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    Chapter 2   
 Introducing the Operator Theory                     

     Gerard     A.  J.  M.     Jagers     op     Akkerhuis     ,     Hendrik     Pieter     Spijkerboer    , 
and     Hans-Peter     Koelewijn   

 “ It seems to be felt in some quarters that the deliberate use of a technique of theorizing 
involves  ( in the case of biology ) “ fi tting the facts of life ”  into some rigid predetermined 
scheme. Nothing could be further from the truth. Far from making facts conform to a 
scheme  ( which in any case would be impossible )  we deliberately construct the theoretical 
system in such a way that it will as faithfully represent the facts as possible ”

(Woodger  1939 , p. 74). 
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    Abstract     The Operator Theory is a new theory about the hierarchical organisation 
of complexity in nature. The theory is based on the idea that in the space of all pos-
sible processes, a small subset exists of highly specifi c processes through which 
small objects can integrate to form new, more complex objects. The Operator 
Theory focuses on this small subset of objects. The processes that the Operator 
Theory focuses on are referred to as uniform closure of the structural and functional 
kind. The combination of such closures is called a dual closure. Based on dual clo-
sures, and in a step by step way, the Operator Theory identifi es a branching hierar-
chy of kinds of objects that have increasingly complex organisation. Any object of 
a kind that is included in this hierarchy is called an operator, and the branching 
hierarchy is called the Operator Hierarchy. Interestingly, there are strong indications 
that, in analogy with the primary and secondary structure of amino acids, the 
Operator Hierarchy has a secondary structure. The Operator Theory hypothesises 
that this secondary structure offers a means to one day predict the structure of future 
kinds of operators. By offering a stringent classifi cation of the operators of different 
kinds, from quarks to multicellular animals, the Operator Theory can be used to 
contribute to discussions about fundamental concepts in science, e.g. individuality, 
organismality, hierarchy, life and (the prediction of) evolution.  
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2.1        Introduction 

2.1.1     Why Was the Operator Theory Constructed? 

 The classical literature about ecological/natural  hierarchy   offers many different 
 rankings   of hierarchy in  nature   that are based on levels of  organisation  , or  levels of 
complexity  , and that include for example  atoms  ,  molecules  , organelles,  cells  ,  organ-
isms  ,  populations   and  ecosystems   (e.g. von Bertalanffy  1950 ; Feibleman  1954 ; 
Salthe  1985 ; Simon  1962 ; Koestler  1967 ; Jaros and Cloete  1987 ; Alvarez de 
Lorenzana  1993 ). 

 The above literature offers three dominant classical concepts for analysing hier-
archical relationships:  meronomy  ,  taxonomy   and  emergence  .  Meronomy   describes 
how large physical  objects      have smaller parts, which in turn can have smaller parts 
etc. An example of a meronomy is a horse which has a heart that between other 
things consists of muscles, which in turn consist of muscle cells etc. The second 
concept,  taxonomy  , describes conceptual subsets that can be identifi ed inside a 
larger set. An example of taxonomy is the set of all animals, which includes the set 
of mammals, which includes the set of dogs etc. The third concept, emergence, 
focuses on how new  systems  /objects are formed from the interactions between 
existing objects. An important aspect when focusing on emergence is that  modules  , 
aggregates, or assemblies can scaffold further steps. It is exemplifi ed in Simon’s 
( 1962 ) story about the watchmakers Hora and Tempus indicated, and indicates that 
existence of modules is an important factor in emergence. From the story: The 
watchmaker Hora put together his watches from smaller, stable modules. Meanwhile, 
Tempus worked without using modules. When they were disturbed, Hora had only 
to rebuild the most recently constructed module. The unfortunate Tempus had to 
restart the entire assembly of his watch from scratch. 

 If the aim is to create a stringent hierarchical  ranking     , one should in principle 
either use taxonomic rules, meronomic rules, or  emergence  . And one should stick to 
the kind of  entities   that fi t the selected rule.  Meronomy   should include only  physical 
objects  .  Taxonomy   should be based selectively on abstractions called sets, or groups. 
And emergence should focus on interactions between physical objects. 

 The demand to focus on a single rule and a single kind of entities is not always 
respected by classical approaches to hierarchy in  nature  . To further explore this fail-
ing we investigate an example-ranking from  atom  , to molecule, to organelle, cell, 
organ, organism,  population   and  ecosystem  . The steps of ranking from an atom to 
an organ and then to an organism can be viewed as ranking ever larger physical parts 
inside a  multicellular    organism  . Here one can recognise a meronomic ranking inside 
the organism. The diffi culty arises with the term organism. The  organism concept   is 
included as a single level, while it refers both to a single physical organism, and to 
a class that includes all organisms, e.g. a  bacterial cell   and an elephant. And “above” 
the organism the  ranking   shifts its focus from  physical objects   to conceptual group-
ing, e.g. populations and ecosystems, which represents a  taxonomic   approach. As 
the same ranking includes both meronomic and taxonomic aspects it can be viewed 
as a mixed approach. 
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 Another aspect of the use of methods such as  meronomy  —is a part of—and 
 taxonomy  —is a kind of—is that such methods start from a specifi c highest level; 
they work  from the top down  . For example, inside a molecule one fi nds parts called 
atoms. And of all the animals, a special subset is formed by the dogs. Such a  top 
down   perspective does not fi t well if the aim is to explain the formation of complex-
ity  from the bottom up  . For example, one cannot start with an  atom   and say that a 
molecule is a part of it. And neither can one start with an atom and say that a mol-
ecule is a kind of atom. If the aim is to work  from the bottom up  , a methodology is 
needed that is based on  emergence   and the stability of aggregates such as was pro-
posed by Simon ( 1962 ). The wish to construct a conceptual framework based on 
emergence, that creates a hierarchy of objects that are all formed  from the bottom 
up  , became the starting point for the  Operator Theory  . 

 While working  from the bottom up   the Operator Theory had to start with defi ning 
low complexity concepts/objects, and uses these as a theoretic foundation for defi ning 
more complex concepts/objects. The idea was to create an unbroken chain of theoretic 
steps, in which ideally every next object/defi nition is based on already established 
objects/defi nitions. The idea that theory must be constructed  from the bottom up   also 
can be found in so-called  axiomatic approaches   in mathematics (Whitehead and 
Russell  1910 ,  1912 ,  1913 ) and biology (Woodger  1937 ; Nicholson and Gawne  2014 ). 

 The Operator Theory’s primary goal thus became the identifi cation and  ranking   of 
the building blocks in  nature  , from the small to the large. Since the  Big Bang  , increas-
ingly complex building blocks have been formed, such as  quarks  ,  hadrons  ,  atoms  , 
cells, cells with  endosymbionts  , multicellulars, and multicellulars with brains. Based 
on the idea that each of these special building blocks can be viewed as to operate as 
a single, countable material  unit   in its environment, the term   operator    was chosen as 
a generic name for these building blocks (hence the name Operator Theory). The 
Operator Theory thus aims at understanding the sequential formation of operators 
and to analyse this sequence as a special aspect of ontogenesis in the  universe  . As a 
secondary goal, the Operator Theory also aims at the description of any material 
entity in the universe in terms of operators. To achieve these two goals, the Operator 
Theory had to start with the smallest, lowest complexity objects in nature, which 
according to current knowledge are the fundamental particles that are studied by 
particle physicists, out of which all matter in the universe is eventually constructed. 

 Moreover, it was a goal of the Operator Theory to identify, for every step in the 
sequence starting with quarks, logical criteria which could offer justifi cation for 
why a particular kind of system actually represented a next kind of operator. Such 
criteria should also indicate why this kind of system, and not any other kind, could 
be accepted as the right kind for the next rung on the complexity  ladder  .   

