
Preface

This book is entitled Architectural Design—Conception and Specification of
Interactive Systems. What do we mean by this and what is the purpose of this book?

Architectural Design

By architectural design we mean the design of the functional behaviour of a
system, and the design of the internal structure of the system as a composition of
(high level) functional units. This means that this book introduces a design
methodology that starts with and remains close to the requirements of the end users
of the system. At this so-called architectural level, we are not yet concerned with
detailing and defining the low-level mechanisms that implement and perform this
functional behaviour, which should happen in later design steps. However, some
general knowledge of the implementation level, which is often quite specific for
various types of systems, may appear supportive for understanding this book.
For ICT systems, for example, we consider the choice of detailed algorithms,
software programs and hardware units as implementation concerns.

Amongst the target systems we aim at are ICT systems, such as large software
systems and various process-oriented systems in business, production, organisa-
tions and administrations.

Conception and Specification

In our design methodology, we make a sharp distinction between the conception of
a design and the specification of a design.

We consider the conception of a design as an intellectual process that takes place
in the mind of designers in which a design is created as a composition of conceptual
(functional) building blocks. If these building blocks are close to the intuitive
understanding of the designers, they contribute positively to the insight in and
overview of what is being conceived, and thus to the ability of these designers to
master the design process. The availability of building blocks that can be effectively
applied in the design of a broad range of possibly complex systems is of particular

v



interest for a methodology that focuses on the design of these systems. We call
these conceptual functional building blocks as basic design concepts in this book
and they form the basic constituent of our design methodology. The interaction
concept and the causality relation concept are examples of basic design concepts.

We consider the specification of a design as a human and machine interpretable
representation of a conception and an inherent and indispensable complement to the
design itself. The specification of a design plays four roles in our design
methodology:

– As a window through which a designer can view a conception and get better
grips on what is being conceived.

– As a communication means between the designer and the end user of a system,
while discussing and possibly reformulating the user requirements for the
system.

– As a communication means amongst designers and design groups, while
refining a design in further design steps.

– As a basis for verification, correctness preserving transformations towards
implementation and software tool development.

To perform its communication roles effectively, the specification language
should posses ‘expressive power’. This means that designers should be able to
express their basic design concepts directly and concisely in the language, so that
these concepts can be unambiguously recognised. In contrast, the designer should
not be forced to express a basic design concept by an unwieldy and relatively
arbitrary composition of too elementary language elements, where neither the
language elements nor their composition have a direct relationship to the basic
design concept. Expressive power allows the hand-in-hand application of a con-
ception and its specification in a seamless way. We consider the latter as essential in
architectural design.

To properly perform all the above-mentioned roles, the specification language
should have a concrete syntax and formal semantics, so that precision is guaranteed
and ambiguity is excluded.

The specification language that we present in this book has been devised to
allow the direct representation of our basic design concepts. In this way, we can
focus on architectural design and we avoid language constructs that are only rel-
evant at implementation level.

When using the term design, we generally mean the hand-in-hand conception
and specification of a design.

Interactive Systems

A system that does not interact with its environment is quite useless and as such it
should not be designed. In this respect, our use of the term Interactive in the title
sounds like a tautology, since useful systems always interact.

vi Preface



Apart from considering systems in general, however, we have a special interest
in the interactions between systems1 that, together, form a total system. Usually,
when considering interactive systems, we are inclined to first focus on the systems
as individual objects and only in second instance consider their interactions as
additional phenomena. However, we also know from practice that mechanisms such
as protocols and interfaces strongly influence the structure and functioning of a
system in its totality. This raises several questions as follows:

– Which explicit functional goal do these interactions aim to achieve in the
functioning of the system in its totality?

– How can this functional goal be recognised and designed?
– Can we use the design of this functional goal as a building block in the design

of the system consisting of the interactive systems?
– What are the merits of designing a system this way?

Similar questions apply to the interactions, both at a high and low functional
level, between the subsystems that are internal to a system and together form this
system. Answers to these questions are highly relevant, since interacting systems
and subsystems appear at very large scale in the fields of engineering, organisation
and administration. In this book we discuss the Interaction System concept as a
basic design concept that provides such answers.

We consider distributed systems as important representatives of interactive
systems. Examples are business processes, production systems and ICT systems,
such as the Internet and mobile phone systems.

Design Methodology

In this book we present a design methodology that is practically applicable to the
architectural design of a broad range of systems in various fields of discipline.

In the first instance, it enables the system architect to assist the user in choosing and
defining appropriate functional requirements for the system in its totality, and specify
them in their most precise, concise, surveyable and understandable way. In the sec-
ond instance, it enables the designer to devise the internal structure of the system, i.e.
as a composition of subsystems, in increasingly more detail, until a structure is
obtained that can act as a prescription for the implementation of the system.

