Scheduling DAGs Opportunistically:
The Dream and the Reality Circa 2016

Arnold L. Rosenberg®™)

Computer Science, Northeastern University, Boston, MA, USA
rsnbrg@ccs.neu.edu

Abstract. A broad-brush tour of a platform-oblivious approach to
scheduling DAG-structured computations on platforms whose resources
can change dynamically, both in availability and efficiency. The main
focus is on the IC-scheduling and Area-oriented scheduling paradigms—
the motivation, the dream, the implementation, and initial work on eval-
uation.

Keywords: Area-oriented DAG-scheduling - Dynamically changing plat-
forms - IC-DAG-scheduling - Opportunistic DAG-scheduling

1 Prehistory

Early this century, Fran Berman, then-director of the San Diego Supercomput-
ing Center (SDSC), gave a distinguished lecture at my then-home institution,
UMass-Amherst. During a subsequent one-on-one, Fran educated me about a
Grid-consortium that SDSC participated in, jointly with several kindred cen-
ters. The consortium “contract” allowed any member institution to submit com-
puting jobs to any other. There was a guarantee that submitted jobs would be
completed—but not when. When I asked what kind of computations SDSC per-
formed using this paradigm, I was shocked to learn that the computations had
dependencies among subcomputations that constrained the order in which work
could be done. (As I recall, these were wavefont-structured dependencies.) I asked
Fran how her team coped with the possibility that work could grind to a halt
pending the completion of jobs that had been deployed within the consortium but
not yet completed. Fran responded that they used heuristics that seemed to work
well—but that she did not know of any mathematical setting that would allow one
to think about this situation rigorously. The challenge was irresistible!

2 The Dream of Opportunistic Scheduling

2.1 An Informal Overview

Many modern computing platforms—notably including clouds [26,27], desktop
grids [2], and volunteer-computing projects [11,15]—exhibit extreme levels of
© Springer International Publishing Switzerland 2016

P.-F. Dutot and D. Trystram (Eds.): Euro-Par 2016, LNCS 9833, pp. 22-33, 2016.
DOI: 10.1007/978-3-319-43659-3_2



Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 23

dynamic heterogeneity. The availability and relative efficiencies of such platforms’
computing resources can change at unexpected times and in unexpected ways.
Scheduling a computation for efficient execution on such a platform can be quite
challenging, particularly when there are dependencies among the computation’s
constituent chores' (jobs, tasks, etc.). We wanted to take up this challenge for
the traditional scheduling setting of computations whose dependencies had the
structure of DAGs (directed acyclic graphs).

The nodes of a computation-DAG G represent chores to be executed; G’s arcs
(directed edges) represent inter-chore dependencies that constrain the order in
which chores can be executed. Specifically, a node v cannot be executed until
all of its parents have been: these are the nodes that have arcs into v. Once
all of v’s parents have been executed, v becomes eligible (for execution) and
remains so until it is executed. ¢ has one or more sources—nodes that have
no parents, hence are immediately eligible—and one or more sinks—nodes that
have no “children.” Clearly, executing a non-sink renders new nodes eligible. The
execution of G terminates once all nodes have been executed.

2.2 Opportunistic DAG-Execution via Platform-Oblivious Scheduling

Recent studies have proposed seeking high performance and low cost within
platforms that are dynamically heterogeneous and/or elastic by scheduling com-
putations in a platform-oblivious manner. One compensates for ignoring platform
details by carefully exploiting the detailed characteristics of one’s computation.
The central thesis motivating this approach is that, particularly with the targeted
platforms, one always benefits computationally with DAG-structured workflows
by enhancing the likelihood of having as many eligible chores as possible. Such
scheduling enhances the likelihood of having work available as (advantageous)
resources become available, hence being able to exploit resources opportunisti-
cally. Platform-oblivious scheduling can be advantageous for the targeted plat-
forms because it exploits unchanging, perfectly-known characteristics of one’s
computation rather than attempting to adapt to characteristics of the platform,
which are at best imperfectly known and, indeed, may change dynamically.

As we have pursued the dream of high-performing platform-oblivious sched-
ules, we have found it technically advantageous to follow the lead of work-centric
systems such as CHARM++ [14], by refining input DAGs before scheduling.
We thereby can focus on scheduling fine-grained DAGs whose chores are all of
(roughly) equal complexity. This focus extrapolates easily to DAGs that represent
heterogeneous workloads: one simply models large chores as chains of “unit-size”
ones with sequential dependencies, in the manner discussed in [9].