2.2     Introducing Systems and Objects 

 As a basis for explaining the Operator Theory in the next chapter two concepts need 
to be explained beforehand: system and object. Interestingly, the concept of a sys-
tem has proven rather diffi cult to defi ne, possibly as the result of its many different 
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applications and interpretations. In some  schools   of  thought  , a system is viewed as 
a synonym for a group of entities that show relationships. Now many things can be 
a system, e.g. a house, a  herd   of cows, and the earth. Other approaches are more 
specifi c and defi ne a system as something that produces its own limits. Now one 
could think of an organism, or a soap bubble. Still other schools view a system as an 
arrangement of things which are arranged such that they help someone to accom-
plish a specifi ed task. Examples of the latter are an education system, or a factory. 
Still others speak about systems of interacting agents as complex adaptive systems. 
In the next paragraph we try to identify a common denominator of all these system 
concepts. 

2.2.1     Existing Ideas About Systems 

 When talking about a system, it is important to realise that the concept system rep-
resents an abstraction that is man-made and that generally will be imprecise to some 
degree. That a system always is a man-made model has already been indicated by 
Bernard ( 1865 ) who suggested that “les systèmes ne sont pas dans la  nature   mais 
dans l’ésprit des hommes”, which says that systems do not exist in nature, but only 
in the minds of humans. With his statement, Bernard emphasised that humans use 
their conceptual powers to view chosen objects and chosen relationships in an inte-
grated way as a system. In mathematics such a system of chosen objects and chosen 
relationships is called a structure. The viewpoint that systems consist of consciously 
selected objects and relationships can also be found in Checkland and Scholes 
( 1990 , p. 22) who in their book about  soft systems methodology   emphasise that it is 
“perfectly legitimate for an investigator to say “I will treat education provision  as if 
it were a system ”, but that is very different from declaring that it  is  a system. This 
may seem a pedantic point, but it is an error which has dogged system thinking and 
causes much confusion in the systems literature”. The reason why Checkland and 
Scholes ( 1990 ) call their approach  soft systems methodology   is that the process of 
enquiry itself can also be analysed in a systemic way, so to speak as a “soft” 
system.  

2.2.2     The Role of Objects in a System 

 When reasoning about a system, the objects in the system have so far only implicitly 
been included. Yet objects are important, because any systemic analysis presup-
poses that it is possible to identify objects and their relationships. This leads to the 
question of how one can determine whether something is viewed as a system or as 
an object. To answer this question, the Operator Theory suggests using the same 
strategy as when defi ning a system, but now with a focus on the intention to wilfully 
view an entity as an object, instead of as a system. To view an entity as an object, 
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one must thus make a wilful choice, i.e. the classifi cation is taken as an axiom. 
Given an object oriented viewpoint, a teacup, an  ecosystem  , a soil layer, a distant 
galaxy with millions of stars that are part of it or an imaginary unicorn all can be 
viewed as objects in one’s reasoning. For each object, one must select criteria that 
allow the identifi cation of the objects’ limits. Such criteria can for example be made 
dependent on functional aspects, such as a specifi c horizon in a soil where litter is 
degraded, and on structural aspects, such as when children dance and create a circle-
object by holding hands with their neighbours.  

2.2.3     Systems and Objects in this Book 

 In summary, when discussing systems/objects in this book, the following things are 
relevant.

•    Both a system and an object are viewed as wilful  selections  . When selecting an 
object one only needs to decide on the limit of the object. The process of select-
ing a system is more demanding because it requires: (1) A selection of criteria 
that limit the volume/ edge  /extent of the system, (2) A selection of criteria for the 
identifi cation of different objects inside the volume, and (3) A selection of crite-
ria for relationships between objects that are part of the system that are viewed 
as being relevant.  

•   Both an object and a system are subsets of a larger world. This implies that the 
environment of a system or object is naturally involved if one thinks about a 
system/object.  

•   The question of whether something is viewed as an object or as a system cannot 
be answered by criteria that originate from the entity itself. Instead, the inten-
tions of a person determine whether an entity will be viewed as a system or as an 
object. Accordingly, Bernard’s ( 1865 ) statement that systems are in the heads of 
people, can be extended by adding that a system can only be found in the head of 
a person who looks at an entity with the intention of analysing it in a systemic 
way.  

•   We follow  soft systems methodology   (Checkland and Scholes  1990 ) in the sug-
gestion that the methodology of systemic inquiry can itself be looked at as the 
subject of systemic inquiry.      

2.3      Introducing Closure 

 Many years ago, Teilhard de Chardin wrote the following: “First, in the multitude of 
things comprising the world, an examination of their degree of complexity enables 
us to distinguish and separate those which may be called ‘ true natural units     ’, the 
ones that really matter, from the accidental  pseudo-units  , which are unimportant. 
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The  atom  , the molecule, the cell and the living being are true units because they are 
both formed and centred, whereas a drop of water, a heap of sand, the earth, the sun, 
the stars in general, whatever their multiplicity or elaborateness of their structure, 
seem to possess no organisation, no ‘centricity’. However imposing their extent 
they are  false units  , aggregates arranged more or less in order of density. Secondly, 
the coeffi cient of complexity further enables us to establish, among the natural  units   
which it has helped us to ‘identify’ and isolate, a system of classifi cation that is no 
less natural and universal” (Teilhard de Chardin,  1969 ). 

 Teilhard de Chardin had an intuitive notion of why certain objects were formed 
and centred, and other objects did not have such qualities. Yet it remained diffi cult 
at that time to offer precise criteria indicating why and when units were formed and 
centred. The question of what defi nes unity can also be recognised in the work of 
other authors including for example the metabolic repair system, and  closure   to 
effi cient causation (Rosen  1958 ),  autopoiesis   (Maturana and Varela  1973 ), the 
 hypercycle   (Eigen and Schuster  1979 ; Kauffman  1993 ), the strange loop (Hofstadter 
 1979 ), closure (Heylighen  1989a , b ,  1990 ; Chandler and Van De Vijver  2000 ), 
quanta of  evolution      (Turchin  1995 ) and agency/ autonomy   (e.g. Ruiz-Mirazo and 
Moreno  2012 ; Moreno and Mossio  2015 ). 

 Of all these criteria, the concept of closure is viewed in this book as a connecting 
principle because it can be linked to many of the other concepts. This is the reason 
why closure has been given a fundamental position in the Operator Theory. In the 
following paragraphs the concept of closure is explained followed by a discussion 
of how it is applied in the current book. 

2.3.1     An Intuitive, General Explanation of the Concept 
of Closure 

 One of the oldest visualisations of closure is perhaps the ancient symbol of the 
Ouroboros, the snake that swallows its own tail and by doing so creates a structure 
of which the beginning and end meet. Closure has gained increasing interest in 
recent years. The use of the concept of closure in the current book was originally 
inspired by the works of Goguen and Varela ( 1979 ) and Heylighen ( 1989a , b ,  1990 ). 
Later an international workshop about closure resulted in a book edited by Chandler 
and Van De Vijver ( 2000 ). Since that time closure has become the subject of an 
increasing number of publications notably by the group of Moreno, e.g. Mossio and 
Moreno ( 2010a , b ), Ruiz-Mirazo and Moreno ( 2012 ), Mossio et al. ( 2013 ), Moreno 
and Mossio ( 2015 ) and the group of Letelier, e.g. Soto-Andrade et al. ( 2011 ), 
Letelier et al. ( 2003 ), Luz Cárdenas et al. ( 2010 ), Letelier et al. ( 2011 ). 

 Closure can also be expressed in mathematical terms, where it relates, for exam-
ple, to the situation in which a set is closed for the performance of an operation on 
its elements. As a case: the set of natural numbers (0, 1, 2, 3, …) is closed for addi-
tion, but is not closed for subtraction, because 2 − 5 = −3, which is not a natural 
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number. Closure represents a special property of a system because the state space of 
a closed system has become invariant (i.e. it does not change) under the internal 
dynamics (e.g. Heylighen  1990 ; Chandler and Van De Vijver  2000 ). 

 In this book the term closure is predominantly used in relation to the closed state 
that results from the closing process. Closure thus refers to a  topology  . Closure as a 
topology creates an intimate link between form and functioning, because specifi c 
functionalities of the elements have become unifi ed through the  emergence   of a 
closure.  

2.3.2     The Utility of Using Closure When Analysing Complexity 

 Closure is a potentially very powerful concept when creating a hierarchy of com-
plexity. The reason is that closure has the unique property of unifying all the ele-
ments involved into a single entity, either conceptually or materially. This property 
of closure allows one to identify amidst of all the chaos in the world a select group 
of elements that together can be viewed as a single countable  unit  .   

