Chapter 2

Software Product Lifecycles:
What Can Be Optimized and How?

Abstract The chapter discusses lifecycle models for software development in more
detail. These include build-and-fix, waterfall, incremental, object-oriented and spiral.
We present a more detailed description of the lifecycle models application for
software development. We compare benefits and shortcomings of the models dis-
cussed. We confirm that there is no “silver bullet”, i.e. a universal lifecycle model
equally applicable to any software product. Consequently, lifecycle model choice is
dependent upon product size and scope; each project requires a unique combination
of features. In crisis, we recommend to combine prototyping with the other models
that we discussed in order to achieve a common understanding of the key product
features and to reduce project risks. The lifecycle model choice determines project
economics, time to market, product quality and overall project success. However, the
product success essentially depends on human factors, which include common
vision of the critical product functions, transparent communication and feedback.
We analyze applicability of the lifecycle models to large-scale, mission-critical
software systems, which is essential in crisis. Finally, we introduce a methodology,
which includes a spiral-like lifecycle and a set of formal models and visual tools for
software product development. The methodology helps to optimize the software
product lifecycle, which is mission-critical in crisis. The methodology is applicable
to large-scale, complex software products for heterogeneous environments.

Keywords Software lifecycle - Lifecycle model - Software development
methodology

1 Introduction

The previous chapter gave a brief review of a number of lifecycle models used in
software development, such as build-and-fix, waterfall, incremental, object-oriented,
spiral, and a few others.

This chapter presents a more detailed description of the lifecycle models
application to software development. It includes discussion of their benefits and

© Springer International Publishing Switzerland 2016 27
S.V. Zykov, Crisis Management for Software Development

and Knowledge Transfer, Smart Innovation, Systems and Technologies 61,

DOI 10.1007/978-3-319-42966-3_2

28 2 Software Product Lifecycles: What Can Be Optimized and How?

shortcomings. It analyses applicability of the lifecycle models to large-scale,
mission-critical software systems, especially in a crisis.

Some of the models are more straightforward, others require a number of iter-
ations. Our deeper investigation of the models will still conclude that there is no
crisis-proof “silver bullet” for lifecycle models. However, we will arrive to certain
recommendations of combining and adjusting the models in order to succeed in
crisis software development.

Project success is usually determined not only by the lifecycle model, or by a
combination of models, but also by a number of human factors, which may help or
hinder a common understanding of the key product features by the client and the
developer. We will cover these human-related factors in more detail in Chap. 5.

In order to optimize software product lifecycle, which is mission-critical in crisis,
we will introduce a methodology that includes a spiral-like lifecycle and a set of
formal models and visual computer-aided tools for software product development.

This chapter is organized as follows. Section 1 discusses the abbreviated and
straightforward lifecycle models, such as build-and-fix and waterfall. Section 2
presents an overview of simple iterative models, such as incremental and proto-
typing. Section 3 describes more complex software lifecycle models; these are
spiral, synchronize and stabilize, and object-oriented. Sections 4 and 5 contain an
overview of an enhanced software development methodology, which provides
lifecycle optimization and sequentially elaborates the deliverables for
mission-critical software products in crisis. The conclusion summarizes the results
of the chapter.

Let us have a look at the software development lifecycles in more detail.

2 Simple Lifecycles: Brief and Straightforward

One of the models of software development lifecycle discussed previously is the
build-and-fix (see Fig. 1). This is a model of incomplete lifecycle. Because of its
simplicity, the build-and-fix is not suitable for large and complex projects, which
have a size of over 1 KLOC. So, the build-and-fix model may be a possible option
for a software solution, which is downsized by crisis. However, it is only applicable
in case of a trivial product with clear requirements.

The other model discussed previously is rapid prototyping (see Figs. 4 and 5). It
is also somewhat limited, despite the fact that it includes all the necessary stages of
the lifecycle. These are analysis and specification of requirements, preliminary and
detailed design, implementation, unit testing, integration, product testing, mainte-
nance, and retirement. The limit of the rapid prototyping is lack of self-consistency.
Actually, its testing phase, both for the individual modules and the prototype as a
whole, yields to a low quality code. The prototype documentation is usually
insufficient and incomplete, and the resulting code is not a software product, since it
only simulates the key functionality and certain aspects of the future software
system of operational quality.

http://dx.doi.org/10.1007/978-3-319-42966-3_5

2 Simple Lifecycles: Brief and Straightforward 29

Fig. 1 Build-and-fix model
Build Version #1

Modify till client

77777

> Maintenance
Retirement
Fig. 2 Waterfall model Requirements /
Verification
Design /
Verification
Coding and testing /

Verification

Implementation, Transfer, Maintenance /
Verification

The waterfall model presented in Fig. 2 is fully applicable to large-scale and
mission-critical software systems; however, it has some limitations, since it has a
limited agility to meet the crisis conditions. In particular, the waterfall model
requires discipline and organization, operational knowledge of CASE tools as the
project team needs to produce a large number of documents and to communicate
intensively. The documentation should meet the standards, which follow the
agreement with the customer. Any product document, such as operations manual,
should follow specific templates, since documentation is a critically important part
of any waterfall-based software product. Let us recall that the product is not only
the code but also a large amount of documentation required for competent and
stable maintenance. The product documentation has a special value for the main-
tenance personnel, as they usually read the code produced by other developers, and
their task is to detect and to fix the remaining defects. The documentation is
mission-critical for the waterfall model, because developers follow the lifecycle
based on document-driven milestones conditions. For example, as soon as the

30 2 Software Product Lifecycles: What Can Be Optimized and How?

required detailed design documents for the product are ready, the milestone is
reached and the developer proceeds to the implementation phase of the lifecycle.

The following three models (see Figs. 3, 4 and 5) are important to understand
how to organize the lifecycle of software systems, including large-scale and
mission-critical anti-crisis solutions. In contrast to the waterfall pattern, these three
models are focused on multiple passing through the stages of the lifecycle. The
product functionality is usually incremented after each pass.

Fig. 3 Waterfall-based Maintenance
V-model
Requirements

. . . 2]
Functional design Product testing &
&
< - - - S
Design Integration testing é?
R

%
7z
)) . . S
2 Detailed design| ’ Testing ‘ \“g
% &
. <
:
Fig. 4 Rapid prototyping Rapid prototype < - -~ Changed requirements |« - — -
model
Verification Verification
Specification <~ -------
Verification
Design < !
Verification

Implementation <=

Verification

Integration

Verification

(< -

|

!