3 The Reality

3.1 Formalizing the Dream

A schedule X for a DAG G is a topological sort [10] of G, i.e., a linear ordering of G’s
nodes in which all parents of each node v lie to the left of v. The schedule prescribes

! We use the granularity-neutral “chore” for the units that form the computation.



24 A.L. Rosenberg

the order in which G’s nodes are selected for execution. For any schedule X for G
and any integer T € [0..Ng|,> Ex(T) denotes the number of nodes of G that are
eligible for execution at step 7" when X' executes G.

A. ICO Quality and Optimality [21]. Our first quality measure for
DAG-schedules embodies the strictest possible interpretation of “eligible-node
enhancement.” We measure the IC quality of an execution of G by the num-
ber of nodes that are eligible after each node-execution—the more, the better.
(Note that we measure time in an event-driven manner, as the number of nodes
that have been executed to that point.) Our goal is to execute G’s nodes in an
order that maximizes the production rate of eligible nodes at every step of the
execution, i.e., to craft a schedule X* such that

(vt) Bz () = za schrél(?l)fle for g{EE(t)}. @

A schedule for G that achieves this demanding goal is IC optimal (ICO, for
short).

In Sect. 3.2.A, we discuss ICO schedules for many classes of significant “real”
computations—surprisingly many, given the strictness of the condition in Eq. 1.

B. AREA Quality and Optimality [3]. As we detail in Sect.3.2.A, the
demands of Eq.1 are so stringent that many DAGs do not admit ICO sched-
ules. This led us to weaken the IC-scheduling paradigm in [3], by introducing
the Area-oriented DAG-scheduling paradigm.

Let X be a schedule for DAG G. The Area, Area(X), of X, is the sum

Area(E) = EE(O) + Ex(l) +---+ EE(Ng).

Note that schedule X’s normalized Area—obtained by dividing AREA(X) by
the number of nodes in G—is the average number of nodes that are eligible as
X executes G. (The term Area is by analogy with Riemann sums approximating
integrals.) Our goal is to find, for each DAG G, an Area-maximal schedule, i.e.,
a schedule X* for G such that

Area(X*) = max Area(X). (2)
* a schedule for g
A schedule for G that achieves this goal is Area-optimal (A-O, for short).
Easily, every DAG admits an A-O schedule. Importantly for our dream, the A-
O scheduling paradigm is a strict extension of the ICO paradigm, in the following
sense.

Theorem 1 ([3]). IfpAG G admits an ICO schedule X, then every ICO sched-

ule for G is A-O, and vice versa.

2 [a..b] denotes the set of integers {a,a + 1,...,b}.



Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 25

C. Optimal Schedules via DAG-duality. An important “meta-scheduling”
contribution appears in [6] for ICO scheduling and in [3] for A-O scheduling. In
both cases, one finds an algorithm that converts an optimal ICO (resp., A-O)
schedule for a DAG G to an optimal ICO (resp., A-O) schedule for G’s dual DAG
a @ is obtained from G by reversing all of G’s arcs (e.g., the evolving mesh and
reduction-mesh in Fig. 1(a) are dual to each other, as are the expansion-tree and
reduction-tree in Fig. 1(b)).

3.2 Finding High-Quality Schedules

A. Schedules with High ICO Quality. The stringent demands of IC-
optimality—the mazimum number of eligible nodes at every step of a DAG-
execution; cf. Eq. 1—raises the specter that ICO schedules exist only for a very
constrained class of DAGs. Our first goal was to refute this possibility. We derived
the following results.

(1) ICO schedules for specific families of DAGS and computations. In [6,21,22], we
developed ICO scheduling strategies for many familiar classes of DAGs, including

— evolving meshes and reduction-meshes; see Fig. 1(a)
— expansion-trees and reduction-trees; see Fig. 1(b)
— butterfly-structured, convolutional DAGS; see Fig. 1(c, right).

(a)

(b)

(© =
Fig. 1. Familiar DAGs that admit ICO schedules
In [5], we expanded the abstract, DAG-oriented, perspective of the preceding

sources, to develop ICO scheduling strategies for many familiar classes of com-
putations, including



26 A.L. Rosenberg

— convolutions—e.g., the Fast Fourier Transform, polynomial multiplication

— expansion-reductions—e.g., numerical integration, comparator-based sorting

— many “named” computations—e.g., Discrete Laplace Transform, matrix
multiply.