2.4     Defi ning Closure as It Is Used in This Book 

 The concept of closure in this book is based on the Operator Theory. Before discuss-
ing closure in a more formal sense, an intuitive introduction is offered of the con-
cept. For this purpose one can imagine a piece of rope that lies on the table. From 
this rope different fi gures can be made, but if a person takes one end of the rope in 
the left hand and the other end in the right hand, and the ends are pulled apart, the 
result is a stretched piece of rope (possibly with some small knots) (Fig.  2.1a ). 
Things are different if before stretching the rope, the two ends would have been 
knotted together. If the knot has loose ends the pulling apart of the rope’s ends will 
result in a short stretch of rope that has a loop of rope dangling from it (Fig.  2.1b ). 
If the knot was very close to the ropes ends, it is no longer possible to grasp the ends 
of the rope, because the rope has become a close to perfect loop (Fig.  2.1c ).

   The presence of this loop is what here is called closure. When one takes a two- 
dimensional picture of the loop, the loop surrounds an area and closes that area off 
from the area outside the loop. Because the surface inside the loop is surrounded, or 
enclosed by the rope on its outer  edges  , the confi guration of the rope is named closed, 
and the part of the rope that creates the loop will be referred to as having closure. 

 This idea of closure can be generalised to spaces with more than two dimensions. 
This can be done by imagining that instead of a rope, one would use a sheet of rub-
ber. This sheet of rubber can then be stretched and folded in such a way that (part of 
it) creates a box, ball or other three- or multi-dimensional shape which surrounds a 
specifi c volume of empty space and closes it off from the space outside. 
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2.4.1     From a Rope to a Chain of Objects Connected 
by Relationships 

 In the world, things do not generally consist of rope or rubber. This implies that for 
using the concept of closure in the world, the above examples will have to be gen-
eralised into a defi nition which covers closure in any physical object. For this pur-
pose one can look at the world as if it consists of objects that are related in some 
way. If an object O 1  has a relationship with object O 2 , the objects can be viewed as 
being linked by this relationship (Fig.  2.1d ). And if an object O 1  links to object O 2 , 
which links to object O 3  etc. to object O n , the resulting chain of links can be viewed 
as a translation of the open confi guration of a physical rope. Accordingly, any linear 
chain of links between object O 1  to O n  can be viewed as an open chain of interac-
tions (Fig.  2.1e ). 

 In the same way, one can also create a chain of objects with a loop in it. Let us 
imagine a chain of objects O i  with i ranging from 1 to 15. One now can imagine that 
the links O 5  to O 12  form a loop, because there is a link from O 12  back to O 5 , while 
the links from O 1  to O 5 , and those from O 12  to O 15  form chains that are open at one 
end, and that connect to the loop at the other end (Fig.  2.1f ). In such a case, the part 
from O 5  to O 12  has closure. As long as a chain of links does not have a loop, it is 
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  Fig. 2.1    Explaining closure in an intuitive way. For explanation of examples ( a ) to ( h ) see text of 
Sects.  2.4.1  to  2.5.1        
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viewed as open. Because of this both a linear and a branching chain of objects are 
viewed as being open. 

 It is not so diffi cult to apply the  object-based   approach to the sheet of rubber that 
surrounds a volume. For this purpose one can imagine a number of objects that in a 
two dimensional way are connected to form a sheet (Fig.  2.1g ). And this sheet of 
connected objects can be folded around an imaginary volume (Fig.  2.1h ).  

2.4.2     Closure Caused by One or More Moving Objects 

 In the above examples it was assumed that the objects had a fi xed position in a chain 
or as part of a sheet. However, it is theoretically advantageous if closure can also be 
used in the case of one or more objects that move through space, and that follow a 
path that bends back onto itself (e.g. a planet going around the sun). The path that 
such an object follows can comply with the above  defi nition of closure  , because the 
path of the moving particle encloses a surface or space.  

2.4.3     A  Defi nition of Closure   

 Following the above preparations, a defi nition of closure can be deduced as 
follows:

   Closure is the property that one or more entities behave and / or interact in such a way that 
the result can be viewed as surrounding a space in two  ( surface ),  three  ( volume )  or more  
  dimensions   . 

2.5          Kinds of Closure 

 The above defi nition allows for a broad variety of closures. The Operator Theory 
does not use all such possibilities. Instead it focuses on a limited selection of spe-
cifi c kinds of closures: dealing only with what are called  uniform closures   of the 
functional and structural kind. 

 Uniform functional and  structural closures   are combined to create  dual closure  . 
Dual closure is used in the Operator Theory to identify next-level operators. The 
identifi cation process starts with fundamental particles after which subsequent dual 
closures lead to the fi rst kind of operator, and the next etc. In this way next kinds of 
operators are derived from previous ones in an iterative manner, resulting in the 
 operator hierarchy  . 

 When speaking about the iteration of dual closure, this may bring to one’s mind 
the picture of a linear  ranking   of steps. However, the rules for dual closure are more 
intricate and can also lead to a branching pattern. The possibility of a branching 
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pattern can be understood from an analogy with a ball. Using a ball as the starting 
point, there are not just one but two options for new closed confi gurations. One 
closed confi guration is that of two balls that are attached like soap bubbles, with a 
shared contact surface, and one connected outer surface. Another confi guration is 
that of a small ball inside a large ball. In analogy to the example of the ball, a  rank-
ing   that is based on dual closures can lead to a linear  ladder  , but can also diverge into 
a branching pattern. 

 Whether or not dual closure leads to one or more different kinds of operators in 
the next step must be evaluated for every operator. This implies that if one investi-
gates every step locally, which represents a localised, myopic point of view, there is 
no simple rule that predicts whether branching will occur, or what particular shape 
the next dual closure will have. When looked at the Operator Hierarchy this way 
there is no  algorithm   that allows one to predict the next dual closure. However, as 
discussed below, the Operator Theory focuses on regularities in the ranking for 
hypothesising that the overall ranking of all known kinds of operators has a higher 
order branching structure that may well be the result of an overarching algorithmic 
logic. The  nature   of this overall logic is the subject of ongoing research. 

 The following paragraphs explain further what is meant by the terms  uniform 
closure  , functional/ structural closure   and dual closure. After that, an explanation is 
offered how dual closures can be used to create the  operator hierarchy  . 

2.5.1       Uniform Closure   

 As was said before, the Operator Theory only makes use of uniform closures. To 
explain what a uniform closure is, it is illustrative to fi rst describe an example of 
 non-uniform closure  . 

 Imagine a set of three objects: a bicycle, an apple and a molecule. The relation-
ships between these objects can be many, but one can for example imagine that the 
bicycle rides over the apple and crushes it, that the apple releases a molecule of a 
volatile apple-oil, and that this oil-molecule condenses onto the bicycle. In princi-
ple, the relationships from the bicycle, to the apple, to the molecule, to the bicycle 
can be viewed as representing a closure. In an example like this, however, both the 
objects and the relationships between the objects vary, and it is hard to identify an 
overall logic which binds the diverse elements together. One might therefore call a 
closure like this one, with different kinds of objects and different kinds of relation-
ships  non-uniform closure  . 

 In contrast to a  non-uniform closure  , which can be based on objects and relation-
ships of (very) different kinds, a uniform closure is based on objects which are all 
of the same kind, while the relationships between the objects are also all of the same 
kind. This statement begs the question: when are objects, respectively processes, of 
the same kind? The criteria for identifying the kinds of objects and  processes   that 
play a role in the Operator Theory are explained later on, for example in Sects. 
 2.5.4 ,  2.6.1  and  2.6.3 .  
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2.5.2     Functional Versus  Structural Closure   

 On top of only dealing with  uniform closures  , the Operator Theory also limits itself 
to functional and structural closures. 

