
Dynamic Scheduling in Real Time with Budget
Constraints in Hybrid Clouds

Ovidiu-Cristian Marcu(B), Catalin Negru, and Florin Pop

Computer Science and Engineering Department,
University Politehnica of Bucharest, Bucharest, Romania

ovidiu21marcu@gmail.com, {catalin.negru,florin.pop}@cs.pub.ro

Abstract. In this paper we handle the problem of scheduling tasks in
hybrid clouds for small companies which can spend only a fixed budget
in order to handle specific situations where the demand is high and can-
not be predicted. We describe a model with important characteristics for
the resource utilization and we design an algorithm for scheduling tasks
which are sent continuously for execution, optimizing the schedule for
tasks with high priority and short deadline. We propose an architecture
that meets the challenges encountered by small business in their systems
for tasks scheduling. We describe the main components, Configuration
Agent and Task Scheduler, and we analyze different test scenarios, prov-
ing the efficiency of the proposed strategy.

Keywords: Hybrid clouds · Dynamic scheduling · Task priority · Dead-
line · Budget

1 Introduction

Every company wants to offer the best services to its customers. A service is
characterized by the execution of a task in an existing IT environment in which
there is a limited number of virtual machines of different types. For the most part
of the system’s life, the applications are responding well during the execution of
the tasks. However, at some point in time there can be an increase in demand for
these services and in such cases of peak, we need to analyze the internal systems
which can manage only a limited bag of tasks.

There are peak situations when a company system must deal with an
increased and difficult to predict number of tasks with different priority ranks.
The problem becomes complicated when the tasks are continuously sent for exe-
cution and the environment is very dynamic. In such a case we are unable to
predict what will be the complete image of the entire scheduling system. We
acknowledge that in these peak situations the private systems cannot handle all
the tasks in order to successfully meet all the tasks’ deadline.

With the arrival of the services offered on demand by different Cloud
providers we have at our disposal many offers for the adjacent resources we
may need in order to handle the extra workload that reaches the system in an
c© Springer International Publishing Switzerland 2016
J. Altmann et al. (Eds.): GECON 2015, LNCS 9512, pp. 18–31, 2016.
DOI: 10.1007/978-3-319-43177-2 2



Dynamic Scheduling in Real Time with Budget Constraints 19

unplanned way. A company generally opts for a cloud provider based on both
the feedback received from its internal consultants and the price of the virtual
machines offered in the geographical region of the respective business.

In this paper we build an algorithm for dynamic scheduling in real time with
budget constraints in hybrid clouds. The main goal is to minimize the number
of tasks which exceed the deadline in the context of scheduling in hybrid clouds,
having at our disposal a fixed monthly budget and considering that every task
has known required characteristics like CPU, memory etc.

The problem of scheduling tasks under budget constraints in hybrid clouds
needs to be approached since there are many small companies which do not have
the option to invest in costly systems for an optimal scheduling, but they want
to develop and do what is necessary in order to address efficiently the problem of
scheduling. We need to take into consideration both the capacity of the private
resources and the demand for services observed in different time periods in order
to optimally schedule tasks in hybrid clouds.

We consider that the private system is composed of a very limited number of
virtual machines with different types of resources like CPU, memory etc. Every
week their system can handle a limited number of tasks. The problem occurs
when the demand for services grows unexpectedly and the IT department does
not have enough time to handle the situation properly. Thus, there is a high risk
of losing customers due to the fact that the private system is not prepared for
such a situation.

Although the recent research puts forward different approaches to solve the
problem of scheduling tasks in hybrid clouds, we failed to identify one simple
solution apt to provide an advantageous algorithm which can be implemented
in several contexts and easily simulated in order to asses its profit. Thus, it is
of utmost importance to offer an efficient solution for scheduling tasks in hybrid
clouds for small companies having a limited budget.

The paper is structured as follows. Section 2 presentes several strategies for
schesuling in Cloud with some limitations. Then, Sect. 3 descriebes our proposed
model, while Sect. 4 is presenting in details the scheduling algorithm with budget
constraints. Using simulations, Sect. 5 shows that the obtained results sustain the
optimality of proposed schesuling algorithm. The paper ends with conclusions.

