, . . . , sm}, let the action set that can
be selected by an agent be A = {a1, . . . , ai, . . . , an}, and assume that the policy
is π(S,A). In this context, the policy in state sh is then

∑n
i=1 π(sh, ai) = 1.

According to the definition of information entropy, the entropy of policy π in
state sh can be calculated by Eq. (4). In the following, H(π(sh,A)) is abbreviated
to H(sh) for simplification.

H(π(sh,A)) = −
n∑

i=1

π(sh, ai) log π(sh, ai) (4)

4.2 Detection of Interference States by Entropy

In terms of the probability distribution of policy π(sh,A), the entropy in state
sh has the following properties.

– if π(sh, a1) = · · · = π(sh, ai) = · · · = π(sh, an), H(sh) becomes the maximum
value

– if ∃ai ∈ A, π(sh, ai) = 1, H(sh)=0.

Therefore, during the learning process, if the policy convergences to a “determin-
istic policy,” then H(sh) = 0. However, H(sh) does not decrease monotonically.
In the early learning stages, to avoid convergence to a local solution, action a
in which Q(s, a) is maximized may not be selected because of the exploration
process. In addition, in the multiagent environment, the influence of simulta-
neous learning between agents means that the magnitude relation between the
value of Q(s, a) varies frequently, and the optimal action also changes.

Further, as mentioned above, with the progress of reinforcement learning
under single agent MDPs, the policy converges to a “deterministic policy,” and
H(sh) should become 0. In MGs, however, more than one action may be effec-
tive, and the Q-values of these actions will be similar. Hence, the policy might
convergence to a “deterministic policy” even when the learning is at an advanced
stage. This is because the agent cannot observe the internal states of other agents
in the multiagent environment if they learn independently. In this case, although
the entropy is not 0, the fluctuation of entropy is eliminated. On the other hand,
the entropy of a policy in the interference states does not tend to 0, and the
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Fig. 2. Basic idea to find interferences

value fluctuates frequently. In the non-interference states, the entropy of a pol-
icy may fluctuate in the early learning process due to the randomness of the
action selection, but it should become 0, or at least remain stable.

Based on the description above, the entropy of a policy in the interference
states fluctuates frequently for long periods of time during the learning process,
but this phenomenon does not occur in other states. As shown in Fig. 2(a), the
transition to the collision state from the interference state varies because of the
influence of other agents’ actions. In particular, the higher the state-value in
the posterior state of the collision state, the more the entropy of the policy in
the interference state prior to the collision state fluctuates. This is because of
the increase during the transition to the collision state. Therefore, to detect
interference states, we examine the frequency of the entropy fluctuation. That
is, as shown in Fig. 2(a), we aggregate the increase or decrease in entropy over
a certain learning time. If this exceeds a predetermined threshold, the state is
determined to be an interference state. Here, we denote the increase or decrease
in the entropy of a policy in state sh ∈ S as waveNum(sh), and the predeter-
mined threshold value as θ. Equation (4) calculates the entropy of agenti’s in
state sh ∈ S using Q values. Here, τ is a parameter for the exploration.

π(sh, ai) =
eQ(sh,ai)/τ

∑
b∈A eQ(sh,b)/τ

(5)

4.3 Algorithm

An outline of the proposed method is shown in Fig. 2(b). The proposed learning
algorithm is shown in Figs. 3 and 5. Note that the superscripts i and −i in Figs. 3
and 5 refer to agent i and the other agents, respectively.

First, the set of interference states is initialized to the empty set Si
o = ∅.

Before the K-th episode, agents learn independently by single-agent Q-learning
without observing the other agents’ states, and we calculate H(si), which is
the entropy of a policy in each state si. When the entropy H(si) increases or
decreases, waveNum(si) is updated as waveNum(si) ← waveNum(si) + 1.
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Fig. 3. Agent Algorithm before K-th Episode in the Detection Phase of Interference
States

When waveNum(sh) exceeds the threshold value θ, sh is marked as an interfer-
ence state and added to the set of interference states Si

o.
At the end of episode K, to take advantage of the learning results up to that

point, we use Eq. (6) to initialize the Q-value in the interference states.