!

|

|

|

|

!

!
Operations % -k-

—> Development

Retirement ‘)
——— > Maintenance

2 Simple Lifecycles: Brief and Straightforward 31

Product
requirements| | Prototype 1 Prototype 2 Acceptance
Project Product testing
review

Integration testing Developer

Partial / Unit testing

Requirements analysis&’

Preliminary design

Detailed design

Fig. 5 Rapid prototyping-based “shark teeth” model

Naturally, it is challenging to implement certain kinds of the software systems in
a single pass. However, the waterfall is adequate for a problem domain with clear
and stable requirements, which is straightforward to document and design. The
waterfall approach is applicable mostly for government agencies and military
software applications.

3 Simple Iterative Lifecycles: Incremental
and Prototyping

The iterative lifecycle models provide loop-based elaboration of the software
product. They assume that several loops are required in order to build a product
release. Each of these loops usually includes all stages of the software product
lifecycle. The iterative models are often easier to follow in terms of discipline, as
they do not usually require developing a full product functionality or a complete
product documentation after each stage.

One of these iterative models is the incremental model (see Fig. 6). What are its
key features? According to the model, while building a project plan, the product is
divided into a sequence of releases. The lifecycle stages, which precede product
transfer to client, involve a number of releases. These are iterations of the devel-
opment cycle, each of which provides an operational product. Therewith, in case
the product does not require a revolutionary transformation of the previous releases
(i.e. functionality builds up smoothly), each release is transferred to the customer as
an operational product, though it has a limited functionality. In addition, every
lifecycle stage delivers the required product documentation, so that each product
release is operational and utilizable.

32 2 Software Product Lifecycles: What Can Be Optimized and How?

. Implementation,
) Implementation .
Design / . Integration,
> Verificati » & Testing / > Transfer
erification Verification . ’
Maintenance /
Increment 1 Verification
Implementation,
Requirements / Design / Implementation Integration,
Verification > Verification 17 & Testing/ Transfer,
Verification Maintenance /
2 Verification
Increment 2
n
- Implementation,
R Design / Imp]emel?tatlon - Integration,
" Verification | | % T?S“n?%’ " Transfer,
Verification Maintenance /
Verification
Increment 3

Fig. 6 Incremental model

For instance, in case of an online store, we can initially simplify the interface
associated with the purchase of products. The first release may not have a choice of
delivery options (e.g. by sea and by air), and it may have a single kind of delivery
with a fixed rate. Later releases can also include more details to support credit card
payments, such as a dedicated server for client authentication and transaction
processing. However, even the first release yields to a fully operational product,
though it is rather simple in terms of functions available.

Thus, the idea of the incremental lifecycle is to supply an operational product to
customer as soon as possible. In some cases, this can be a suitable solution in terms
of crisis management. For the incremental model, the project plan typically spec-
ifies the sequence and schedule of functionality transfer to the customer; it may also
include a maintenance plan, which specifies technological and functional con-
straints for each release.

Another feature of the incremental model is a relatively smooth transfer of new
functionality. Each release is a clearly separated functional block, and it contains a
number of modules. Naturally, these modules do not exist by themselves and are
related to some other modules. They can inherit certain properties of these other
modules; they also can interact with semantically related modules through the
interfaces provided. Thus, it is desirable that within every release, each interacting
module is relatively small and self-consistent, i.e. it has a relatively small amount of
interaction points with the other modules. By keeping the modules and the releases
relatively small and self-consistent, the incremental lifecycle provides a smooth
transfer of the new functionality to the customer.

3 Simple Iterative Lifecycles: Incremental and Prototyping 33

Modular software design ensures minimum connectivity between the modules,
so that each relatively small and functionally separate task is located in a separate
software module. The same modularity principle usually holds true for each of the
incremental releases. However, since the functionality is implemented and intro-
duced gradually, the new modules and releases will interact with the existing ones,
so we need to test their interfaces. Therefore, if the product requires a revolutionary
functional change, which significantly influences its previous releases, it usually
causes a number of problems. Thus, we can get a local crisis in development instead
of a stable incremental release plan.

The higher-level source of such a local crisis can be poor design and inadequate
planning. As for the lower-level sources, we can identify at least two of them at this
point. First, there is a significant problem associated with inheritance. It may
happen that a number of modules in the operating release is to change in a sig-
nificant way. Therewith, we have to redesign and rebuild a significant percentage of
the previous release structure, and to rewrite all the documentation required. Of
course, any new release brings certain changes to the previously built modular
structure. However, with one revolutionary functional update, we have to make
such a large number of changes in design and implementation, that it nearly nul-
lifies all the efforts to produce the previous releases. In fact, this local development
crisis is comparable to complete redevelopment of the product from scratch in a
build-and-fix manner. In this case, the functionality developed for the previous
releases would be largely rebuilt, and the time and labor to create this functionality
would be lost. In this respect, revolutionary development typically results in a local
crisis of an incremental lifecycle.

An incrementally developed product should have a scalable architecture in terms
of release updates. For example, a web service-based component architecture
usually scales up well in terms of adding new modules or expanding existing ones.
However, there are software architectures, such as a file server, that do not support
similar scalability equally well. Therefore, we should consider the features of a
particular model at the early stages of project planning and high-level architectural
design in order to adapt to the technical constraints and to avoid a local crisis in
product development.

For the developers, the incremental model provides evolutionary interaction with
the customer and greatly simplifies their relations, because the core modules that
implement the business logic of the application often vary slightly. The new
releases only add functionality. Therewith, maintenance of an incremental product
is usually sufficiently smooth and relatively inexpensive.

However, a possible disadvantage of the incremental model is that it is not
suitable for quite a number of software products, which initially require a
full-featured implementation. Let us assume that there is a number of customers,
who need a full-featured online store, which includes a 3D catalog, credit card
payment support, and a variety of electronic payment gateways. Certain clients
would also ask to monitor delivery, as it is implemented at their competitor portals,
and it is convenient and useful. If the product initially requires full functionality, we
should probably consider some other model, such as waterfall, which allows a

34 2 Software Product Lifecycles: What Can Be Optimized and How?

single pass implementation. Of course, in case of waterfall certain project risks are
higher; however, they will be discussed further in relation with the spiral model,
which is designed to deal with them. Therefore, there is a number of constraints for
the incremental model, and it is clear that this model it is not suitable for every
product.