2 Various Scheduling Algorithms Strategies

The problem of scheduling a bag of tasks in hybrid clouds has been researched
on many occasions and different strategies have been proposed in order to make
an optimal allocation of new resources when unexpected tasks are arriving to a
system which is normally not prepared for additional compute efforts.

An interesting algorithm (BaTS) for scheduling a large bag of tasks under
budget constraints is proposed in [1]. BatS learns to estimate task completion
time at runtime and offers significant cost savings when compared to Round
Robin scheduler, at the expense of compute time. The tasks are independent of
each other and can be preempted and rescheduled. BaTS uses an initial sampling



20 O.-C. Marcu et al.

phase to build a first VM allocation and after a monitoring interval it refines the
results. All this effort is made in order to give the user guidance for choosing
between Cloud offerings, using an economic model for resource utilization.

In [2] an extension of the BaTS algorithm is researched to give estimates for
budget and makespan for different scenarios and finally the user executes the
schedule selected within the given budget. BaTS work is useful when we do not
know a-priori task execution time. However many systems are in good knowledge
of their tasks average execution time, like in our approach.

Tail-Phase optimization for BaTS is added in [3] with the main idea to use
the idle machines in the tail phase and to decide which tasks are to be replicated
based on task execution time information saved during the execution. BaTS
learns runtime distribution properties of the bag of tasks for the considered cloud
offerings. In this paper research it is proven that BaTS gives the user freedom in
choosing between optimizing costs or improving execution time for a given bag
of tasks, using the total number of tasks and the price of the VMs. It does not
considers the machine utilization. The results are enhanced for users who can
increase their budget and improvement exists in minimizing the makespan.

Preemptive tasks characterized by memory, CPU and data transmission
requirements are considered to be scheduled in hybrid clouds having budget
constraints in [4] and a binary integer program is formulated with the goal to
deploy a fixed number of applications (having a fixed number of tasks and a spe-
cific deadline) while minimizing the total execution cost. The algorithm takes
into consideration different VM instance types with parameters like CPU, mem-
ory and price. The authors acknowledge that in the hybrid setting the solution
given has rather a poor performance and invite the users to develop custom
heuristics.

HICCAM (Hybrid Cloud Construction and Management) project is proposed
in [5] in order to investigate the design of software applications and algorithms
for scheduling in hybrid clouds and it focuses on the optimization problem of
allocating resources in both private and public infrastructures. This model is
considering non preemptive workloads with a hard deadline with characteristics
like CPU, memory and network bandwidth. It takes into consideration data
transmission speeds and data locality during the scheduling process.

CAMTH (Cost optimal algorithm for multi-QoS constraints for Task Schedul-
ing in Hybrid Cloud) model and algorithm are proposed in [6], considering three
steps: private cloud scheduling, provider selection and public cloud scheduling.
It supports security and reliability for QoS (Quality of Service) constraints. This
model considers jobs consisting of many tasks; a task has a few characteristics
like deadline, workload, data size which impact the data transmission and execu-
tion cost, different resource slots with compute power, price, storage cost, input
and output data costs, network bandwidth, estimated execution time and esti-
mation of VM finish time. In different experiments CAMTH is compared with
FIFO (first in first out), Greedy and an efficient heuristic scheduling algorithms.

A hybrid algorithm for workflow scheduling is proposed in [7] in order to
reduce the CPU idle time and to ensure a good load balancing. This raises a



Dynamic Scheduling in Real Time with Budget Constraints 21

general problem of reducing wasted resources when scheduling in hybrid clouds.
A technique to ensure the QoS using the reputation of the offered resources is
analyzed in [8] and a reputation guided genetic algorithm is build for scheduling
independent tasks in inter cloud environments. Cost efficient scheduling heuris-
tics for deadline constraint workloads are proposed in [9], taking into account
computational and data transfer costs. There are three components, a public
cloud scheduler when given runtime of the VM types are available and given
data set size while taking into account the cost for execution and transferring
data, a private cloud scheduler and a hybrid cloud scheduler to decide.