Our design methodology is based on design concepts with a basic and funda-
mental nature that are not susceptible to ageing or fashion, proving long-lasting
applicability. The concepts are independent of specific functions and technologies
that can be chosen to eventually implement a concrete system. This implies that we
do not focus on these choices nor advocate for them.

1Seen from the outside, a human being that interacts with a system acts just as another system. This
implies that HCI (Human Computer Interfacing or Human Computer Interaction) is implicitly
covered by our approach, although it is not an explicit point of attention in this book.

Preface vii



To facilitate the understanding of our concepts and methods, we provide many
tangible, appealing and easy-to-recognise examples from various fields. We think
that recognising and understanding these examples not only provides eye-opening
insights, but is also fun. The examples can be often related to ICT problems,
showing that we can often treat ICT and non-ICT problems with a coherent
approach. In these examples, certain specific functional choices necessarily have to
be made, but these choices are only meant for illustrative purposes.

Applicability of the Methodology

The main condition for the applicability of our methodology is that the target
system can be properly represented with our concepts. This is particularly true for
systems where the dynamic part of their behaviour, i.e. the mutual dependency and
sequencing of discrete interactions, is dominant. Since this is the case for many
types of systems, our methodology is applicable and has been effectively applied to
a large variety of systems.

In the presentation of our methodology we spend marginal attention to methods
where the represention by discrete values that are established in interactions, the
ontological relationships between these values, the storage and retrieval of large
volumes of such representations, the integrity of these representations, and the
operations on them are the dominant factors. However, our methodology can in
principle be linked to such methods.

The work is not applicable to fields where the design concepts cannot properly
be represented by interactions, for example, when these concepts come close to
low-level software and hardware engineering or the monitoring and control of
continuous values.

Target Audience

The target audience of this book consists of professionals, practitioners, managers
and administrators in industry and large organisations who are responsible for
design, development, installation, testing, maintenance, extension, management,
supervision and control of large and complex systems. We also aim at students in
graduate courses who want to develop professional insights and skills in developing
complex systems. For this purpose, we paid special attention to the didactics in the
text. Earlier versions of this text have indeed been used as lecture notes in courses
on services, protocols and interfaces presented at the University of Twente. This
implies that the book can be used as a textbook in graduate courses.

viii Preface



Brief History

Our insights in design methodology came forward out of research in distributed
(ICT or Telematics) systems in general. This research has been carried out at the
University of Twente, the Netherlands, and was started back in 1967. Therefore, our
methodology builds on a long tradition and rich history of original work. In 1992,
the Telematics Institute (one of the four Dutch national top technological institutes)
joined in this research.

Around 1992 we observed that contemporary techniques, such as the Formal
Specification Methods (FMSs) CSS, CSP, SDL, Petri Nets and LOTOS too often
forced a designer to conceive and specify a system by defining unwieldy compo-
sitions of very elementary language primitives. Some of these techniques appear
even averse from engineering practice, and they force a designer to think more in
terms of a mathematical theory rather than providing a focus on practical design.
This formed the background for our ambition to strive for more pragmatic,
engineering-oriented and intuitively appealing design constructs with direct and
high-design capabilities, yet without compromising precision and unambiguity.
This work resulted in the design methodology presented in this book.

This research has led to several publications, of which we mention three Ph.D.
theses in particular because they first introduced the original insights, concepts and
motivation for our design methodology: the Ph.D. thesis of Chris A. Vissers,
‘Interface, a dispersed Architecture’ (1977); the Ph.D. thesis of Luís Ferreira Pires,
‘Architectural Notes: a Framework for Distributed Systems Development’ (1994);
and the Ph.D. thesis of Dick A.C. Quartel, ‘Action relations, basic design concepts
for behaviour modelling and refinement’ (1998).

Our research has also led to many contributions to international conferences,
large-scale European projects, periodicals and standardisation committees.

Industrial Impact

The ideas and concepts presented in this book formed the inspiration and basis of
two large language and software tool development projects: Testbed (1996–2001)
and ArchiMate (2002–2004). Both projects were carried out by the Telematics
Institute, Enschede, the Netherlands, and involved several universities and large
organisations. The result of Testbed was a model-based test environment for the
analysis, improvement and redesign of business processes in (large) organisations.
This environment consisted of a process modelling language, called Amber, sup-
ported with methods and techniques and an extensive toolset. A company called
BiZZdesign was founded in 2001 as a spin-off of the Testbed project, and this
company turned this environment into a successful product in the Business Process
Management market, branded under the name BiZZdesigner. The main result of
ArchiMate was a language for modelling the architecture of enterprises. An
enterprise architecture typically describes (the relationships among) the products
and services of an organisation, the business processes that realise these products
and services, the software applications that support these processes, and the
infrastructure on which these applications are deployed.