(2) ICO schedules via DAG decomposition. Careful analysis of our ad hoc sched-
ules enabled us, in [19], to develop efficient—i.e., quadratic-time—algorithms
that produce ICO schedules for a broad range of DAGs, based on structural
decomposition. When the strategy succeeds in decomposing a DAG G in the
prescribed manner, one can “read off” an ICO schedule for G from the decom-
position. The strategy has two major steps.

Step 1. Select a set of bipartite? “building-block” DAGSs that admit ICO schedules.

EXPANSIVE: : I/ : / : I/ REDUCTIVE:/k‘ M‘

‘ Edges represent upward arcs ‘

Fig. 2. A sampler of small instances of useful bipartite “building-block” DAGs.

The chosen “building blocks” will be the atomic computations in the sched-
ule. The sample repertoire in Fig.2 fits both needs that are salient for our
strategy. (a) The illustrated DAGs are reminiscent of pieces of the interchore
dependency-DAGs for a broad range of significant computations. (b) These DAGS
admit ICO schedules. Indeed, any schedule for these DAGs that executes all
sources sequentially is an ICO schedule.

Step 2. Establish >>-priorities among the building-block DAGs.

For ¢ = 1,2, let DAG G; admit an IC-optimal schedule X;. We say that G,
has >-priority over Go—denoted Gy > Go—precisely when the following recipe
produces an ICO schedule for executing both G; and G (i.e., for executing the
sum of G and Go):

First: Execute G, by following schedule Y.

Then: Execute G by following schedule Y.

One verifies that relation > is transitive and efficiently tested [7].

The next ingredient in our strategy focuses on creating complex computation-
DAGs by composing simple computation-DAGs. One composes DAG G; with DAG
Go by merging/identifying some k sources of Go with some k sinks of G;: the
resulting DAG is composite of type G1 } Go. (Easily, DAG-composition composes

3 A bipartite DAG’s nodes are partitioned into sets X and Y, with every arc going
from X to Y.



Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 27

the function specified by G; with the one specified by Gs.) The following sample
composition illustrates DAG-composition and its associativity.

We can now announce the major contribution of our decomposition-based
strategy.

Theorem 2 ([19]). Focus on a DAG G that is composite of type G1 f} Ga -+ -
Gn. Say that

— each DAG G; admits the I1C-optimal schedule X;;

—G1>Ga> - > Gy
Then, the following schedule for G is IC optimal:

Use the schedules {X;} to execute the DAGs {G;} seriatim, in order of >-
priority.

Efficient algorithms implement Theorem 2 on a large variety of “well-
structured” DAGs. In particular, the two core processes in the theorem are com-
putationally efficient:

— “parsing” DAG G into Gy, ...,G, (when such a parsing exists)

— testing >-priorities among the G;.

Two clarifications will help illuminate Theorem 2.

1. A DAG can have very nonlinear structure, even though it is composed from
small DAGs that obey a linear chain of >-priorities.
Butterfly DAGs provide an example. Every butterfly DAG B is composed from
many copies of the bipartite butterfly DAG Bsy: symbolically, B is composite
of type By ) B2 1} - - - 1 B2 (see Fig. 1(c)). One verifies easily that By has “self
D>-priority” —i.e., By > Bo—so that B admits a linear chain of t>-priorities:
Byr> - > Bs.

2. Many DAGs that admit ICO schedules are quite monuniform in a graph-
structure sense:

The “well-structuredness” exploited in Theorem 2 is algebraic in nature, in
terms of composition and >-priority.

(3) A weakness in the IC-scheduling paradigm. Using Theorem 2 and ad hoc
techniques, we developed ICO—i.e., optimal eligible-node-enhancing—schedules
for many popular families of DAGs, including “butterflies,” “meshes,” “trees.”



28 A.L. Rosenberg

But, with little difficulty, we also discovered “cousins” of these “well-structured”
DAGs that do not admit any ICO schedule [19]. This deficiency in the IC-
scheduling paradigm—the existence of unoptimizable schedules—led us to seek
“weakened” versions of the paradigm that would algorithmically produce sched-
ules for every input DAG, that were optimizable according to a quality metric that
correlated with computational performance. We discovered two such paradigms.