A family of heuristics for BoT scheduling are defined in [10] and consists of
two phases: task ordering and task mapping. The authors propose an algorithm
that implements the Contract Net Protocol, a task sharing protocol where the
collection of nodes is the contract net and each node can be a manager or a con-
tractor. The heuristics consider unordered, ordered by size large to small or small
to large tasks and a few task mapping policies like Random, maximum expected
remaining allocation time, Maximum current remaining, the same with the mini-
mum order. It does not take into consideration neither the budget nor makespan
minimization. When dealing with scheduling problems in practice there are a
number of general proposed procedures for deterministic scheduling [11]. The
following techniques are heuristics so they do not guarantee an optimal solution
but rather reasonably good solutions: Dispatching Rules: Service in Random
Order, First Come First Served; Composite Dispatching Rules; Local Search:
Simulated Annealing and Tabu-Search. There are two types of Heuristics: con-
structive (starting without a schedule but building one in time) and improvement
(starting with a complete schedule and trying to obtain a better one by updating
the previous) [11].

Because most of the scheduling problems in the real world are NP-hard, it is
difficult to find an optimal solution just using a single VM resource. In practice,
most systems have a very high utilization so investing in adjacent resources just
for the sake of the scheduling problem is not taken into consideration because
of the low budget. Recent research approaches are considering different aspects
when trying to solve the BoT scheduling problem when dealing with hybrid
clouds. Task characteristics like priority, arrival rate, execution time, deadline or
data size input or output constraints are important and mainly considered in the
studied papers. In practice we need simple algorithms which can be implemented
easily based on different task patterns. Having all of these options in mind when
designing a solution for a practical scheduling will give a better chance for mod-
eling the system in order to apply some heuristics based on a possible input of
the problem.

3 Model Description of the Problem

We will further present you a mathematical model that will be considered in
solving our scheduling problem and we describe the notations that we use in this
paper. We define two participants of the hybrid clouds, Tasks (T ) and Virtual



22 O.-C. Marcu et al.

Machines (VM), and we describe the most important properties that we consider
to be used in the developed algorithm presented in this paper. We acknowledge
that in the real systems there may be other properties that can influence the
scheduling problem and we specify that such properties are not considered.

A task has the following definition:

Tj = (Typej , TaskReqj , ej , dj , wj , inputj , outputj) (1)

where Typej is the type of a task, basically an unique name which describes
its resources, role and execution time; TaskReqj are requirements of the task:
TaskReqj = {CPUj ,Memoryj}; ej represents the date time when the task
execution is completed; dj represents the deadline of the task expressed as a
date time; wj is a priority index and its value ranges in a scale of 1 to 10, for
example it can be LOW=1, MEDIUM=5, HIGH=10; inputj is the size of data
input the task needs to process when the execution of the task begins; outputj
is the size of the data output that the task produces after its execution.

A Virtual Machine has the following definition:

VMi = (VMTypei, CPUi,Memoryi, Bandwidthi, V MPricei) (2)

where VMTypei is the type of the VM and it is basically a name hiding the
resources offered. We assume that the public cloud providers offer similar VMs
like those provided by the private data center; VMPricei is the price of a VM
expressed in units per hour, for example 1 u for one hour.

A task will be mapped only to a VMi which corresponds to at least its
characteristics described by TaskReqj . The private data center offers a limited
number of VMs with different characteristics VMTypei and these resources are
offered at no extra cost. The budget B is limited for a fixed period (a number of
days) and is expressed in units, for example B = 1000u for seven days. We do not
have restrictions to retain a part of the budget for a specific task or period of the
day. Our goal is to minimize the number of tasks for which the execution time
exceeds the deadline, especially those with higher priority, in the given budget,
as defined by the Eq. (3).

min

⎧
⎨

⎩

∑

dj−ej<0

j

⎫
⎬

⎭
, B − fixed. (3)