Qi
o(s

i, s−i, ai) ← Qi(si, ai)
∀si ∈ Si

o, s
−i ∈ S−i, ai ∈ Ai (6)

where Qi(si, ai) denotes the Q-table learned by episode K, and Qi
o(s

i, s−i, ai)
represents the combination of interference state si and the state of other agents
s−i. In Fig. 4, we show an example of this extension of the Q-table. The states
of agent 2 are added to the state representation of agent 1 in states 4 and 6,
because states 4 and 6 are detected as interference states. By this extension of
the Q-table, we are able to reduce the state-space.

After episode K, the process proceeds as follows. When an agent selects
an action and updates the Q-values, it checks whether its current state is an
interference state. If not, it will use Qi(si, ai) to select an action, and the rule



24 S. Arai and H. Xu

1 2 3 

4 5 6 

7 8 9 

4-1 4-2 4-3 

4-4 4-5 4-6 

4-7 4-8 4-9 

6-1 6-2 6-3 

6-4 6-5 6-6 

6-7 6-8 6-9 

expand expand 

Q

Qo
i

i

Fig. 4. Expanding the Q-table in the Interference States

Fig. 5. Agent Algorithm after (K + 1)-th Episode for Updating Q-values

represented as Eq. (7) will be used to update the Q-values.

Qi(si, ai) = (1 − α)Qi(si, ai) +

α(ri + γ max
ai∈Ai

Q(si ′
, ai)) (7)

On the other hand, if the agent is currently in an interference state, it will
select an action by Qi

o(s
i, s−i, ai), and the rule represented as Eq. (8) will be

used to update the Q-values.

Qi
o(s

i, s−i, ai) = (1 − α)Qi
o(s

i, s−i, ai) +

α(ri + γ max
ai∈Ai

Q(si ′
, ai)) (8)

Also note that when the value of Q(si ′
, ai) in Eqs. (7) and (8), is calculated,

si′
is considered as a non-interference states. This is because each agent iterates a

cycle of observation, action, then transit a next state, the agent cannot identify
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whether new (transited) state is a non-interference state or not, when agent
updates Qi(si, ai). In other words, the Q value of the transited state, is a previous
value of expansion.

5 Experiments

5.1 Experimental Environment and Settings

Our experimental environment is shown in the left of Fig. 6. It is a maze environ-
ment containing two agents, and their start states and goal states are denoted
by S1, S2, and G1, G2, respectively. The black blocks represent walls that agents
cannot pass through. The agents’ task is to find the shortest path to their goals.
However, the task is not completed when only one agent reaches its goal.

The action set available to the agents is < UP, DOWN, LEFT, RIGHT,
STOP >. These cause the agent to move simultaneously one cell up, down, left,
or right, or to stop. The transitions are deterministic. Initially, each agent is
placed in their start state. An episode is defined as the period from the start
time of the initial state to the time at which both agents have reached their goal
states. Once an agent reaches its goal state, it remains there. When the length
of an episode exceeds some upper limit, the episode is terminated.

Each agent receives a reward of Ri = 500 when they complete the task, and
a reward of −50 when they collide with each other. When an agent collides with
a wall, it receives a reward of −20. In all other cases, the reward is 0. Note that,
when an agent collides with another agent or a wall, it returns to the state in
the previous time step. This settings of reward correspond to the Markov Game
situation as mentioned in Sect. 2.2.

Agents learn for 400 episodes, and the upper limit of time steps in an episode
is set to 500. We use an ε-greedy action selection strategy, where ε is set to 0.2
in the first 300 episodes and ε = 0 from then on. The learning rate is set to
α = 0.3, the discount factor is set to γ = 0.9, and the initial Q-values are set
to 0.1. We set the parameters related to the detection of interference states as
K = 50 and the threshold θ = 2.

5.2 Experimental Results

Acquired Behavior: First, in the right of Fig. 6, we show which states were
detected as the interference states by the agents. We can see that agents have cor-
rectly learned to detect the states in which collisions are frequent or most likely.
Two typical examples of acquired behaviors are shown in Fig. 7(a), and Fig. 8(a)
where the red and blue colored lines indicate the behaviors of agent1’s and
agent2’s, respectively. It is found that the both behaviors are globally optimal.