1. A batched notion of ICO quality is introduced in [17]. The underlying idea is
to execute a DAG by choosing successive subsets of the then-eligible nodes.

2. An averaged notion of ICO quality underlies the Area quality metric of
Sect. 3.1.B and [3]. The underlying quest is for schedules that maximize the
average number of nodes that are eligible at each step of a DAG-execution.

Both the batched-ICO and Area quality measures admit optimal schedules for
every DAG—but the general versions of both optimization problems are NP-
Complete [17,20]. In the case of the Area measure, we were able to craft two
readily computable associated heuristics (A0 and SIDNEY) that are (empirically)
computationally beneficial—as discussed at length in Sect. 3.2.B. Regrettably, we
have not yet succeeded in finding such an associated heuristic for the batched
version of the IC-scheduling paradigm. We leave the attractive challenges related
to the batched paradigm to the interested reader.

B. Schedules with High AREA Quality. In contrast to the IC-scheduling
paradigm, our major accomplishments with Area-oriented scheduling involved
heuristics inspired by the paradigm. We begin our discussion with theoretical
developments.

(1) A-O schedulers for specific DAG-families. In [3], we developed A-O schedulers
for several classes of DAGs, including

— monotonic tree-DAGS: each DAG is either an expansion-tree—a DAG having one
source, in which each nonsource has one parent—or the dual of an expansion-
tree.

— expansion-reduction DAGS: each DAG is obtained by composing a k-sink
expansion-tree with a k-source reduction-tree. (Imagine, e.g., that we match
up the sources of the righthand tree in Fig. 1(b) with the sinks/leaves of the
lefthand tree.)

— compositions of bipartite cycle- and clique-DAGs. (The “building-block” DAGs
of Fig.2(bottom) exemplify the cycles and cliques; the butterfly-DAG of
Fig. 1(c) exemplifies the end product.)

Among the family-specific A-O schedulers that we developed, one stands out for
its DAG-scheduling consequences. This is the efficient algorithm developed in [§],
that produces A-O schedules for series-parallel DAGs (SP-DAGs, for short). (SP-
DAGs have a rich history in the design of logic circuits. More recently, they have
been used to model multi-threaded parallel computations; cf. [1].) This algorithm
decomposes an input SP-DAG G according to the following recursive recipe for



Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 29

generating SP-DAGs, and then it “reads off” an A-O schedule from the resulting
“parse” of G.

A (2-terminal) series-parallel DAG G(SP-DAG) is produced by a sequence of
the following operations.

1. Create. Form a DAG G that has:
(a.) two nodes, a source s and a target t, which are jointly G’s terminals,
(b.) one arc, (s — t), directed from s to ¢.
2. Compose. SP-DAGs, G’ with terminals s’, t', and G”, with terminals s”, t”.
(a.) Parallel composition. Form the SP-pDAG G = G’ f G” from G’ and G"” by
merging s’ with s’ to form a new source s and # with ¢ to form a new
target t.
(b.) Series composition. Form the SP-pac G = (G' — G”) from G’ and G" by
merging ¢’ with s”. G has the single source s’ and the single target t'.

(2) The NP-completeness of AREA-mazimization. After we developed the ICO
schedules for specific DAG-families discussed in Sect.3.2.A(1), we were able to
detect commonalities in reasoning that ultimately culminated in a proof for The-
orem 2. In contrast, we found that our A-O schedules for specific DAG-families
discussed in Sect.3.2.B(1) relied in a fundamental way on the specific struc-
tures of the specific DAG-families. We were, therefore, not surprised to learn, in
[20], that the general problem of computing A-O schedules is NP-complete. The
proof in [20] reduces the 0-1 Minimum Weighted-Completion- Time Problem for
bipartite DAGs, which is known to be NP-complete [25], to the A-O scheduling
problem. This result shifted our focus entirely to the development of schedul-
ing heuristics that (empirically) produced schedules with large Areas. We now
describe the main heuristics that we have developed.

(3) Area-oriented scheduling heuristics. We have developed three scheduling
heuristics that are “Area-centric,” in the sense that they exploit Area-related
structural properties of the DAG being scheduled.