4 Scheduling Algorithm with Budget Constraints

The first steps to take before implementing a strategy for a hybrid cloud com-
puting is to understand the current state of our own private data center. After
careful analysis we have to determine the following architectural and model ele-
ments: describe the current infrastructure in terms of VM types and resources
they offer (VMType); give each task a priority, a type and check its requirements
(wj , TaskReq, Type ← j); save the average execution time for each task and the



Dynamic Scheduling in Real Time with Budget Constraints 23

VM type used for scheduling (Eji); create a database to save the current state
that will be used later for scheduling. We acknowledge the fact that a task can be
executed on different VMs based on its characteristics and this could influence
the execution time in some cases.

4.1 Dynamic Scheduling Algorithm

In every moment tasks can arrive in the system and we need to correctly schedule
each one so that the number of tasks that exceeds the deadline is minimized.
We cannot know how many tasks (and their deadline) will arrive at some point
and it is difficult to predict the number of extra resources we need to acquire
from the public cloud in order to reach our goal. Scheduling tasks in the hybrid
clouds raise two major problems: the first problem is to estimate at some point
in time the total number of extra resources needed in order to satisfy each task’s
deadline, and this is equivalent to the current need for on-demand public cloud
VMs we need to acquire; the second problem is to make a good choice for what
task to schedule first and to which VM from either private or public cloud and
what task characteristics to consider when scheduling. Both problems will be
translated into decisions based on the bag of tasks arrived in the task’s queue.

To resolve the first problem we propose a Configuration Agent (CA) that will
have the role to inspect all the tasks currently scheduled or not, but with their
work execution not completed, and to calculate the configuration of necessary
public VMs in an optimal estimation. The CA runs based on a configuration time
(a few seconds), it calculates the list of extra VMs it needs to acquire from the
public cloud and finally it delegates the role of acquiring the VMs to separate
services developed to this end. We, therefore, present the pseudo-code of the
algorithms executed by the CA. The following notations are used: T is the list of
tasks not scheduled or not fully executed; T ′ is the list of tasks not scheduled; N
is the list of available private VMs; M is the list of available public VMs; B is the
budget; q is a constant/configuration parameter; m is a map with the estimated
execution time for each task type; L is a list of VM types available in the public
clouds; L′ is a list of required VMs computed at previous configuration.

CA Calculate Configuration Needed

Required: T, N, M, B, q, m, L.
begin
sort T by w=(deadline-currentTime-estimatedExecution)*priority
initialize private VMs start time with the current time
sort VMs by CPU, Memory and price
Run Tasks scheduling simulation algorithm
Obtain a list of tasks with the deadline exceeded
Keep the tasks where arrivalTime+estimatedExecution <= deadline
Every task can be scheduled to a VM from L
Calculate the number of VMs to acquire for each VMType
return a List of necessary VMs to allocate from the public cloud

end



24 O.-C. Marcu et al.

We can further try to reach a better schedule by giving a second chance to the
configuration agent by activating the phase described by the algorithm Check
Reconfiguration and Relaunch.

CA Check Reconfiguration and Relaunch

Required: L’, q.
begin
calculate c = T/q
if L’ is not empty and c>0
decrease c by one
Run Calculate Configuration Needed
update L’

return L’, a list of extra VMs to allocate from the public cloud
end

We further present the Tasks Scheduling Simulation algorithm that is used
by the CA.

CA Tasks Scheduling Simulation

Required: T, N, M, m, B.