Another drawback of the incremental model is that the resulting software pro-
duct should provide a stable upgrade path for its development. That is, the efforts
spent for functional updates with each product release should clearly exceed the
redundant efforts for the high-level release reconfiguration. Such reconfiguration
efforts should not have a significant negative impact on the performance of the next
product release. The incremental model does not support a revolutionary, unstable
path of the software upgrade; it also has no mechanisms for risk assessment.

Depending on customer or market constraints, a number of software products
requires revolutionary changes in the product concept itself, such as fundamental
principles that underlay the functional requirements, project plan and product
release policy. If the customer requirement changes are frequent, spontaneous and
dramatic, and there is no way to adjust these requirements so that they become
evolutionary, it may turn out that every other release the developer has to create a
new product almost from scratch rather than to reuse a significant portion of the
previous one. Thus, the incremental approach degrades to build-and-fix. Moreover,
in contrast to build-and-fix, which is an incomplete lifecycle model, the developer
has to re-implement the entire lifecycle for each release. For each release, the
developer has to specify complete requirements, to do the software design, i.e. to
produce a large number of diagrams, including data flow diagrams, use cases, class
diagrams etc. The developer also has to develop a new test plan, including product
testing scenarios and their sequence, acceptance test cases and a number of other
artifacts. Moreover, the end user and administrator documentation requires signif-
icant changes. The new product probably has a different setup procedure, user
interfaces, usage scenarios, error codes and so on. The developer has either to
rebuild all these documentation artifacts or to create new ones. Thus, the developer
has to rework the product using a more bulky and complex approach than a trivial
build-and-fix, which includes a full-scale documentation and artifact reviews for
each software lifecycle phase. Therefore, the software production is likely to result
in a local crisis, since it involves a huge amount of bulky overheads. Thus, the
incremental model is unacceptable for a product that quickly goes beyond the
original concept, no matter how large the product is.

In case of a predictable upgrade path of the product, the previous release is
naturally included into the next one. At the same time, a special document, release
notes, is issued, which includes a list of additions to the previous release. Release
notes document also contains important information about the new release of the
software product. It addresses customer’s maintenance service, who detect, localize
and fix errors; it also guides customer’s end users on their moving from the pre-
vious release to the next one.

Figure 6 shows a view of the incremental lifecycle model. It is clear that each
subsequent release includes the functionality of all the previous ones. Thus,

3 Simple Iterative Lifecycles: Incremental and Prototyping

Requirements
Version 1

Project

—>

Code & Test

—

Installation
Acceptance
Maintenance

Requirements
Version 2

Project

—>

Code & Test

—

Installation
Acceptance
Maintenance

A 4

Requirements
Version n

Project

—>

Code & Test

Fig. 7 Evolutionary model

functionality increases smoothly, and so that each of the following releases absorbs
previous ones and adds certain new features. For incremental product development,
production of the new release includes verification of all the lifecycle stages, such
as requirements analysis, requirements specification, design etc. Thus, the main
stages of the software lifecycle are the same for each release. The incremental
model fits evolutionary introduction of product functionality.

Figure 7 shows a specific form of incremental development model, which is
called evolutionary. It provides a gradual transition from the previous release to the
next one; each release elaborates functionality rather than builds it up. The rest

lifecycle processes are similar to the incremental model.

4 Complex Iterative Lifecycles: Spiral,
Synch-and-Stabilize and Object-Oriented

Another iterative approach to software systems lifecycle is the so-called spiral
model introduced by Boehm [1]. According to the approach, each iteration consists

of four phases (Fig. 8):

(1) determine the goals for product and business objectives, understand the con-
straints, suggest possible alternatives;

Installation
Acceptance
Maintenance

(2) evaluate the alternatives by risk analysis and prototyping;

36 2 Software Product Lifecycles: What Can Be Optimized and How?

| Cumulative

cost

Progress

through

steps .
Determine . Evaluate alternatives,
objectives, T identify, mitigate risks
alternatives,
constraints

Risk
analysis

Commitment
partition

Review

Requirements plan| T T T ——- - Simulations, models, benchmarks
_ife-cycle plan Concept of
operation

Detailed
design

Requirements
ment plan validation

ntegration : g
and tast Design validation

1
Han and verification Inte-

Plan next phase : Accep-

| tance
mplementation | test
I Develop, verify
— next-level product

Fig. 8 Spiral model (© 1988 IEEE)

(3) develop a product by detailed design, coding, unit testing and integration;
(4) plan for the next iteration, including product development, implementation and
delivery to customer.

The above four stages: determine—evaluate—develop—plan, are often repre-
sented graphically as a spiral.

This model is suitable for projects with significant risks. Some other lifecycle
models also address risk assessment. In crisis, the projects tend to become more
risky. Additional crisis-related risks may include delays of funding, communication
challenges in the project team, especially in case it is distributed. In fact, in the
spiral model, risk analysis happens each iteration.

Each phase of the spiral model usually repeats; there is often three to four
iterations. However, the exact number strongly depends on the “convergence” of the
project. In certain cases, the number of iterations is difficult to predict; it may also
happen that after the risk assessment it is not feasible to continue the project. This
may result in additional expenses; however, in crisis conditions it is required to
recognize that the project team is not able to ship the fully functional product of the

4 Complex Iterative Lifecycles ... 37

required quality level within the deadlines. A possible solution of this problem is the
contradiction management matrix-based approach; we discuss it in the next chapter.

Each cycle includes four basic phases: determine, evaluate, develop and plan.

The first phase includes an outline of the objectives for the current iteration,
possible alternatives to achieve these objectives, and the constraints for each
alternative. Further, evaluation of the alternatives follows; risk assessment is among
the key activities. Risk assessment is a complex process; it requires specific
knowledge. In crisis, risk experts often have to make decisions in case of uncer-
tainty, insufficient resources and incomplete information. Prototyping helps to
reduce some of the risks and to understand the others better; this chapter discusses
prototyping in more detail below. After risks identification, risk mitigation plan
follows, which specifies the ways to reduce risk consequences or to continue the
project with the risks that exist. Then, the implementation phase begins, which
starts from coding and testing of the functions required in the iteration, and which
ends with the integration and testing of the partial product developed for the current
loop of the spiral. Afterwards, based on development postmortem and the existing
resources, the next loop of the spiral is planned.