 In a  functional closure   the objects are connected through links that can be viewed 
as unidirectional transformations. During a unidirectional transformation a fi rst 
object alters the physical construction of a second object through a physical interac-
tion, in such a way that the interaction either changes both objects, or only the sec-
ond object. One can visualise successive unidirectional transformations as a chain 
of links represented by arrows from the fi rst to the second object, the second to the 
third etc. Such a chain has functional closure when at some point the chain loops 
back onto itself and thus creates a closure of the process chain. This defi nition 
implies that a functional closure has a minimum size of two objects connected by 
two processes (arrows). 

 An example of a  functional closure   is given by a set of for example three cata-
lytic molecules (M 1  to M 3 ) which transform substrate molecules to catalytic mole-
cules that are part of the set. In this set, M 1  catalyses the production of M 2 , M 2  that 
of M 3  and M 3  that of M 1 . The relation between catalysts and molecules produced 
through catalysis forms the loop required for closure. 

 The other kind of closure that plays a role in the Operator Theory is the structural 
closure. Structural closure implies that a group of objects interact in a non- 
transformative way while their locations are confi ned by the formation of a closure. 
The closure can have two different forms: one form is that of a two dimensional 
surface that completely surrounds a volume, as in the case of a rubber ball where the 
rubber surrounds a volume of air. The other form is that of one or more moving 
objects whose paths create a closed shape. An example of the latter is an electron 
that is part of an  atom  . In this case, structural closure can be seen to occur in two 
ways. (1) When the electron returns to a point it was at before, thus closing a loop 
and (2) the set of its possible locations creates a sphere known as the electron shell, 
which completely surrounds the nucleus. Due to Pauli’s exclusion principle, the 
electron shell has physical relevance, because the electron shells of two atoms expe-
rience increasing resistance when their electron  orbits   approach each other and 
overlap.  

2.5.3     Dual Closure 

 Of all objects with closure, the Operator Theory deals selectively with objects that 
were formed through the combination of a functional and a  structural closure  , 
referred to as dual closure (addressed in singular). 

 There are two reasons for suggesting the use of dual closure. Firstly, and in anal-
ogy to the exclusion of  non-uniform closures   from the current approach, it is neces-
sary to avoid that subsequent steps are based haphazardly on either functional or 
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structural closure. After all, the goal here is not to end up with a  ranking   that is 
based on a mixture of rules, which could be viewed as representing a logically 
inconsistent ranking. Secondly, the aim is to create a ranking that selectively 
includes  physical objects  . On the one hand this goal immediately excludes entities 
defi ned by  functional closure  , because such entities are conceptual. On the other 
hand, if a ranking is based selectively on structural closures the  ranking   can include 
all sorts of enclosed objects, such as soap bubbles, hollow glass spheres, fatty acid 
vesicles and children holding each other’s hands while dancing in a circle. 

 Through the use of dual closure the Operator Theory limits the options for any 
next kind of closure to a single next possibility, or to a few possibilities which are 
all based on the current dual closure.  

2.5.4      The Use of Dual Closure in the  Operator Hierarchy   

 The goal of the Operator Theory is to create a ranking that is also an ontogenesis for 
kinds of objects. For this purpose, the Operator Theory identifi es a sequence of dual 
closures in such a way that every new dual closure is of a new kind, and defi nes a 
new kind of object. Every object of a kind that is included in this sequence is called 
an operator, and the sequence is called the Operator Hierarchy. 

 One of the goals of the Operator Theory is to create constancy in the naming of 
the kinds of operators. For this purpose the dual closure of a specifi c operator is 
used as an anchor for the naming of the kind of the operator, and sub-kinds. 

 A new operator is created through a new kind of dual closures that connect two 
or more operators of the current kind, thus creating the next operator in the  hierarchy. 
The operators in the operator hierarchy refer to kinds of objects, not to specifi c 
objects. This means that any confi guration of operators of the current kind which are 
linked through one or more dual closures of the new kind is an operator of the same 
new kind, i.e. any such object is placed in the same position in the operator hierar-
chy. The above  generalisation   can be understood more intuitively by comparing an 
operator with a brick structure and a dual closure with cement. In that case, the 
above principle says that the term brick structure is a general term that refers not to 
a specifi c structure, but to any structure made out of bricks that are held together 
with cement. Thus, any object made of the same kind of operator and the same kind 
of dual closure can be seen as being of the same operator kind. Accordingly, if 
 atoms   are the bricks and covalent bonds are the cement, both a diatomic structure, 
such as H 2  or O 2 , is a molecule, the long chain of atoms in some fats or in lignin is 
a  molecule  , a sheet of connected atoms such as in graphene is a molecule, and a 
spherical structure of carbon atoms, a fullerene, is a molecule. 

 The sequence of all dual closures and associated kinds of  operators   follows the 
order in which they were fi rst formed, and starts with cosmogenesis. The fi rst kind 
of particles that currently are known to have been formed during the  Big Bang   are 
the particles that are studied by particle  physics  , the so-called fundamental particles 
that are described by the so-called  standard model   (Close  1983 ; Oerter  2006 ). In the 
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Operator Theory, all fundamental particles are seen as belonging to the same kind. 
The idea that they are of the same kind is not new. It is also the idea behind M-theory 
(Rickles  2014 ), which is more popularly known as string theory and which sees all 
fundamental particles as small strings. Whether fundamental particles have clo-
sures, and of what kind such closures are is currently unknown. For this reason the 
Operator Theory does not detail their closure, but accepts fundamental particles as 
the starting point for constructing a hierarchy of dual closures. 

 Generally speaking, the dual closure of the operator of the current level can be 
used to identify the dual closure of operator(s) of the next level. The single excep-
tion to this rule is the  atom  . In atoms the  functional closure   of the atom nucleus is 
based on  hadrons  , which represent operators. Meanwhile, the  structural closure   of 
the electron shell is based on one or more electrons, which represent fundamental 
particles instead of hadrons. Apparently, electrons have been the highest lower level 
possible for creating the structural closure of the electron shell, while at all higher 
levels it has been possible to create the next dual closure of the operators of the 
immediately preceding kind. 

 There is one fi nal aspect of the use of dual closure that has to be explained, 
namely that the criterion of dual closure does not always lead to a single option for 
a next operator. In some cases two or more dual closures can be based on the current 
one. In such a case, the two new kinds of operator that are created out of the present 
one cause a branching of the  ranking  . And the new kinds of operator after the 
branching will be different, but will all reside at the next level in the  hierarchy  . As 
explained in the next chapter, the possibility that dual closure can lead to a branch-
ing of the ranking of the operators suggests that the ranking of all the kinds of opera-
tors follows higher-order logic.   

2.6     Primary Structure and Secondary Structure 
of the  Operator Hierarchy         

 All the transitions in the Operator Hierarchy are summarised in Table  2.1  and the 
steps in the table are explained in an accessible way in the accompanying text. For 
additional  information   on this topic the reader is referred to earlier publications on 
this subject (Jagers op Akkerhuis and van Straalen  1999 ; Jagers op Akkerhuis 
 2010a , pp. 37–55).

2.6.1        Primary Structure of the Operator Hierarchy 

 In Table  2.1 , one fi nds all the kinds of operators, and the dual closure (functional 
and structural) on which they are based. The table also includes a  distinction         
between the  structural closure   called interface and the  functional closure   called 
 hypercycle  . When separate, the interface and hypercycle do not represent an 
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operator, because they only refer to a single closure, not a dual closure. Even though 
these  uniform closures   do not represent operators, the interfaces and pre-operator 
hypercyclic sets are included in Table  2.1  because they will play an important role 
in later analyses of the  secondary structure   of the  ranking  . 

 Even though the concept of dual closure in principle does not demand this, it is 
relevant to remark that dual closure can in practice frequently be identifi ed because 
it involves an “advanced” property of the interacting operators. The advanced oper-
ators have a new property that adds something special to the repertoire of their 
interactions. 

 For example, of all the fundamental particles with mass, the  quarks   not only have 
mass, but are also known to emit and reabsorb (at high frequency) small force- 
carrying particles, called gluons. Gluons are relatively complex, because they convey 
a property that is known as “colour”, which is conveyed as a combination of colour 
and anti-colour. This complex feature later became the basis for the  functional clo-
sure   of  gluon exchange  . Another example can be observed in neural networks. While 
all the cells of a multicellular touch their neighbouring cells and interact with them 
through plasma  connections        , a special new property of a subset of advanced cells 
was that they could connect cells that are not direct neighbours. This special property 
later formed the basis for the functional closure of the neural network. 