begin

initialize an empty list of tasks with deadline exceeded, TD

for each task j in T

bestStartTime = null

bestVM = null

for each VM i in M

if tasks requirements are covered by VM CPU, Memory, Storage

vmRule = vmStartTime + taskEstimatedExecution - vmEndTime

if vmRule < 0

if bestStartTime is null

bestStartTime = vmStartTime; bestVM = VM

else if bestStartTime > vmStartTime

bestStartTime = vmStartTime; bestVM = VM

endfor

for each VM i in N

if tasks requirements are covered by VM CPU, Memory, Storage

if bestStartTime is null

bestStartTime = vmStartTime; bestVM = VM

else if bestStartTime > vmStartTime

bestStartTime = vmStartTime; bestVM = VM

endfor

if bestVM not null

save task schedule simulation on bestVM

update task execution time=bestVmStartTime+taskEstimatedExecution

update bestVmStartTime = task execution time

if task execution time > deadline

add task to TD



Dynamic Scheduling in Real Time with Budget Constraints 25

else

add task to TD

endfor

return TD

end

To resolve the second problem we propose a Task Dispatcher Scheduler (TDS)
that will have the role to schedule all the tasks arrived but not yet proposed for
execution. TDS has two components: the first one is a simple listener for new
tasks and has the role of saving and proposing for execution each new task arrived
(Dispatcher), while the second one is the Scheduler component and it will run
based on a configuration time (few seconds but less than the CA parameter).
We, therefore, present the pseudo-code of the algorithm executed by the TDS.

TDS Tasks Scheduling

Required: T’, N, M, m.
begin
sort T’ by w=(deadline-currentTime-estimatedExecution)*priority
initialize private VMs start time with current time
sort VMs by CPU, Memory and price
for each task j in T’
scheduled = false
for each VM i in M
if tasks requirements are covered by VM CPU, Memory, Storage
vmRule = currentTime + taskEstimatedExecution - vmEndTime
if vmRule < 0
schedule task j on VM i
update VM i not available
scheduled = true; break

endfor
if scheduled is true
update M; continue

for each VM i in N
if tasks requirements are covered by VM CPU, Memory, Storage
schedule task j on VM i
update VM i not available

endfor
update M and N
if M is empty and N is empty
break

endfor
end



26 O.-C. Marcu et al.

4.2 Scheduling System Architecture

We further illustrate in Fig. 1 the architecture for dynamic scheduling in hybrid
clouds, consisting of the following components: the task queue being the input
of the system; the TDS component having the role of saving and scheduling each
task according to the proposed algorithm; the CA component with its role to
calculate the configuration of extra VMs to be acquired from the public cloud;
the private and public cloud VMs available for scheduling; the DB database to
persist the tasks information and VMs configuration.

Fig. 1. System components and main events

5 Scheduling Test Scenarios and Analysis of the Results

In order to show the manner in which the algorithm works for the considered
architecture we have implemented a set of services, for simulation purpose, based
on Java technologies. We have built a database with the following tables:

– Tasks table contains information on the scheduled tasks such as type, priority,
deadline, resources required, arrival and execution time;

– V ms table contains information on the available VMs in the private and public
cloud;

– TasksSched table contains the schedule information of the tasks such as task
identifier, VM name and start time of the execution;

– TasksEstimates table contains the average execution time for each task type,
initially populated with an estimated execution time values.



Dynamic Scheduling in Real Time with Budget Constraints 27

Table 1. Private cloud VMs and resources

Name CPU Memory Price Storage price Bandwidth price Instances

Small 1 1024 0 0 0 2

Medium 2 1024 0 0 0 1

High 4 4096 0 0 0 1

We describe the Virtual Machines and the tasks that we have considered in
our test scenarios (Table 1).

Every private VM is backed by a similar public VM. We consider that the
number of the VMs that can be acquired in the public cloud is unlimited, so this
should not influence our tests (Table 2).

Table 2. Public cloud VMs and resources

Name CPU Memory Price Storage price Bandwidth price Instances

Small 1 1024 1 0.01 0.005 ∞
Medium 2 1024 2 0.02 0.005 ∞
High 4 4096 4 0.02 0.01 ∞

We have considered tasks with different priorities and we define multiple
types in order to restrict the execution of a task to different VMs based on the
task requirements like CPU, Memory (Table 3).

Table 3. Task types and requirements

Type Priority CPU Memory Execution estimate Deadline (Random)

1 1 1 1024 5 s 100–150 s

2 1 2 1024 6 s 550–600 s

3 5 1 1024 10 s 250–300 s

4 5 2 1024 12 s 400–500 s

5 10 1 1024 15 s 550–600 s

6 10 2 1024 20 s 350–400 s

7 10 4 4096 25 s 550–600 s

All the tasks can be executed in both private and public cloud VMs. There
are tasks having their execution restricted to some VMs, for example the task
with the types 2, 4 and 6 can be executed only on medium or high VMs.