Risk analysis often includes a number of significant uncertainties, which are
unlikely disclosed by the customer. Risk analysis usually requires a large amount of
expensive labor, so spiral model is generally feasible for large-scale projects. The
spiral model is suitable for the so-called in-house projects, where the developer and
the customer collaborate within same enterprise. Typically, in large corporations,
there is a dedicated IT company, such as Gazprom Inform as a part of Russian
Gazprom group of companies. The spiral model is a suitable solution for such
enterprises, since the developer and the customer belong to the same large-scale
corporation. In case of in-house development, there is usually an adequate transfer
of the sensitive information required to assess the risks, and risk assessment results
are reliable. Moreover, the in-house development with spiral model is
cost-effective, and so this is a recommended option for crisis software development.

The spiral model is somewhat similar to iterative models, such as incremental
and evolutionary. However, spiral model is fundamentally different from a number
of other models because of explicit risk assessment. Certain lifecycle models can be
combined with the others, especially with the rapid prototyping. Spiral model also
includes prototyping, which usually assists in risk analysis and evaluation. Rapid
prototyping helps a developer to discuss possible product alternatives with the
customer. As compared to a full-scale software product, a prototype is relatively
cheap and easy to produce. A prototype behavior is usually functionally similar to
the product; however, it is limited in terms of quality attributes, such as perfor-
mance, reliability, security and so on, and in terms of documentation. In crisis, we
recommend to combine every lifecycle stage with rapid prototyping, including the
early stages, such as analysis and design. Prototyping is a quick and a low-cost way
to mitigate a number of project risks. Rapid prototyping simplifies decision-making
prior to the release production, so the product transfer occurs timely even in crisis
conditions, though the functionality maybe somewhat limited.

38 2 Software Product Lifecycles: What Can Be Optimized and How?

The spiral model requires risk analysis; it identifies and classifies the project
risks. Developers need to mitigate the most serious project risks, i.e. they have to
find a way to reduce their impact on project schedule, budget and product func-
tionality. In case it is impossible to mitigate critical risks, the project manager may
decide to terminate the project.

What are the advantages of the spiral model? First, it ensures a smooth transition
of the product to the customer. Therewith, it is possible to reuse the product, even
under initially high project risks, or in a crisis.

Based on risk analysis, quality assurance metrics are set. Release-based product
transfer and risk assessment assist for maintainability. Despite the high costs of risk
assessment, the spiral model provides a relatively cost-effective maintenance, which
is the most expensive part of the lifecycle. Thus, in terms of full lifecycle the spiral
model is often affordable.

The drawbacks of the spiral model originate from high costs of risk assessment.
It is applicable for in-house projects.

The spiral model is theoretically applicable to relatively small projects; however,
given the substantial costs of the risk assessment, it is more suitable for large-scale
ones.

The spiral model requires high level of expertise in risk assessment. In case the
development team has no internal risk experts, they have to hire third-party
professionals.

The next model we are going to discuss is the synchronize and stabilize model,
which is somewhat similar to the Microsoft Solution Framework
(MSF) methodology. The next chapter gives a more detailed description of MSF.
Due to significant complexity and specific knowledge, skills and CASE tools
mastery required, the model is not widespread outside of Microsoft.

This is an iterative model, and the functionality is usually delivered in releases,
from essentials to desired requirements, which is similar to incremental model.
Each iteration includes planning, design, development, synchronization, integration
and stabilization.

According to the model name, the key processes in this software lifecycle are
synchronization and stabilization. The synchronization process, however, refers not
only to integration of the deliverables produced by the project team, but also to
product conformance checking against the requirements specification. The purpose
of this phase is to detect and to record as many defects as possible, and to do this as
early as possible. However, the model does not suggest immediate correction of the
defects recorded in the synchronization phase. Instead, the defects recorded are
prioritized by severity and fixing cost, and the list of the defects to fix is produced.

Later on, in the stabilization phase, all the defects detected previously and
included into the list are fixed, and the product release for current iteration is
produced. The main objective of the stabilization phase is to produce a release with
a stable behavior. Therefore, each release is intensively tested in order to meet the
threshold values for key quality attributes, such as performance, availability,
security and so on. The model uses the idea of sequential functionality build-up;

4 Complex Iterative Lifecycles ... 39

each release results in an operational software product. The final product usually
requires three to four incremental software releases.

Synchronize and stabilize processes are a part of each release. Synchronization
process is followed by integration: the individual product modules developed by
programmers are assembled in order to make a product release. The integration
process is accompanied by frequent and extensive testing, which potentially results
in a fast delivery of the product release. The stabilization process ends when all
critical errors found in test are fixed.

Thus, synchronize and stabilize are the two interrelated processes, which result
in software product release if performed consistently. The final step before release
transfer is its “freezing”, i.e. saving its configuration.

Let us consider the advantages of the synchronize and stabilize model. First, they
come from early and frequent testing. Why is this useful? We mentioned earlier that
the defects in the product must be detected as early as possible. The later a defect is
detected, the more effort is required to fix it. It may also happen that a defect found
in one of the modules affects the operation of the adjacent modules, larger product
components, or even the entire product. Furthermore, the defect fixes often crosscut
through a number of product artifacts, since they affect not only the code but also
the documentation. The documentation is often a crosscutting concern, since it
usually influences not only the defective module but also its interaction with the
other modules. Of course, it is possible to localize and fix even a logical defect of a
top-level module, which is responsible for the overall business logic of the software
product. However, such a fix will often influence a large number of the dependent
modules and the related documentation. Thus, frequent and early testing is a pos-
itive solution and a potential advantage of the synchronize and stabilize model.

However, this advantage often has a side effect: intensive testing may lead to
quite a large labor overhead, since it requires specific software, methods and skills.
In this case, much time is wasted for synchronize and stabilize processes, which, in
fact, do not add any new functionality. Although, in case of proper use, frequent
and early testing leads to an exponential increase in product quality, since the
number of errors found in testing decreases exponentially; it also provides a better
maintainability and customer satisfaction.