Preface ix



ArchiMate has become an international standard in 2009, and its development is
fostered by the ArchiMate forum of The Open Group. Version 2.1 of the language
was published in 2013. The language is now supported by many tool vendors,
among which BiZZdesign, who was the first to offer a native and user-friendly
implementation of a tools suite to support ArchiMate, called BiZZdesign Architect.
This implementation supports various powerful analysis techniques in addition to
modelling. With the products BiZZdesigner and BiZZdesign Architect, BiZZdesign
has become a major player in the areas of Business Process Management and
Enterprise Architecture, and now employs more than 100 people worldwide.

Reading Guidelines

The difficulty in reading this text may come mainly from the several concepts that at
first sight may appear artificial, sophisticated and abstract. The precise definition we
choose for these concepts may add another dimension to this difficulty. Abstraction
and precision, however, are the indispensable attributes for understanding complex
systems and precisely conceiving and representing them at a high functional level.
Once understood, these concepts only appear as natural, self-evident and extremely
powerful, because they can reflect directly, precisely and concisely what is con-
sidered essential in the functional behaviour of a system, i.e. they emerge as
eminent architectural concepts.

Chapters 1 and 2 present our global views on how to design systems and how to
interpret terms and meta-concepts that are frequently used in design and design
specification approaches. These chapters are introductory and informal in nature,
and provide the general context in which the remaining chapters can be read.

Chapters 3 through 6 present most of our basic design concepts, and illustrate
them with examples. Language notations are introduced along with the basic design
concepts. These chapters are formal in nature and more difficult to read. After fully
mastering the material of these chapters, the reader should be capable of designing an
arbitrarily complex system, both as a totality and as a composition of subsystems.

Chapters 7 through 12 discuss the more intricate basic design concept of
interaction system, which forms the core of many interactive systems by focusing
on their common functional goal. These chapters are recommended to readers who
have a particular interest in the design of protocols and interfaces for various
systems. The chapters use the concepts introduced in Chaps. 3 through 6. Examples
are predominantly taken from ICT systems.

Chapter 7 elaborates on the interaction system concept, leading to a particular
view on the notion of service and protocol, where a protocol implements a service.
A global design approach for interaction systems leads to the notions of separation
of concerns and layered architectures. Some well-known instances of practical
interaction systems are shown as examples.

Chapter 8 presents a generally applicable method for structuring a service that
allows to control its complexity. The method is based on the constraint oriented
structuring method introduced in Chap. 5.

x Preface

http://dx.doi.org/10.1007/978-3-319-43298-4_1
http://dx.doi.org/10.1007/978-3-319-43298-4_2
http://dx.doi.org/10.1007/978-3-319-43298-4_3
http://dx.doi.org/10.1007/978-3-319-43298-4_6
http://dx.doi.org/10.1007/978-3-319-43298-4_7
http://dx.doi.org/10.1007/978-3-319-43298-4_12
http://dx.doi.org/10.1007/978-3-319-43298-4_3
http://dx.doi.org/10.1007/978-3-319-43298-4_6
http://dx.doi.org/10.1007/978-3-319-43298-4_7
http://dx.doi.org/10.1007/978-3-319-43298-4_8
http://dx.doi.org/10.1007/978-3-319-43298-4_5


Chapter 10 provides a generally applicable method for structuring a protocol that
provides insight in the generally high complexity of a protocol and allows to control
its design. The method builds further on Chap. 8 and on the notion of separation of
concerns.

Chapters 9 and 11 are much more targeted to ICT systems engineering. They
present concrete technical functions and their possible relationships that can be
frequently encountered in concrete services and protocols. In particular, it shows
how protocol functions can implement service functions.

Chapter 12 discusses the concept of reference model as a structure of related
services and protocols that together form a complex interaction system. By only
specifying the key functions in these services and protocols, a reference model can
be defined first and used later to organise the cooperation of different design teams
to work concurrently to complete the design of an interaction system. The concept
of reference model can mutatis mutandis be used for the design of complex systems
in general.

The figure below shows the relationships between the chapters of this book.

Preface xi

http://dx.doi.org/10.1007/978-3-319-43298-4_10
http://dx.doi.org/10.1007/978-3-319-43298-4_8
http://dx.doi.org/10.1007/978-3-319-43298-4_9
http://dx.doi.org/10.1007/978-3-319-43298-4_11
http://dx.doi.org/10.1007/978-3-319-43298-4_12


Closing Remarks

For reasons of keeping this book coherent, accessible and feasible, we restrict
ourselves to only presenting the basic technology-independent principles that
underlie our design methodology. This implies that we refrain from entering into or
amply referring to the overwhelming amount of contacts, publications, activities,
projects, software tool productions and other developments that came forward out
of, are inspired by, or are associated with our original work. We trust that these
principles, once understood, contribute to essential and proper insights for a better
control of the architectural design of systems.

Enschede, The Netherlands Chris A. Vissers
April 2016 Luís Ferreira Pires

Dick A.C. Quartel
Marten van Sinderen

xii Preface



http://www.springer.com/978-3-319-43297-7