Fluctuation of Entropy in Interference States. Figure 7(a) shows that
agent2 wait around (4, 4) to avoid collision while Fig. 8(a) shows that agent1 wait
around (4, 2) to avoid collision. The fluctuation of entropy of both situations are
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Fig. 6. Detected Interference States. Sparse lines with circles indicate the interference
states with a low frequency of detection. (Color figure online)
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Fig. 7. Pattern1: Finally Obtained Path. (The red and blue lines indicate the path of
agent 1 and agent 2 respectively.), Fluctuations of Entropy in State (4, 2) of Agent 1
(Color figure online)
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agent 1 and agent 2 respectively.), Fluctuations of Entropy in State (4, 4) of Agent 2
(Color figure online)

shown in Figs. 7(b) and 8(b). The vertical axis shows the value of entropy of
each state, and the horizontal axis records the number of episodes. Figures 7(c)
and 8 show the convergence of learning after 400 episodes.
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5.3 Evaluation of Learning Efficiency

Next, to evaluate the performance of the proposed method, we compared it
with two other multiagent Q-learning methods. One is Independent learners,
which learn without any information about the state of other agents, and the
second is Joint-state learners, which receive the joint location of the agents
as state information, but choose their actions independently.

Figure 9 shows the number of steps taken to complete each episode, averaged
over 10 runs. The vertical axis shows the number of time steps needed to complete
one episode, and the horizontal axis records the number of episodes. We also show
the size of the state-space, the converged steps, and the required steps to acquire
the optimal/best solution in each method in Table 2.
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Fig. 9. Experiment on the Efficiency of the Proposed Method, Compared with the
Independent Learners and Joint-state Learners, Averaged over 10 Runs.

Table 2. Comparison of learning performance. Average and s.d 10 series of experiments

Algorithm State space ± s.d Steps ± s.d Required Episodes to

17 steps ± s.d

Independent learners 35 not converge not converge

Joint-state learners 1225 17.1±1.22 164.90±45.66

Proposed method 100.8±20.4 13.5±0.92 79.4±33.26

Both the Independent learners and our proposed method learn quickly in
early episodes (<= 50) compared with the Joint-state learners, because learning
is based on a smaller state-space. However, the Independent learners do not
converge to a stable policy, but instead oscillate because the policies in the
interference states are uncertain. Our proposed method converges to a stable
policy, because the agents observe the states of the other agents after the 50th
episode. The Joint-state learners were consistently able to converge to a stable
policy, but learned slowly due to the large size of the state-space. Our proposed
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method learns quickly and converges to a better stable policy than the Joint-
state learners, because of the reduction in the state-space brought about by
detecting the interference states.

6 Conclusions

In this paper, we presented an approach for reducing the state-space in the
MARL domain. An overly large state-space usually causes agents to learn slowly
and reach sub-optimal solutions. We defined the states in which agents should
consider the influence of other agents’ actions as interference states. Our pro-
posed method is made up of two phases: one for detecting the interference states,
and another for learning different types of states.

We noted that if the states of other agents are ignored when they should
be considered, agents’ policies became uncertain. The interference states were
detected by calculating the degree of this uncertainty via the entropy of infor-
mation theory. We reduced the state-space by limiting the observations of other
agents’ states, thus improving the learning speed. In addition, it was possible to
avoid the incomplete perception caused by the actions of agents, which led to
an improvement in the optimality of the solution.

However, as shown in Eq. (6) and Fig. 4 in Sect. 4.3, by expanding the Q-table
in the interference states, all possible states of other agents are considered com-
prehensively. In fact, we can speculate that the influence of other agents’ states
on a given agent’s own actions only arise in a part therein. In future work, we will
focus on finding a method to achieve a more compact state-space representation,
whereby an agent expands its own state information using that of other agents.
Furthermore, we need to investigate methods to set a suitable threshold value
for the number of entropy fluctuations. This was set by preliminary experiments
in our current implementation.
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