We run multiple tests considering the following distribution of tasks (Table 4):



28 O.-C. Marcu et al.

Table 4. Tasks distribution scenarios

Type
Count

300 600 900 1200 1500 1800 2400 3000

1 20% 25% 40% 30% 35% 50% 40% 40%

2 20% 25% 20% 25% 20% 5% 20% 20%

3 20% 20% 10% 10% 20% 15% 10% 10%

4 20% 20% 10% 10% 15% 5% 10% 10%

5 10% 5% 10% 20% 5% 20% 10% 10%

6 5% 5% 5% 0% 5% 5% 5% 5%

7 5% 0% 5% 0% 5% 0% 5% 5%

When scheduling, in practice, it is important to understand what is the dis-
tribution of tasks that a system normally handles. We have considered different
patterns for a total number of tasks from 300 to 3000. We have executed each
simulation considering our approach where the CA is sorting the list of tasks
T by w = (deadline − currentT ime − averageExecutionT ime) ∗ priority. We
have configured CA to run every three seconds and the TDS to run every second.
We have configured the parameter q to be equal 20. Every 2 seconds we have
calculated the tasks’ average execution time that will be used by the CA task
scheduling simulation algorithm.

The results are very promising, enabling us to reduce the number of tasks
exceeding the deadline to zero. For the considered test cases we present the
consumed budget, necessary to obtain the perfect minimization (Table 5).

Table 5. Budget consumed for public VMs

Budget
Total

300 600 900 1200 1500 1800 2400 3000

500 13 26 43 98 35 56 121 188

Load balancing of tasks is good in every case, being ensured by the algorithm,
as we can see from Fig. 2.

We have considered a Special Test with Multiple Peaks and we have chosen
a tasks’ distribution with multiple peaks as illustrated in Fig. 3. We send three
times the same amount of tasks respecting the distribution proposed. The total
number of tasks scheduled is 26250 and is executed in a time interval of 1890 sec-
onds The reason for choosing this test configuration is to asses the performance
of CA and TDS components in a scenario as realistic as possible.

We repeat the test three times, the first one considering the tasks are ordered
by the proposed weight w, the second one considering the tasks are ordered by
w = estimatedExecutionT ime and arrival date, the third one considering the



Dynamic Scheduling in Real Time with Budget Constraints 29

Fig. 2. Load balancing. (Color figure online)

Fig. 3. Large bag of tasks.

tasks are ordered by w = priority and arrival date. The results of the tests, con-
sidering the proposed approach, shortest execution first and respectively order
by priority, are the following:

– budget consumed is 1513 u, 1998 u and respectively 1597 u;
– total number of tasks with deadline exceeded is 9, 37 and respectively 14;
– the total number of seconds representing the delay in meeting the deadlines

is 97, 331 and respectively 127.

We observe the fact that the consumed budget in the executed test scenarios
is not always in the same range and we conclude that it depends on the manner
in which the tasks are ordered, both for scheduling and for its simulation.



30 O.-C. Marcu et al.

6 Conclusions and Future Work

Many organizations are opting for an attractive hybrid cloud approach because
a company can leverage its private cloud resources but use public cloud services
when a peak demand arises. We considered the problem of scheduling a bag of
tasks in hybrid clouds, under budget constraints, with the goal to minimize the
number of tasks that exceeds the deadline. We have outlined a model for the
main entities considering the tasks to be non-preemptive and characterized by a
type, priority and resource constraints for execution and virtual machines from
the private and public cloud. We have proposed an architecture for scheduling
and we have defined the role of each component. We observed that the manner
in which the two components CA and TDS have been configured has a positive
influence on the results leading to an optimal dynamic scheduling. Thus, in view
of the our goal, respectively to minimize the number of tasks that exceeds the
deadline, we conclude that the proposed algorithm is optimal and the objective
has been reached.