 The dual closures in Table  2.1  are explained in detail in the following sections. 
 The  quarks   are viewed as primitive objects, of which the kind of closure is 

unknown. 
  Quarks   can interact through the exchange of other small fundamental particles, 

notably gluons. In this way  quark–gluon plasma   can be formed. When the quark–
gluon plasma cooled, during the expansion of the  universe  , the gluon force-fi eld 
became relatively strong, and the  quark–gluon interactions   condensed into small 
bundles of two or three quarks, a process called confi nement. The exchange of glu-
ons and the confi nement represent a functional and  structural closure  , respectively, 
and thus a dual closure. The resulting kind of operator is called a  hadron  . Examples 
of hadrons are the proton and the  neutron  . 

 Protons and  neutrons   can emit and reabsorb small  hadrons            that consist of two 
 quarks  , and that are called  pions  . In the same way as quarks can exchange glu-
ons, the hadrons can exchange pions, and in this way create an emission-absorption 
cycle. Bound protons and neutrons together are also viewed as a nucleus. The cap-
turing of an electron shell creates a structural boundary around the nucleus. The 
combination of the nucleus and electron shell represents a new dual closure, and is 
called the  atom  . 

 The electron shell of an atom normally contains the same number of of electrons 
as there are protons in its nucleus. The electron shell of cell is built up in layers. The 
electrons orbit the nucleus and can be anywhere in their layer at any one time. Each 
layer can contain only a limited amount of electrons. For example: the innermost 
layer can only hold 2 electrons and the next two layers 8 each. A new layer is formed 
outside the previous one, but only when the previous layer is full. Apart from this 
layering, there is another important property, namely that electrons in the electron 
shell want to pair up with another electron. Atoms have a tendency to want to have 
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the outer layer of their electron shell to be full. One way they can do that is by a 
pairwise sharing of some of the electrons in that outer layer with those of another 
atom. For example: the oxygen atom has 8 protons in its nucleus, and hence 8 elec-
trons in its electron shell. The fi rst layer therefor contains two electrons, while the 
second, and in this case outermost, layer contains 6 out of a possible 8. This means 
this layer is lacking 2 electrons. This lack can be solved by a pairwise sharing of two 
electrons in this layer with another oxygen atom. This sharing creates the more 
stable oxygen molecule, made up of two atoms. Electrons that are paired up in such 
a way can then orbit both atoms. The sharing of electrons in this way is known as a 
covalent bond which keeps the atoms close together. When the outer layer of an 
atom’s electron shell is already full, it will not form covalent bonds with other 
atoms, and thus will never be part of a molecule. Such atoms are known as the noble 
gasses, which are therefore inert. 

 Molecules come in many varieties. Some of these can catalyse a reaction in 
which a substrate molecule is transformed into another molecule. A  functional 
 closure            now emerges if, in a chain of catalytic reactions, the set of molecules created 
by the reactions is the same as the set of molecules that catalyse the reactions. Such 
a set of molecules is known as an autocatalytic set. At the same time, some products 
of the reactions of the catalytic cycle may form a vesicle that surrounds a volume of 
liquid in which the catalytic processes take place. When this happens, the catalytic 
cycle and the vesicle together represent a dual closure. The resulting system is the 
operator of the kind cell. Examples of this operator are the bacteria and the archaea. 

 The next operator is based on the interaction between cells. But now there are 
two  topological   possibilities for  structural closure  . A cell can interact with another 
cell that is attached to it, or with one that is inside it. 

 If a cell interacts with a cell that is attached to it, a dual closure emerges when the 
cells are linked through plasma connections across their membranes. Due to the 
plasma connections two or more cells interact in a transformative way, by the 
exchange of  plasma        , hereby creating a  functional closure  . And the plasma connec-
tions also create a connected outer surface, which represents a  structural closure  . 
The resulting kind of system is called the multicellular operator. Multicellularity of 
a group of cells thus implies that any cell is linked to at least one other cell in the 
group through  plasma strands  , and that every cell contributes to the functioning of 
one or more cells of the group in the context of maintenance of all the cells in the 
group as a  multicellular organism  . An example of this kind of operator is repre-
sented by the blue-green algae. 

 If a cell interacts with a cell inside it, the  functional closure   is realised through 
the obligatory dependency of the host cell on the metabolic activity of the  endosym-
bionts  , while the endosymbionts depend for their  metabolism   on the host cell. The 
structural closure involved is that of the membrane of the host cell, which acts as an 
interface for the endosymbionts with the outer world. The resulting kind of system 
is called the endosymbiont operator. Examples of this kind of operator are the 
 protozoa  . 

 By analogy with the multicellular  operator        ,  endosymbiont    cells   can, through a 
dual closure, create an  endosymbiont multicellular   operator, such as a  plant  , an  alga   
and a  mushroom  . 
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 From the  endosymbiont    multicellular   operator a next dual closure can be reached 
in the following way. First, single cells connect through long extensions with other 
cells than their neighbours. These  extensions   connect multiple cells into groups 
that, through a fi rst-order interaction cycle can act as  information   storage. A second 
order interaction cycle emerges when such fi rst-order cyclic groups are connected 
to other such groups. The interactions between such groups represent a new kind of 
second-order  functional closure  .               For a dual closure, the interacting groups of neural 
cells still need structural closure, which because of the demand of uniformity, has 
to be based on multicellular units. It is suggested for this reason that structural clo-
sure is represented by the groups of interacting neural cells that act as sensors. The 
combination of the hypercyclic interactions and the sensory interface is viewed as 
the hallmark of a new kind of operator, which has been named the memon. When 
analysed in this way, the tissues in which the neural system and interface are embed-
ded, the ‘body’ that ‘surrounds’ the memon, becomes a kind of ‘vehicle’ for the 
memon. The memon as a neural entity depends strongly on feedback with its mul-
ticellular vehicle, because the interaction between both aspects is needed for main-
tenance of the entire construction. Because of this close interaction, the current text 
will generally use the concept of a memon as if it extends to the entire physical body 
in which the memon resides. For example, when a human is called a memon, this 
refers not just to the neural network, but includes the human body as the vehicle of 
the neural network. Accordingly, a memon will also be addressed as a neural net-
work organism. 

 It is furthermore relevant to remark that in  nature   the fi rst memons could only 
develop as a special kind of organs in  multicellular organisms  . For the  Operator 
Hierarchy   it is not necessary, however, that the agents that carry out the informa-
tional  hypercycle   are cells. In principle technical analogies of cells may perform 
processes that conceptually can be viewed as identical.  

2.6.2     Secondary Structure of the Operator Hierarchy 

 By analogy with the way amino acids can be viewed as the primary structure, 
and the helix as the secondary structure of DNA, the Operator Theory also theo-
rises that the  ranking   of the operators has a primary structure and a secondary 
structure. 

 The primary structure depends on the pairs of kinds of operators before and after 
a dual closure, e.g.  hadron   and  atom  , atom and molecule, molecule and cell, and cell 
and  endosymbiont    cell  . (see Table  2.1 ). The secondary structure depends on patterns 
that recur in the kinds of  transitions         and the kinds of  operators   they connect. The 
following discussion of the secondary structure involves two steps. The fi rst step 
focuses on transitions from one kind of operator to the next. The second step pays 
special attention to a number of closures that occurred before the fi rst operator 
emerged. 
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    Secondary Structure in the  Ranking   of All the Operators 

 Here it is hypothesised that the ranking of all the operators of different kinds has a 
secondary structure. This hypothesis has its roots in the observation that kinds of 
operators can be arranged in groups, each group being limited at the low end by a 
new kind of operator, and at the high end by an operator that consists of multiple 
attached operators. Inside such a group all the operators can be viewed as being 
constructed from the fi rst operator of that group. For example, the atom is a new 
kind of operator at the lower end of the group, and the molecule is the operator that 
consists of attached atoms, and that forms the higher end of the group. One can also 
observe in Table  2.1  (third column, grey rows) that the fi rst kind of  operator            in every 
group of the kind that is discussed here is preceded by a hypercyclic closure with 
interface. 