(a) Heuristic D-G [3]. The dynamic-greedy scheduling heuristic D-G crafts a sched-
ule for a DAG G by organizing G’s eligible chores in a list structure that is (par-
tially) ordered by chores’ yields, with ties broken randomly. The yield v(t) of
eligible chore v at step t is the number of non-eligible chores that would be
rendered eligible if v were executed now. The yield of a chore u can change at
each step, and the execution of u can change the yields of many other chores,
specifically, those that share children with u. Thus, in contrast with our other
schedulers, the schedules produced by D-G change at each step—which gives D-G
time-complexity commensurate with our other heuristics.

Note. D-G’s successive choices of the next node to execute are locally optimal—
except for its (nonexistent) tie-breaking mechanism.

(b) Heuristic AO [8]. The Area-oriented scheduling heuristic AO builds on
two facts: (i) We have access to an efficient A-O scheduler for SP-DAGs;
cf. Section 3.2.B(1). (ii) Every DAG G can be transformed efficiently to an SP-
DAG 0(G) that retains both G’s inter-chore dependencies and (roughly) its degree



30 A.L. Rosenberg

of inherent parallelism. Several sources describe “SP-izing” transformations; a
perspicuous version from [12] is invoked in [8]. Heuristic A0 produces a high-Area
schedule for a DAG G in three steps.

Step 1. Transform G to an SP-DAG ¢(G), using an algorithm from [12].
Step 2. Produce an A-O schedule X for o(G), via the algorithm in [8].

Step 3. “Filter” schedule Y to remove the “auxiliary” nodes added when SP-
izing G.
(¢) Heuristic SIDNEY. The SIDNEY scheduling heuristic of [20] inherits both its

name and its algorithmic underpinnings from a sophisticated DAG-decomposition
scheme from [23]. It schedules an input DAG G in four steps.

Step 1. Transform G to its associated 0-1 version Gg .

The nodes of G ; are obtained by splitting each node v of G into two nodes, vg
and v;. Give each node of G ; that has a 0 subscript (the 0 nodes) a processing
time of 0 and a weight of 1; give each node of Gy ; that has a 1 subscript (the
1-nodes) a processing time of 1 and a weight of 0. Finally, give Go; an arc
(u1 — wo) for each arc (u — v) of G and an arc (ug — wu1) for each node u
of G.

Step 2. Use a max-flow computation to perform a Sidney decomposition of Gy 1,
via the algorithm in [23].

Step 3. Say that the decomposition of Gy ; produces DAGs G, ..., Gy.
a. Remove all 0-nodes from every G;.

b. Use heuristic D-G to produce a schedule X; for each G;.

def

Step 4. Output schedule ¥ = X;---X}, the concatenation of the k
subschedules.

At the cost of somewhat more computation than needed for heuristics D-G
and AO, SIDNEY empirically produces schedules whose Areas are within 85 % of
maximal [20].

3.3 The Benefits of Opportunistic Scheduling

A. Benefits Exposed via Simulation Experiments. Simulation-based stud-
ies of the opportunistic scheduling paradigms we have discussed appear in
[3,4,13,16,24]. Rather than reproduce material that appears in great detail in
those sources, I have decided to summarize here the major messages of those
studies.

B1. One observes in all of the cited sources that there are two circumstances
under which all (oblivious) scheduling paradigms are essentially equivalent in
performance.

(a) When computing resources are plentiful, then the inherently sequential
critical path of a DAG is the only constraint on the speed of executing the DAG.



Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 31

(b) When computing resources are really meager, then there are no opportu-
nities for efficiency-enhancing concurrency.

B2. One observes in [13,16] situations where ICO schedules outperform a
variety of platform-oblivious competitor-schedules by as much a 10-20%. The
tested workloads in [16] were real scientific computations; the ones in [13]
were synthetic, but with structures that approximated those of real scientific
computations.

B3. Since the Area quality-metric is a weakening of IC-quality, it is not surprising
that the benefits of A-O schedules observed in [3] are more modest than those
observed in the IC-frameworks of [13,16]. That said, one still often observes A-
O schedules outperforming a variety of platform-oblivious competitor-schedules
by double-digit percentages. Indeed, the same type of performance is observed
even in [4] with heuristic AO. One observes that A-O schedules outperform those
produced by heuristic AO, but only by percentages that may not justify the
computational cost of producing the A-O schedule.

B4. The experiments in [4] suggest that the schedules produced by heuristic A0
perform best when computing resources become available according to distribu-
tions that have low variances.