Another advantage of the synchronize and stabilize is continuous product
interoperability. This is usually guaranteed by partial testing of the product modules
at their early development stage. Even before the first stabilization round is over,
there exists an operational version of a partial product, which has been thoroughly
tested. That is, before the release integration, each combination of potentially
interactive modules has already been tested. Continuous product interoperability is
vital in case of mission-critical and large-scale systems, which usually combine a
huge number of modules that interact in a complex way. For example, the Oracle
e-Business Suite, which is an enterprise resource planning system, contains about
two dozens of subsystems for planning and management of different kinds of
resources: HR, financials, documents and so on. Thus, it is quite challenging to
ensure quality and efficiency of such a system without continuous product
interoperability.

40 2 Software Product Lifecycles: What Can Be Optimized and How?

One more important advantage of this model is that an operational product exists
immediately after the initial release. Due to frequent and early testing and contin-
uous interoperability, the initial release is not merely a prototype, but rather an
operational quality product with all the documentation required. This results in
faster ROI, smoother transfer and better maintainability, which are mission-critical
in crisis.

The other possible advantage of the model is that the product becomes poten-
tially better adjustable to the crisis requirement changes. For example, we can adjust
the less critical functions and even certain aspects of the low-level architecture by
adapting the structure and functions of the modules for the future releases. This may
help in future release adjustment, because we can adapt the later releases consid-
ering the product shortcomings in terms of architectural design and functionality of
the earlier releases.

Additionally, the developer can identify requirement inconsistencies and try to
resolve them with the customer in progress of early releases, long before the final
release is ready. This approach can significantly reduce the redesign costs for the
later releases and can be a positive solution for crisis. Customer’s engagement into
pre-release testing phase may become an additional source of crisis agility.

The synchronize and stabilize model is flexible and therefore potentially
prospective. However, it has a number of complex processes, with the key indi-
cators somewhat difficult to measure and control. Its major drawback is a hardly
predictable amount of time for the synchronization and stabilization processes.
These processes are designed to add product quality; however, they do not add any
new functionality, and in case of immature team, this may result in critical overall
performance dropdown.

Under the synchronize and stabilize model, the cycles of integration and testing
must take place frequently; in some cases, they occur on a weekly basis. This
suggests that every iteration should not only add new functionality but also syn-
chronize and stabilize the intermediate releases, also known as builds. So, frequent
build production requires not only new functionality development to match the
product specifications but also comprehensive testing of the documentation and
code changes with specific methods and CASE tools, in order to detect and fix
defects. Therefore, the short intervals between the builds require extremely high
productivity and operational knowledge of the methodology in order to be able to
add new functions and to test the quality. Otherwise, the developers spend too much
time in test, and they have not enough time to add the required functionality to the
build. The benefits of this model are often hard to implement, especially in crisis, as
they require specialized training and costly staff.

One more lifecycle model to consider, the object-oriented model, is the most
dynamic and concurrent. Figure 9 shows the fountain model, a subtype of
object-oriented model, which we are going to discuss further.

What are the features of the object-oriented model? The above-mentioned
models contain isolated, clearly separated lifecycle stages. These are: requirements
analysis, requirements specification, preliminary and detailed design, implementa-
tion and unit testing, integration, acceptance testing and maintenance, and

4 Complex Iterative Lifecycles ... 41

Fig. 9 Fountain
(object-oriented) model ’ Further df;ve]opment

’ Maintenance ‘

[}

Integration Future
development

Release

Object-oriented design

f

|Requirements specificationl

’ OO-analysis F;

retirement. Waterfall model gives most clear example of this lifecycle stages sep-
aration: every next lifecycle stage may start only after the document has been
signed, which certifies that the previous lifecycle stage is complete. Conversely, the
object-oriented model features intensive interaction between the lifecycle phases.
Moreover, there is a significant phase overlap between requirements analysis and
requirements specification, and sometimes also between analysis and design, which
generally refer to separate phases of the other lifecycle models.

Another important feature of the object-oriented model is its iterative nature.
Software product is produced in loops, which often allow returns to the previous
lifecycle phases. For example, the phase of object-oriented design often includes a
backtrack to the phase of object-oriented analysis. More specifically, analysis of
scenarios of product behavior is based on use case diagrams, which are deliverables
for product design stage.

Figure 9 shows that the design, analysis and specification phases, as well as
design and implementation, are closely related; moreover, returns to the previous
phases are possible.

What are the benefits of the object-oriented model? It fits well into the
state-of-the-art object-oriented approach to software development, which has been
adopted by a large number of industrial programing languages, such as C++, Java
and C#. Therefore, object-oriented model is widely used in the production of
mission-critical and large-scale systems. This is so because the object-oriented
approach allows scalable design of software products due to inheritance and
abstraction principles. Based on primitive classes, a small size product can scale up
to a large and a complex one.

However, there is a number of features of the object-oriented approach, resulting
from principles of inheritance and polymorphism, which may, in case of undisci-
plined development, lead to local crises in the design and implementation,
specifically for large-scale and mission-critical software systems. In particular,
concerning the use of inheritance, a bulky and complex class hierarchy may lead to
such a situation that, for instance, due to an inaccurate initial problem statement, the
system redesign will dramatically modify the entire class hierarchy. This is known
as the “fragile” base class problem; it requires complete hierarchy redesign,
including code updates for the topmost hierarchy classes that contain the high-level

42 2 Software Product Lifecycles: What Can Be Optimized and How?

logic and the problem domain-specific features. For complex problem domains, it
may occur that the initial design does not scale up, and that a serious redesign of the
entire “fragile” hierarchy is required. This redesign usually results in significant
labor costs and product delivery delays. In this sense, such a potential benefit of the
object-oriented model as inheritance may result is a local software development
crisis.

Another potential source of a local crisis is the dynamic method call based on the
fundamental object-oriented concept of polymorphism. The object-oriented poly-
morphic functions are potentially powerful and resource efficient, as they can
uniformly handle heterogeneous parameters. However, these parameters are
instantiated only at runtime, which means that it is impossible to test the product for
all possible scenarios of the polymorphic function calls. This may result in
unpredictable and severe faults that usually lead to critical product malfunctions,
such as system crash, data loss, unexpected behavior with system hanging or
freezing, and so on.