We acknowledge that the model can be further extended to consider other
characteristics such as tasks that are restricted to run only in the private cloud
or only on some dedicated virtual machines and we plan, in the future, to take
these elements into consideration. We further intend to extend the problem of
scheduling in hybrid clouds under budget constraints also by taking into con-
sideration the impact of the task input and output data size on the consumed
budget. Moreover we intend to implement the proposed architecture and algo-
rithm in a real client case, using a real platform, that will allow us to adjust the
algorithm for the fault-tolerant adjacent impacts.

Acknowledgements. The research presented in this paper is supported by the
project DataWay: Real-time Data Processing Platform for Smart Cities: Making sense
of Big Data, PN-II-RU-TE-2014-4-2731 founded by UEFISCDI. We would like to thank
the reviewers for their time and expertise, constructive comments and valuable insight.

References

1. Oprescu, A.-M., Kielmann, T.: Bag-of-tasks scheduling under budget constraints.
In: 2010 IEEE Second International Conference on Cloud Computing Technology
and Science (CloudCom), Indianapolis, IN, 30 November–3 December 2010, pp.
351–359. IEEE (2010). Print ISBN: 978-1-4244-9405-7

2. Oprescu, A.-M., Kielmann, T., Leahu, H.: Budget estimation and control for bag-
of-tasks scheduling in clouds. Parallel Process. Lett. 21, 219–243 (2011). doi:10.
1142/S0129626411000175

3. Oprescu, A.-M., Kielmann, T., Leahu, H.: Stochastic tail-phase optimization for
bag-of-tasks execution in clouds. In: IEEE/ACM Fifth International Conference
on Utility and Cloud Computing (2012)

4. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE 3rd Inter-
national Conference on Cloud Computing, pp. 228–235. IEEE (2010). Print ISBN:
978-1-4244-8207-8

http://dx.doi.org/10.1142/S0129626411000175
http://dx.doi.org/10.1142/S0129626411000175


Dynamic Scheduling in Real Time with Budget Constraints 31

5. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Online cost-efficient
scheduling of deadline-constrained workloads on hybrid clouds. Future Gener.
Comput. Syst. 29(4), 973–985 (2013)

6. Yanpei, L., Chunlin, L., Zhiyong, Y., Yuxuan, C., Lijun, X.: Research on cost-
optimal algorithm of multi-QoS constraints for task scheduling in hybrid-cloud.
J. Softw. Eng. 33–49 (2015)

7. Nicolae, A.A., Negru, C., Pop, F., Mocanu, M., Cristea, V.: Hybrid algorithm for
workflow scheduling in cloud-based cyberinfrastructures. In: International Confer-
ence on Network-Based Information Systems (2014)

8. Pop, F., Cristea, V., Bessis, N., Sotiriadis, S.: Reputation guided genetic schedul-
ing algorithm for independent tasks in inter-clouds environments. In: 27th Interna-
tional Conference on Advanced Information Networking and Applications Work-
shops (2013)

9. Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-efficient scheduling
heuristics for deadline constrained workloads on hybrid clouds. In: Third IEEE
International Conference on Cloud Computing Technology and Science (2011)

10. Gutierrez-Garcia, J.O., Sim, K.M.: A family of heuristics for agent-based cloud bag-
of-tasks scheduling. In: International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (2011)

11. Pinedo, M.L.: Scheduling Theory, Algorithms and Systems, 4th edn. Springer,
Berlin (2012). ISBN 978-1-4614-1986-0



http://www.springer.com/978-3-319-43176-5


	Dynamic Scheduling in Real Time with Budget Constraints in Hybrid Clouds
	1 Introduction
	2 Various Scheduling Algorithms Strategies
	3 Model Description of the Problem
	4 Scheduling Algorithm with Budget Constraints
	4.1 Dynamic Scheduling Algorithm
	4.2 Scheduling System Architecture

	5 Scheduling Test Scenarios and Analysis of the Results
	6 Conclusions and Future Work
	References