B5. The experimental settings in [3,4] (involving, respectively, A-O schedules
and schedules produced by heuristic AO) posit that computing resources become
available according to low-variance distributions. It is observed experimentally
in [4] that, within such settings, the Areas of generated schedules inversely track
the makespans of the schedules’ DAG-executions—i.e., larger Areas correlate with
smaller makespans.

B6. In contrast to heuristic AO, the very high-Area schedules produced by
heuristic SIDNEY seem to favor situations wherein the distributions governing
computing-resource availability do not have low variances [20]. This suggests
that SIDNEY’s schedules may be desirable in settings such as enterprise clouds,
where the user can tailor the purchase of computing resources based on the
varying numbers of eligible nodes produced over time by one’s DAG-schedule.

B7. The experiments reported in [24] seem to validate Observations 4 and 6:
schedules produced by heuristic AO are observed to perform very well in “single-
instance” enterprise clouds, wherein there is a single block of computing resources
that are available at any moment. In fact, the static heuristic A0 i sobserved to
compete well with dynamic competitor schedules.

B. Two Major Open Issues. We close with a two open issues regarding
opportunistic DAG-scheduling. The benefits we have already uncovered—and
enumerated in this section—explain our belief in the potential significance of
success in addressing these issues.

Q1. The discovery in [19] that many DAGs do not admit ICO schedules led to
three weakened version of IC-scheduling: batched IC-scheduling [18], a version



32 A.L. Rosenberg

based on weakening the t>-priority relation of Theorem 2 [16], and Area-oriented
scheduling [3]. Of these alternatives, only Area-oriented scheduling has been
studied in any detail. The other alternatives certainly deserve more attention
than they have received.

Q2. Our study of opportunistic DAG-scheduling began with a focus on dynami-
cally heterogeneous computing platforms—and it has largely retained that focus.
The benefits of eligible-node-enhancing DAG-schedules should be significant also
in other domains:

(a) Opportunistic DAG-schedulers may be valuable when pursuing cost-
effective computing within an enterprise cloud. Having access to large numbers
of eligible nodes should alow a user to maximally exploit available cost-effective
resources. This benefit is hinted at in [24], but it deserves careful study.

(b) In a similar vein, opportunistic DAG-schedulers may be beneficial in
power-aware computing environments. Their schedules may enable one to max-
imally exploit low-power resources as they become available. This possibility,
too, deserves careful study.

Acknowledgments. It is a pleasure to acknowledge the invaluable contributions of
my collaborators on the work discussed here: Gennaro Cordasco, Rosario De Chiara,
Tan Foster, Robert Hall, Greg Malewicz, Rajmohan Rajaraman, Scott Roche, Mark
Sims, Michela Taufer, Arun Venkataramani, Mike Wilde, Matt Yurkewych. Our work
on opportunistic DAG-scheduling has been supported in part by several grants from the
US National Science Foundation, most recently Grant CSR-1217981.

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. In: 5th ACM SIGPLAN Sym-
posium on Principles and Practices of Parallel Programming (PPoPP 1995) (1995)

2. Casanova, H., Dufossé, F., Robert, Y., Vivien, F.: Scheduling parallel iterative
applications on volatile resources. In: 25th IEEE International Parallel and Dis-
tributed Processing Symposium (2011)

3. Cordasco, G., De Chiara, R., Rosenberg, A.L.: On scheduling DAGs for volatile
computing platforms: area-maximizing schedules. J. Parallel Distrib. Comput.
72(10), 1347-1360 (2012)

4. Cordasco, G., De Chiara, R., Rosenberg, A.L.: An AREA-oriented heuristic for
scheduling DAGs on volatile computing platforms. IEEE Trans. Parallel Distrib.
Syst. 26(8), 2164-2177 (2015)

5. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Applying IC-scheduling theory to
some familiar classes of computations. In: Workshop on Large-Scale, Volatile Desk-
top Grids (PCGrid 2007) (2007)

6. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Advances in IC-scheduling theory:
scheduling expansive and reductive DAGs and scheduling DAGs via duality. IEEE
Trans. Parallel Distrib. Syst. 18, 1607-1617 (2007)

7. Cordasco, G., Malewicz, G., Rosenberg, A.L.: Extending IC-scheduling via the
Sweep algorithm. J. Parallel Distrib. Comput. 70, 201-211 (2010)



Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016 33

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Cordasco, G., Rosenberg, A.L.: On scheduling series-parallel DAGs to maximize
AREA. Int. J. Found. Comput. Sci. 25(5), 597-621 (2014)