 The above groups of kinds of operators can include just a single operator kind, or 
can include two or more kinds of operators. Using Table  2.1  one can identify three 
examples of such groups:

    1.    The  hadron  , which represents the fi rst and only operator kind in this group.   
   2.    The  atom   and the molecule either are atoms or consist of atoms.   
   3.    The cell, the multicellular, the  endosymbiont    cell  , and the  endosymbiont multi-

cellular  , which all are cells or consist of combinations of cells.    

  The above groups differ in the number of members, either a single or two or four, 
while the increase in the number of kinds of operators per group suggests an  expo-
nential pattern  . The Operator Theory assumes that this exponential pattern is not an 
 artefact   of the way of analysing  organisation        , but that it can be viewed as represent-
ing a special kind of regularity in the organisation of  nature  . If this assumption is 
correct, there are two questions that need to be answered. The fi rst is: What kind of 
regularity can describe a pattern like this? And the second is: What kind of  mecha-
nism   can be found that can explain the  emergence   of such regularity? This section 
focuses on the fi rst question. The second question is discussed in the thermodynam-
ics chapter of this book. 

 One of the hypotheses of Operator Theory is that the  exponential pattern   in the 
number of kinds of operators per layer can be described by means of a simple 
abstract logic that is based on the following two rules. 1.The fi rst rule is that the dual 
closure of any next kind of operator must always be of a new kind. Due to this rule, 
the dual closure of the current operator can never be of the same kind as that of the 
next operator. 2.The second hypothetical rule assumes that after a new kind of oper-
ator has formed, any next new kind of operator will have a dual closure that repeats, 
at a higher level, all the closure kinds at the preceding level. 

 The way these two rules work is demonstrated by the following example. If the 
current operator has dual closure of kind A, the fi rst rule implies that the next opera-
tor must have dual closure of kind B (Fig.  2.2a ). Given an operator of kind B, the 
second rule implies that the next new operator must have a dual closure that differs 
from B while repeating the kind of closure of A. Accordingly, the next new operator 
will have dual closure of the kind A(B), which coding indicates that a new kind of 
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dual closure A is formed that is based on the dual closure of operators of the kind 
B. Now all possible combinations based on B have been fi lled in, and because a next 
kind of operator must have a new kind of dual  closure           , this implies that the next new 
operator must be of kind C. For a proper understanding of the use of dual closure it 
is relevant that every next operator is based on the dual closure of the preciding 
operator, but that this does not necessarily imply that a next operator must always 
be constructed physically from operators of the preceding kind.

   Using the two above rules, and based on the dual closure of the kind C, there are 
now three options for a next new kind of dual closure, namely A(C), B(C) and 
A(B(C)) (Fig.  2.2a ). For example A(C) can be interpreted as a repetition of the A 
kind of dual closure based on operators of the kind C. Due to this logic, a  ranking   
emerges that includes an exponential increase in the number of kinds of dual closure 
per layer, from 1 to 2 to 4 to 8 etc. While this hypothetical pair of rules describes a 
logic that can be matched with the pattern in the sequence of kinds of operators, it 
is still an open fi eld of scientifi c inquiry to identify all the mechanistic explanations 
that create such patterns. Furthermore, based on the current understanding it cannot 
be excluded that in analogy to the  system kind   A(B(C)) producing a next series of 
systems, also A(C) can become the basis of next systems. At present, however, no 
known examples seem to exist of systems that fi t into this hypothetical  extension  , 
due to which such an option is no more than a theoretical speculation. 

A

B

C

B(C)

A(B)

A(C)

A(B(C))

A: Theoretical construction hierarchy

A

B

C

B(C)

A(B)

A(C)

A(B(C))

Hadron
(multi-quark)

atom

cell

endo-
symbiont

Molecule 
(multi-atom)

multi-
cellular

endo-
symbiont  

multi-
cellular

B: Reorganised construction hierarchy C: Corresponding kinds of operators

C B A C B A

  Fig. 2.2    Hypothetical  algorithm      for the second order  ranking   of the different kinds of operators. 
Part ( a ): The construction of increasingly complex kinds of operators based on a combination of 
the two hypothetical rules, the logic of which is explained in the text. Symbols  A ,  B  and  C  indicate 
different kinds of dual closure. Part ( b ): A reorganised representation of the ranking in part ( a ). 
Dual closures are sorted according to columns with a recurring similarity in the kinds of dual clo-
sure, indicated as  C ,  B  and  A  on  top  of a column. At the same time, every position in the hierarchy 
has its proper kind of dual closure. While the  arrows  seem to follow a different pattern in Fig.  2.2a  
than in  2.2b , this is an  artefact   of the new kind of ranking. Part ( c ): The mapping of real operators 
that correspond with the position in part ( b )       
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 In Fig.  2.2a  the different kinds of operators are grouped based on dual closures 
of kind A, B or C. However, the way in which the kinds are organised does not offer 
a transparent overview of when a dual closure is new, and when it repeats a dual 
closure of a lower level operator. To improve on this situation, it was decided to rear-
range the kinds of dual closure in a column-wise way (Fig.  2.2b ). Since the repeti-
tion of the dual closure of kind A is always the last option before a new kind of dual 
 closure            is required, these closures are viewed as the most complex in the series, and 
are placed at the right side of the fi gure (Fig.  2.2b ). In this way the “ ladder  ” of dual 
closures of Fig.  2.2a  is folded to highlight its column-wise regularity in Fig.  2.2b . 

 So far, the Fig.  2.2a, b  depict relationships based on hypothetical rules. The link 
with real kinds of operators becomes apparent in Fig.  2.2c . It can be observed that 
every dual closure in the rightmost vertical column is of the kind A, and correspond 
with operators that consist of multiple attached objects of a uniform kind: the had-
ron, the molecule and the multicellular. In the  hadron  , the attached objects are  quarks  . 
In the molecule the attached objects are  atoms  . In the multicellular organisation the 
attached objects are either cells or  endosymbiont cells  . One column to the left, all the 
operators share a kind of dual closure that is associated with the character B. This 
dual closure involves an interface. In the atom the interface is the  electron shell, and 
in the  endosymbiont   cell, the membrane of the host cell acts as an interface for the 
endosymbiont cell. Finally the cell has a new property (of kind C) which according 
to the Operator Theory is the capacity called the structural  copying            of  information  . 

 Apparently it is possible to relate the abstract rules and the  ranking   of specifi c 
operators. This suggests that  nature   fi lls in a regular pattern of positions in state 
space. These positions have also been referred to as slots in state space by Diedel 
Kornet (personal  information  ).  

    Extending the Secondary Structure Below the Level of the  Hadron   

 So far, the attention was focused on the  ranking   of the operators, of which the had-
ron is the least complex kind. A typical property of all the operators is their dual 
closure. However, the demand of dual closure excludes systems that lack the 
required pair of closures. To also include in the logic of the Operator Hierarchy the 
kinds of objects that preceded the hadrons, analyses must also include objects hav-
ing a single closure dimension. A focus on such objects implies that structural and 
 functional closures   must be analysed independently of each other. 

 The early  universe   was fi lled with  plasma         of fundamental particles of different 
kinds. Some of these particles represented matter and others conveyed forces. The 
matter particles are either leptons (e.g. the electron) or  quarks  . 

 Here it is assumed that the particles in the  standard model   really represent the 
most fundamental  level of organisation  . Based on sting-theoretical models for 
quarks, every quark presumably exists as a self-interacting fi eld that rolls up to a 
closed space, creating an interface between the quark and the world. The new kind 
of (single) closure that is introduced by quarks was for this reason named the inter-
face closure. 
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 Fundamental particles split off and  reabsorb   virtual particles, such as virtual pho-
tons, in a process called self-interaction. A special property of  quarks   is their capac-
ity to emit and reabsorb force carrying particles of the kind gluon. The emission and 
reabsorption of a gluon can be viewed as a cyclic process. A cycle of cycles or 
second order cycle is formed when a quark splits off a gluon which is absorbed by 
a second  quark  , which splits off a gluon which then is absorbed again by the fi rst 
quark. The Operator Theory refers to this second order cycle as a  hypercycle  . Any 
hypercyclic arrangement of gluons now represents the kind of (single) closure indi-
cated as a hypercyclic closure. As the interactions in this cycle are of a transforma-
tive kind, they comply with the criteria for  functional closure  . 