Thus, the object-oriented model, based on a number of promising concepts, such
as inheritance and polymorphism, can degenerate into build-and-fix in large-scale
and mission-critical projects, especially under lack of development discipline and
organizational maturity. Conversely, well-disciplined and mature development and
persistent implementation of standards for coding, testing and documenting usually
help to avoid the local crises of the object-oriented model. Therewith, it becomes
clear that the root cause of the crisis in software product development is largely
dependent upon human-related factors.

5 Managing Lifecycles: Flexible Methodologies

In addition to lifecycle models, there is also a set of lifecycle approaches based on
the flexible methodologies such as Agile (Fig. 10), Scrum (Fig. 11), and eXtreme
Programming or XP (Fig. 12). Chapter 3 discusses these in more detail. Note that
the processes of the software development methodologies are parallel to the phases
of the lifecycle models. The methodologies, unlike the lifecycle models, are usually
applicable to the projects, which feature greater uncertainty, more risk, i.e. to crisis
conditions of software product development. The other aspect of the methodologies
is managerial; in addition to practices of software product development they also
include a number of project management techniques.

We have discussed a number of lifecycle models—build-and-fix, waterfall,
spiral, rapid prototyping, incremental, synchronize and stabilize, and
object-oriented—in terms of their applicability for crisis software development. The
build-and-fix model is usually suitable for crisis in case of product downsizing, as it
works well for small projects with a predictable development lifecycle. The
waterfall model is better applicable to large-scale and mission-critical systems.
However, waterfall projects require a disciplined management as they are

http://dx.doi.org/10.1007/978-3-319-42966-3_3

5 Managing Lifecycles: Flexible Methodologies 43

Working
on iteration
Work on Postmortem
Work current — -
on a product iteration meeting

Iteration

Planned /

meeting Standards, approaches, pro-
cesses, directions, CASE tools

Fig. 10 Agile lifecycle

Pre-play Post-play

Planning and
architecture

Closing
(“wrap-up™)

Fig. 11 Scrum lifecycle

est-cases /New stories

User stories speed Defects

\ Requirements /\
B version
System

Releafe Release Tteration Acceptance Small
planning ~ plan Q tests ystomer releases
Architec accepts

ture spike

metaphor

Next iteration

Preliminary scores Adjusted scores

Fig. 12 Extreme programming lifecycle

document-driven. In case of crisis, due to one-pass development of the software it is
quite likely that the product does not meet the requirements of the customer.
Rapid prototyping, if used “as is”, may tempt developers to reuse a quickly
developed, untested, unreliable and undocumented prototype code as a product; this
imposes extra risk constraints for any crisis implementation. However, prototyping
potentially results in fast and economically efficient consensus on the customer

44 2 Software Product Lifecycles: What Can Be Optimized and How?

requirements. Thus, we recommend using prototypes in crisis, in combination with
the other models, such as spiral or waterfall, to promote maintainability and early
return on investment.

The same considerations are applicable to the incremental model, as the product
can gradually update to meet the requirements of the customer. However, due to
evolutionary process of incremental product development, which requires an open
architecture, the model is hard to use with an innovative product as it can easily
degenerate into build-and-fix. Synchronize and stabilize model is risk-based and
potentially crisis-adaptive; however, it is very sensitive to specific and complex
testing technologies and tools. In case of crisis conditions, the spiral model is better
suitable for in-house projects, as it requires specific knowledge on risk assessment.
The object-oriented model provides iteration and parallelism; it also provides a
better resource flexibility and thus is essential for crisis conditions. However, under
a poor discipline the object-oriented projects are likely to degenerate into an
expensive and unpredictable build-and-fix lifecycle.

6 Optimizing the Lifecycle: Enhanced Spiral Methodology

Every lifecycle stage of the software system development can be optimized,
including requirement analysis, product specification, design, implementation,
maintenance and retirement. To optimize the lifecycle, i.e. to adapt it for crisis
conditions, a complex methodology is required. This section focus is the basic
outline of the optimization methodology for the product lifecycle, which includes a
set of models, methods, CASE tools and practices. The methodology is
process-based, and it has six stages, each of which produces certain deliverables in
terms of software product components and their connectors. At the most abstract
level, these are key concepts of the product and certain relationships between these
concepts. Next, high-level architectural modules and interfaces follow; these are
elaborated later on as classes and methods to access these classes. The lowest
abstraction level is for data objects and their relationships.

The optimization methodology for the software development lifecycle is based
on close integration of models, supporting methods and computer-aided tools. The
models for problem domain and computing environment are built on rigorous
formal theories [2-6]. The models for other lifecycle stages are more heuristic and
pragmatic. Therewith, the supporting development toolkit contains both traditional
CASE tools and the so-called “lower” level tools, which integrate the formal model
and the software product components.

The process diagram of the methodology for optimized software product
development is to a certain extent similar to the spiral lifecycle model (Fig. 13). The
methodology provides iterative bidirectional component-based development of
open, expandable heterogeneous software products in global environment; it sup-
ports data consistency and integrity control. Heterogeneity involves architectural
and structural aspects. The architectural heterogeneity means that the methodology

6 Optimizing the Lifecycle: Enhanced Spiral Methodology 45

Co
APPLICATION REENGINEERING Vo
€r,,

Y
‘(;;PLICATIDN DEVELOPMENT Y 4(%)}
w

LANGUAGE
DESCRIPTION

N9OIS3a

IYNOILYLNEWOD
LIMI001-H0S

T300W TYNOLLYLNGWOD
030N3LX3

Fig. 13 Process diagram of the software development lifecycle

allows for integration of the modules or software subsystems, which are based on
different architectures, such as mainframes, file servers, client servers and clouds.
The structural heterogeneity means that the methodology allows for integration of
the modules or software subsystems, which manage different kinds of data objects,
such as relational databases, audio and video data and scanned documents.

During the software development lifecycle, the components of the heteroge-
neous software systems are transformed from problem domain concepts to formal
model data entities. Further, by means of the software toolkit, which includes
ConceptModeller [7] and content management system [8—10], the product is
transformed into a complex semantic network and object-oriented warehouses
managed by an abstract machine and represented by a virtual machine at the CASE
level. Finally, we arrive to a well-formed layout of software product component
interfaces managed by an internet portal superstructure. The development levels are
elaborated in terms of entities, relationships, languages for content definition and
management, and software tools.