Cordasco, G., Rosenberg, A.L., Sims, M.: On clustering DAGs for task-hungry
computing platforms. Cent. Eur. J. Comput. Sci. 1, 19-35 (2011)

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (1999)

Estrada, T., Taufer, M., Reed, K.: Modeling job lifespan delays in volunteer com-
puting projects. In: 9th IEEE International Symposium on Cluster, Cloud, and
Grid Computing (CCGrid) (2009)

Gonzélez-Escribano, A., van Gemund, A.J.C., Cardefioso-Payo, V.: Mapping
unstructured applications into nested parallelism. In: Palma, J.M.L.M., Sousa,
A.A., Dongarra, J., Herndndez, V. (eds.) VECPAR 2002. LNCS, vol. 2565, pp.
407-420. Springer, Heidelberg (2003)

Hall, R., Rosenberg, A.L., Venkataramani, A.: A comparison of DAG-scheduling
strategies for internet-based computing. In: 21st IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2007)

Kale, L.V., Bhatele, A. (eds.): Parallel Science and Engineering Applications: The
Charm++ Approach. New York, Taylor & Francis Group, CRC Press (2013)
Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home:
massively distributed computing for SETI. In: Dubois, P.F (ed.) Computing in
Science and Engineering. IEEE Computer Society Press (2000)

Malewicz, G., Foster, 1., Rosenberg, A.L., Wilde, M.: A tool for prioritizing DAG-
Man jobs and its evaluation. J. Grid Comput. 5, 197-212 (2007)

Malewicz, G., Rosenberg, A.L.: Batch-scheduling dags for internet-based comput-
ing. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
262-271. Springer, Heidelberg (2005)

Malewicz, G., Rosenberg, A.L.: A pebble game for internet-based computing. In:
Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science.
LNCS, vol. 3895, pp. 291-312. Springer, Heidelberg (2006)

Malewicz, G., Rosenberg, A.L., Yurkewych, M.: Toward a theory for scheduling
DAGS in internet-based computing. IEEE Trans. Comput. 55, 757-768 (2006)
Roche, S.T., Rosenberg, A.L., Rajaraman, R.: On constructing DAG-schedules
with large AREAs. Concurrency Comput. Pract. Experience 27(16), 4107-4121
(2015)

Rosenberg, A.L.: On scheduling mesh-structured computations for internet-based
computing. IEEE Trans. Comput. 53, 1176-1186 (2004)

Rosenberg, A.L., Yurkewych, M.: Guidelines for scheduling some common
computation-DAGs for internet-based computing. IEEE Trans. Comput. 54,
428-438 (2005)

Sidney, J.B.: Decomposition algorithms for single-machine sequencing with prece-
dence relations and deferral costs. Oper. Res. 23(2), 283-298 (1975)

Taufer, M., Rosenberg, A.L.: Scheduling DAG-based workflows on single cloud
instances: high performance and cost effectiveness with a static scheduler. Int. J.
High Perform. Comput. Appl. (2015). doi:10.1177/1094342015594518

Woeginger, G.J.: On the approximability of average completion time scheduling
under precedence constraints. Discrete Appl. Math. 131(1), 237-252 (2003)

Yao, S., Lee, H.-H.S.: Using mathematical modeling in provisioning a heterogeneous
cloud computing environment. IEEE Comput. 44, 55-62 (2011)

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapRe-
duce performance in heterogeneous environments. In: 7th USENIX Symposium on
Operating System Design and Implementation (2008)


http://dx.doi.org/10.1177/1094342015594518

2 Springer
http://www.springer.com/978-3-319-43658-6

Euro-Par 2016: Parallel Processing

22nd International Conference on Parallel and
Distributed Computing, Grenoble, France, August
24-26, 2016, Proceedings

Dutot, P.-F.; Trystram, D. (Eds.)

2016, XXX, 699 p. 236 illus., Softcover

ISBM: 978-3-319-43658-6



	Scheduling DAGs Opportunistically: The Dream and the Reality Circa 2016
	1 Prehistory
	2 The Dream of Opportunistic Scheduling
	2.1 An Informal Overview
	2.2 Opportunistic dag-Execution via Platform-Oblivious Scheduling

	3 The Reality
	3.1 Formalizing the Dream
	3.2 Finding High-Quality Schedules
	3.3 The Benefits of Opportunistic Scheduling

	References