 In the early  universe   all forms of hypercyclic  closure         between quarks were 
embedded in the  quark–gluon plasma  . When the universe expanded, however, the 
temperature dropped because the energy was dispersed over a larger space. And at 
lower temperatures the gluon fi eld becomes relatively  strong  . If, at current tempera-
ture, one pulls two  quarks   apart, the gluon fi eld stretches like anelastic band. When 
it snaps, the energy that is released is transformed into new quarks on either side of 
the breakpoint. As the result of this mechanism quarks always occur in bundles of 
two (mesons) or three (baryons). It is said that the gluon fi eld confi nes the quarks. 
This confi nement of quarks by the gluon fi eld is viewed by the Operator Theory as 
a new kind of closure that repeats the interface kind of closure of the  individual   
quarks (Fig.  2.3 ). Confi nement can be viewed as a structural container around the 
functional process of  gluon exchange  , and complies for this reason with the criteria 
for  structural closure  .

   By combining the  hypercycle   closure (functional) and the interface closure 
(structural), one obtains the fi rst dual closure, which is typical for the hadrons (par-
ticles such as protons and  neutrons  ). From this moment onwards one can continue 
with the logic of dual  closure         steps that was discussed above. 

 The above explorations have demonstrated that it is possible to identify two 
kinds of single closure that emerged during the fi rst closure steps from  quarks   to 
hadrons. It is interesting to add this  information   to the scheme of Fig.  2.2.c . The 
result is a new scheme that starts with the fi rst single  closures   and continues with the 
dual closures (Fig.  2.3 ). 

 At this place, the names of the closure dimensions on top of the columns in 
Fig.  2.3  are not discussed. This topic is detailed in Sect.   18.8     in relation to predic-
tions of future operators. 

 Using Table  2.1  and Fig.  2.3  one can now defi ne both the  transitions between 
operator layers   (BOL) and the  transitions between operator kinds   (BOK). 

 Examples of BOL transitions are all transitions in the  operator hierarchy         that 
introduce truly new kinds of closure. At the same time, every truly new kind of clo-
sure can also be viewed as opening up a new dimension. There are many exam-
ples of the early dimensions, notably the closure dimensions of the interface, the 
hypercycle, and the multi-particular state, For this reason, the strutures of these 
closure dimensions are relatively well understood (see the right columns in Fig.  2.3 ). 
The more recently a dimension has  emerged  , the fewer examples of it are known 
and the more diffi cult it becomes to perform secondary analyses and to identify the 
general factor that is typical for the dimension. 
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  Fig. 2.3    The  secondary structure   of the  Operator Hierarchy  .  Grey columns : conceptual stages that 
precede the formation of the fi rst kind of operator at a next layer (pre-operator hypercyclic set, and 
interface).  Yellow columns : operators and their closure dimensions.  Black arrows : transitions 
towards the fi rst operator at the next layer, named a BOL transition.  Grey arrows : transitions 
towards new kinds of operators within a layer, named a BOK transition. Arrows that reach across 
two or more columns, do not indicate a gap in the logic, but are the result of the fi gure representing 
a two-dimensional projection of a higher dimensional logic       
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 In the operator hierarchy the following six BOL transitions (a) and related clo-
sure dimensions (b) can be recognised:

    1.    First BOL transition: the fundamental particles.

    (a)    Here scientists still speculate about the closures. A potential  explanation         
based on string theory is the rolling up of a fi eld-sheet to a long tube and the 
closure of the tube to a fi nite system; the torus of the closed string.   

   (b)    Fundamental particles are assumed to have the closure dimension of the 
interface, which is the fi rst kind of closure of the operator hierarchy. Higher 
level pre-operator systems which also have the interface closure are: gluon 
 confi nement  ,  pion   exchange, the cell membrane, and the sensory interface.       

   2.    Second BOL transition: The hypercyclic  quark–gluon plasma  .

    (a)    This is represented by the second order process of quark– gluon exchange   
that connects two quark–gluon cycles in a hypercyclic arrangement.   

   (b)    The new  closure         dimension that is introduced is the hypercyclic closure, or 
 hypercycle  . At levels above the  quark–gluon plasma   this kind of closure can 
also be recognised in the  pion   exchange in the nucleus, in the set-wise 
  autocatalysis   and in the informational interactions between groups of neu-
rons in neural networks. Set-wise autocatalysis differs from normal autoca-
talysis in the sense that in normal autocatalysis a catalyst changes a substrate 
into a copy of itself. Meanwhile, when set-wise autocatalysis occurs, the 
catalysts involved change substrate to other catalysts than themselves in 
such a way that if each of two  catalysts   would produce the other, they would 
together sustain the pair of them, and realise auto-catalysis of the set that is 
represented by the two  atoms  .    

      3.    Third BOL transition: The  hadron  .

    (a)    This is the fi rst step in which dual closure occurs. The hadron combines the 
closures of the superstring hypercycle and the  confi nement         of the quarks 
through gluon fi elds.   

   (b)    The new closure dimension that is introduced is that of the multi-particle. 
Examples of multi-particles at levels above that of the hadron are: the multi- 
 atom   (e.g. a molecule or a lump of metal), the  multicellular organisms  , and 
the  endosymbiont    multicellular   organism.    

      4.    Fourth BOL transition: The atom.

    (a)    The dual closure is based on the nuclear  hypercycle   and the electron shell.   
   (b)    The new closure dimension that is introduced is that of the  hypercycle   medi-

ating  interface        . Based on only two examples it is deduced that what is impor-
tant about this dimension is the spatial separation of a  hypercycle   and a 
mediating interface. This interfacing is repeated in the  endosymbiont   
unicellular.       

   5.    Fifth BOL transition: The cell.

    (a)    The dual closure is based on the catalytic  hypercycle   and the cell membrane.   
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   (b)    The new closure dimension that is introduced is that of the structural copy-
ing of  information  . Here the deduction of the closure dimension is diffi cult, 
because there is only a single example that can be used. It can, for example, 
be assumed that the new property the cell allows for is the structural copying 
of  information         in the cell. Another option could be to focus on unit-wise 
information  processing  .       

   6.    Sixth BOL transition: The  memon  .

    (a)    The dual closure is based on the neural  hypercycle   and the sensory 
interface.   

   (b)    The new closure dimension involved is deduced to be structural auto- 
copying of  information  .    

      It must be noted that the closures of BOL transitions (interface, hypercycle and the 
combination of interface and hypercycle) are dealt with separately when analysing 
them from the point of view of system organisation. At the same time, however, 
these two  closures   have generally occurred simultaneously during the natural pro-
cesses that formed an operator.   

2.6.3      Systems That Include Two or More Operators: 
The  Interaction Systems   

 Because it has dual closure, an operator always represents a  countable        , structural 
and functional whole, and a physical unity. For this reason, an operator can function 
in the Operator Theory as the basic building-block for analysing systems that con-
sist of multiple operators (Fig.  2.4 ). Any such system (the system concept has been 

system

operator interaction system

Compound object Behavioural group

  Fig. 2.4    The fundamental  ontology   that the Operator Theory uses for the identifi cation of  major 
kinds   of organisation.  Dashed circles  indicate conceptual entities.  Circles with grey shading  indi-
cate physical  units         
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discussed in Sect.  2.3 ) that includes two or more operators, and that does not repre-
sent an operator itself, will be viewed as an interaction system (Jagers op Akkerhuis 
 2008 ,  2014 ). Examples of interaction systems are a  population  , a family, a society, 
a car and a football.