46 2 Software Product Lifecycles: What Can Be Optimized and How?

A family of the formal object models for data representation and management
supports the methodology for software development lifecycle. These models
incorporate fundamental methods of finite sequences, variable domains, semantic
networks and other theories [10-14].

The methodology for software development lifecycle provides the following
features:

(i) Rigorous object models of heterogeneous software products, their elements
and families, and their environments;

(i) Integration of formal models, industry-standard technologies and CASE tools
for software development by means of the innovative “middleware” tools.

Both advantages were implemented for representation and management of the
integrated data and metadata.

Currently, the focus of mathematical and conceptual modeling, analysis and
design of the software products shifts the lifecycle paradigm of the software
development from object-oriented to pure object approach, i.e. from IT to com-
puting. Computing is a relatively new research area; it models complex, hetero-
geneous, changeable and interactive problem domains in terms of objects and their
environment [10].

7 Organizing the Lifecycle: Sequential Elaboration

The major purpose of the methodology is multi-factor optimization of the model for
software development lifecycle, which, in crisis, is mission-critical for both product
quality and project success. The key optimization factors for the software devel-
opment lifecycle are: time, budget, requirements conformance and quality attri-
butes, such as product performance, maintainability, security and the like.

Therewith, specific features of our understanding of the term “optimization” are
the following ones. First, we do not mean optimization in common mathematically
rigorous terms; instead, we select the best (or sometimes even a good enough)
option out of a finite number of discrete values rather than a maximum of a
continuous function. Second, the priority of the factors is dependent on the software
project scale and scope. Third, the optimization factors are typically measurable
and have certain metrics, such as number of code lines and defect removal rate. For
each possible software solution, we can calculate the scenario-dependent opti-
mization parameter values based on the above metrics and certain priorities. The
resulting indicative values make the basis for better justified project management
decisions, which include project plan estimates.

Naturally, in case of crisis, especially for mission-critical, large-scale, complex
and heterogeneous products, it seems reasonable to use the above lifecycle
methodology for data representation and management at the analysis and concep-
tual design stages.

7 Organizing the Lifecycle: Sequential Elaboration 47

We developed visual CASE tools to support the formal models for data repre-
sentation and management and the processes of the product lifecycle phases, such
as analysis, design, implementation, integration and maintenance. Specific work-
flow management tools based on document management system support the life-
cycle processes for the product development. For each lifecycle phase of the
product development, depending on the lifecycle model type and on the project
scale and scope, these workflow management tools assist in generation and pro-
cessing of certain document types, such as project plan, requirements checklist and
unit test report.

Since the book is aimed at crisis management of the lifecycle processes for
software product development, let us limit our scope to the overview of the
methodology, i.e. models, metrics, methods, and tools, and focus on certain
examples; the methodology itself is covered in more details in [9, 10, 15].

During the requirement analysis phase, optimization often results in generating
requirements checklist, which is a simplified and less formal document, than the
detailed product specification. However, irrespective of the type of the specification
document, it should contain the lifecycle model chosen for the product develop-
ment. The lifecycle model is a global parameter, which critically influences the
product development plan.

The product development process is a sequential elaboration of the functional
specification for the software product. In the above case, the product conceptual
model is instantiated to obtain a more detailed product specification, which is
elaborated later in the lifecycle. Further, we implement the architecture of the
databases and other subsystems, which make the software product. In crisis, the
software development lifecycle for mission-critical, large-scale, heterogeneous
products is usually iterative, evolutionary and incremental, and every iteration
provides further elaboration of the product functions (Fig. 13). In essence, the
process outline is an improved spiral lifecycle model of software product devel-
opment. However, in a number of cases, this process outline is elaborated
depending on the product scale and scope or on the “project triangle” crisis opti-
mization in terms of time, budget and functions. For instance, such a crisis opti-
mization may result in the lifecycle reduced to a waterfall, where the software
development is limited to a single pass through all of the lifecycle phases, or even to
a build-and-fix model with incomplete lifecycle and simplified product
documentation.

The further product lifecycle is optimized and elaborated in terms of system
architecture, key technologies and development environment, which includes
CASE tools and programming languages. The lifecycle optimization and elabora-
tion process also addresses the existing software environment. The product
developed should have certain quality attributes; for instance, it should be pre-
dictable, reliable, maintainable and, ideally, reusable.

In crisis, it is critically important to keep in mind that the lifecycle phase impact
into the project economics is uneven. For example, the maintenance phase is the most
expensive and challenging; it requires over 60 % of project time and budget [16].

48 2 Software Product Lifecycles: What Can Be Optimized and How?

Consequently, maintenance phase planning should be very accurate. However,
coding contribution into the product lifecycle expenses is minimal. Consequently,
coding planning should not usually take a long time. A well-justified combination of
the software development methods and tools is essential for low-cost crisis
development.

In certain cases, such as test termination after reaching a satisfactory error
threshold, it is the project manager who makes the decision; however, the other
cases, such as software retirement, usually require multi-side project evaluation.

Object-based approaches to software development often help to create interac-
tive, distributed, open and expandable software products; they range from classical
object-oriented to active objects and “pure” objects. As we know, according to the
object-based approaches, the lifecycle phases of product development are flexible
and have dynamically adaptive borderlines. However, even in crisis conditions, the
object-based approaches require a disciplined management based on quantitative
software engineering metrics and processes.

CASE tools help to validate the software in order to meet product specifications;
they are often based on rigorous mathematical foundations, such as reliability
statistical analysis and formal logics. Such CASE tools require a moderate level of
mathematical training as they are typically designed for analysts and developers of a
medium qualification level.

In crisis, essential preconditions of a product success include frequent functional
prioritizing and sequential incremental elaboration.

Project specifications should be rigorous, logically correct and consistent,
non-contradictory, complete in critical functional coverage, and transparently
traceable.

For each lifecycle phase, software engineering requires rigorous and disciplined
processes for the product development; clients and developers should strictly follow
them. In crisis, developers should also follow development and documentation
standards; otherwise, product development is at risk of becoming an unmanageable
informal anarchy with an unpredictable result. That is why we suggest a method-
ology as a set of interrelated processes, methods and tools, which guides devel-
opment of a requirement-matching, maintainable and high quality software even
under such crisis challenges as changeable requirements, “on the fly” budget
adjustments and other similar uncertainties.

The lifecycle optimization methodology is based on a thoroughly selected and
tested set of models, software engineering methods and tools; it has been practically
approved for developing large-scale, complex, heterogeneous and distributed
software products.

The implementations of the methodology embraced a number of enterprises,
such as ITERA International Group of Companies, including nearly 150 companies
of over 20 countries and over 10,000 employees, the Institute of Control Problems
of Russian Academy of Science, Russian Ministry for Industry and Energy, and a
few others [17, 18].

8 Conclusion 49

8 Conclusion

In this chapter, we discussed certain lifecycle models of software development.
These were build-and-fix, waterfall, incremental, object-oriented, spiral and a few
others.

We also presented a more detailed description of the lifecycle models application
to software development. We compared benefits and shortcomings of the models
discussed. Some of the models that we discussed were one-pass and straightfor-
ward, others required a number of iterations. One key conclusion that we made was
that there was no “silver bullet”, i.e. a universal lifecycle model, equally applicable
to any software product. That is why the lifecycle model choice was dependent
upon product size and scope, and each project required a unique combination of
features. In crisis, we recommended to combine prototyping with any of the other
models discussed in order to achieve a common understanding of the key product
features and to reduce project risks. The lifecycle model choice determined project
economics, time to market, product quality and overall project success.

Another major takeaway we made is that the product success essentially
depended on a number of human-related factors, which included vision of the
critical product functions, transparent communication, feedback and a few others.
We cover these human-related factors in more detail in Chap. 5.

We also analyzed applicability of the lifecycle models to large-scale,
mission-critical software systems, especially in a crisis.

Finally, we introduced a methodology, which included a spiral-like lifecycle and
a set of formal models and visual CASE tools for software product development.
The methodology was designed to optimize the software product lifecycle. This is
mission-critical in crisis; we cover the implementations in more details in Chap. 4.

The methodology was applied to large-scale, complex software products and to
heterogeneous environments. In the next chapter, we present more details on the
product development methodologies in terms of processes, roles and artifacts.

References

1. Boehm, B.: A Spiral model of software development and enhancement. IEEE Comput. 21(5),
61-72 (1988)

2. Amemiya, M., Arikawa, S., Ishizuka, M., Ueno, H., Okuno, H., Kithashi, T., Koyama, T.,
Saeki, Y., Shimura, M., Shirai, Y., Tanaka, H., Tanaka, Y., Tamura, K., Tsujii, Y., Tsuji, S.:
Knowledge Representation and its Use. Ohm Press (1987)

3. Brookshear, J.G. Computer science: An overview (10th ed.), Addison-Wesley, 2003

4. Rosen, K.: Discrete Mathematics and Its Application, 7th edn. McGraw-Hill (2011)

5. MackKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge
University Press (2003)

6. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning (2013)

http://dx.doi.org/10.1007/978-3-319-42966-3_5
http://dx.doi.org/10.1007/978-3-319-42966-3_4

50

11.

12.

13.

14.

15.

16.

17.

18.

2 Software Product Lifecycles: What Can Be Optimized and How?

. Zykov, S.V.: ConceptModeller: a frame-based toolkit for modeling complex software

applications. In: Baralt, J., Callaos, N., Chu, H.-W., Savoie, M.J., Zinn, C.D. (eds.)
Proceedings of the International Multi-Conference on Complexity, Informatics and
Cybernetics (IMCIC 2010), vol. I, pp. 468-473. Orlando, FL, USA. 6-9 Apr 2010

. Nilsson, N.: Principles of Artificial Intelligence. Morgan Kaufmann, San Francisco (1980)
. Sommerville, L.: Software Engineering, 9th edn. Addison-Wesley, 790 p. (2011)
. Wolfengagen, V.E.: Applicative Computing. Its Quarks, Atoms and Molecules. Jurinfo-R,

Moscow, 62 p. (2010)

Backus, J.: Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs. Commun. ACM 2(8), 613-6412 (1978)

Minsky, M.: A framework for representing knowledge. The psychology of computer vision.
In: Winston P.H. (ed.) McGraw-Hill (1975)

Barendregt, H.P.: The lambda calculus (rev. ed.), Studies in Logic, 103, North Holland,
Amsterdam (1984)

Cheney E.W., Kincaid D.R.: Numerical Mathematics and Computing, 6th edn. Brooks/Cole
(2007)

Ziegler, C.: Programming System Methodologies. Prentice Hall Inc, Englewood Cliffs, N.
J. (1983)

Zykov, S.V.: Enterprise content management: bridging the academia and industry gap. In:
Proceedings of the International Conference on Information Society (i-Society 2007), vol. 1,
pp. 145-152. Merrillville, Indiana, USA. 7-11 Oct 2007

Zykov, S.V.: The integrated methodology for enterprise content management. In: Proceedings
of the International of the 13th International World Multi-Conference on Systemics,
Cybernetics and Informatics (WMSCI 2009), pp. 259-264. Orlando, FL, USA. 10-13 July
2009

Zykov, S.V.: An integral approach to enterprise content management. In: Callaos, N., Lesso,
W., Zinn, C.D., Zmazek, B. (eds.) Proceedings of the International 11th International World
Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2007), vol. 1, pp. 212—
216. Orlando, FL, USA. 8-11 July 2007

2 Springer
http://www.springer.com/978-3-319-42965-6

Crisis Management for Software Development and
Knowledge Transfer

Zykow, SV,

2016, XX, 133 p. 37 illus., 13 illus. in color., Hardcover
ISBMN: 978-3-319-420965-6

	2 Software Product Lifecycles: What Can Be Optimized and How?
	Abstract
	1 Introduction
	2 Simple Lifecycles: Brief and Straightforward
	3 Simple Iterative Lifecycles: Incremental and Prototyping
	4 Complex Iterative Lifecycles: Spiral, Synch-and-Stabilize and Object-Oriented
	5 Managing Lifecycles: Flexible Methodologies
	6 Optimizing the Lifecycle: Enhanced Spiral Methodology
	7 Organizing the Lifecycle: Sequential Elaboration
	8 Conclusion
	References