   The concept of an interaction system is defi ned by invoking set theory. An inter-
action system and its material objects are associated with a set which has at least 
two entities, named the elements of the set. The number of members of an interac-
tion system decreases when two or more objects integrate physically. Inside the 
large set of all possible interaction systems one can create subsets of various kinds. 
The reason why many subsets can be created is that one can imagine many criteria 
and  combinations         of criteria for deciding which objects will belong to a specifi c 
subset. Criteria can be spatial, e.g. all organisms in a specifi c area. Or criteria can be 
based on  taxonomy  , e.g. all the organisms of the same species (which concept 
requires further criteria to be specifi ed). Criteria can also be based on social interac-
tions, e.g. the wolves that cooperate as a pack, the mating of organisms, and the 
giving birth to offspring. Many more selections can be envisioned. Of all the  pos-
sibilities  , two special subsets are the compound objects and  behavioural groups  . 

 Compound objects are highlighted because, just like operators, they represent 
countable physical/material unities. In the literature about knowledge representa-
tion compound objects have also been referred to as chunks, in the interpretation of 
continuous pieces of matter (e.g. Bennett et al.  2000 ; Davis  1993 , and Needham 
 2002 ). A compound object consists of operators and/or compound objects which are 
more closely attached to each other than to their environment, and which can be 
displaced as a structural unity relative to the environment (as explained in Jagers op 
Akkerhuis  2008 ), e.g. a stone, a drop of water in oil, a piece of cloth, and a car. The 
term compound object is never used for an operator. Complex compound objects 
can be formed through the  lumping         of less complex compound objects. A special 
kind of compound objects is formed through the attachment of single celled organ-
isms, leading for example to the slug of the cellular slime mould   Dictyostelium    
  discoideum    and the eight-cell stage of the human embryo. The reason why these are 
called compound objects, and not organisms, is that the cells lack the plasma con-
nections required for dual closure. Instead of as an organism, the Operator Theory 
views the slug and the early embryo as   pluricellular      compound objects   . 

 Another special kind of  interaction system   is the  behavioural group  , which is 
defi ned as a consciously made selection of organisms which are not attached and 
which can be viewed as being united through some kind of interactive relationship. 
Making a conscious choice about which organisms belong to the group and which do 
not is necessary for three reasons. Firstly, as long as one talks about individually 
dwelling organisms, the interactions do not defi ne a form of material unity. For this 
reason the criterion of attachment cannot be used to identify the members of a group. 
Secondly, the number of possible relationships that an organism can have with enti-
ties in its environment is almost infi nite. This implies that one has to consciously 
select specifi c relationships between specifi c organisms when defi ning a behavioural 
group. For example, in a specifi c environment wolves will eat mice, dig burrows, 
mark their territory and have many more interactions, but only the social interactions 
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with some other wolves are selected for the identifi cation of the wolves that are a 
member of a specifi c pack. Thirdly, if one uses a functional criterion without addi-
tional spatial criteria, this can have marked consequences. For example if one uses the 
potential to mate as the criterion for  membership         of the global  population   of a spe-
cies, this leads to problems in the cases of ring species where all neighbouring indi-
viduals can mate, but where at the geographical  edges   of the population at least two 
groups of  individuals   exist that can not mate or can not produce fertile offspring. 

 A property of  interaction systems   is that the objects involved can be grouped 
according to fully or partially overlapping subsets. For example horses can be 
grouped according to  herds   or  populations  , as wild horses or as riding horses. 
Additionally, and in a (partially) overlapping way, the individuals of different spe-
cies that are present in a specifi c area can be grouped according to more inclusive 
criteria, which results for example in communities and  ecosystems  . Another exam-
ple of overlapping criteria is the participation of a person in different groups, such 
as a company, a family, a debating club and a tennis club. The subsets of people in 
the different clubs are not the same, and may show some overlap, for example when 
a single person participates in two or more groups. At the same time, there may also 
be several colleagues of this  person           , who participate in the same tennis club, but not 
in the other groupings.   

2.7     Discussion 

2.7.1     General Remarks 

 The  Operator Hierarchy   is based on the concept of dual closure. Dual closure adds 
a novel perspective to existing system theories about objects and  hierarchical levels   
of  organisation  , e.g. by Von Bertalanffy ( 1950 ), Simon ( 1962 ), Turchin ( 1977 ), 
Koestler ( 1978 ), Miller ( 1978 ), Salthe ( 1985 ), Heylighen ( 1990 ), Alvarez de 
Lorenzana ( 1993 ) and others. It is important to realise that the functional and struc-
tural aspects of dual closure are always the results of underlying dynamics, and that 
for this reason the Operator Theory is not just an administrative classifi cation of 
closure kinds but also a mechanistic  ranking  . 

 An object that has (dual) closure, can of course lose its closure. This happens for 
example when the construction and/or dynamics are reduced to below a specifi c 
minimum for the kind of closure, for example, an atom that is heated stops to be an 
 atom   when it loses the last electron shell, or a  multicellular organism   can be starved 
and loose its capacity of maintenance, and fi nally die and disintegrate. 

 While closure is an absolute necessity for activities/processes such as  metabo-
lism   and maintenance, this logic cannot automatically be inversed, as the example 
of crows illustrates. Most crows are black birds, but this does not imply that most 
black birds are crows. By analogy, while the  metabolism   of organisms requires 
 functional closure   of the processes involved, this does not imply that a system that 
is not metabolically active does not have closure. An example is a frozen bacterium. 
As long as all the molecules are preserved that are involved in the  autocatalytic 
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closure  , and as long as the membrane of the bacteriumis intact, dual closure is pres-
ent, and the frozen bacterium can be thawed and become fully functional again. This 
is the reason why such a frozen state has been called viable lifelessness. A conse-
quence of this unidirectional logical relationship is that closure can be viewed as 
being more fundamental than  metabolism   because one needs closure for metabo-
lism, while as the example of the frozen bacterium illustrates- metabolism is not 
necessary for closure. 

 At the end of this paragraph special attention is asked for the  non-classical nam-
ing   that the Operator Theory introduces. The classical indication that the bacteria 
and the archaea represent  prokaryotes   can be viewed as an approach that has worked 
towards increasingly small objects. For a long time it had been impossible to observe 
structures much smaller than those of  eukaryote cells  . And when the fi rst micro-
scopes fi nally offered a view of the bacterial  world  , these were classifi ed as  prokary-
otes  , the organisms that do not have a nucleus in their cells. As the  Operator 
Hierarchy   reasons  from the bottom up  , a system that resides at a higher level in the 
operator hierarchy, such as a eukaryotic cell, cannot serve as a reference as long as 
it still has to be constructed. A similar logic applies to the single celled organisms 
that belong to the group that classically is named  Protozoa  . In the Operator Hierarchy 
the  Protozoa   are classifi ed as  endosymbiont cells  . They are called endosymbiont 
cells (and the cells living inside them are called endosymbionts) because the 
Operator Theory emphasises the dual closure that is associated with the endosym-
biont cell(s) that live inside an endosymbiont cell. When identifying the next step 
after the cell, the Operator Theory emphasises the presence of the  endosymbionts   
instead of the presence of the karyos. The operator theory focuses on the presence 
of the endosymbiont, because the structure of the karyos is not present in all stages 
of the  life cycle   of all eukaryotic species. During cell division, the karyos of many 
species temporarily dissolves. The advantage of focusing on the presence of endo-
symbionts is that the  endosymbionts   in a cell can never disappear, because they are 
part of an obligatory interaction with the host cell. Finally, the Operator Theory 
does not in all cases use the word animal. The reason is that the concept of the ani-
mal in the classical naming system can equally well be applied to single celled 
 protozoa   such as Paramecium as to multicellular animals. To prevent confusion 
when using the concept of the animal in this way, and in accordance with the dual 
closure of the neural network, the Operator Theory makes use of a new concept, the 
 memon   for the class of  neural network organisms  . Accordingly, all memons are 
animals, but not every animal is a memon.  

2.7.2     Using the Operator Hierarchy for Defi ning the Organism 
 Concept      

 As has been indicated in the general introduction the debate about how the organism 
concept can be defi ned does not seem to have ended yet. About the role of the organ-
ism concept in the life sciences Nicholson ( 2014 ) says the following: “Although 
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organisms were deemed to have been explained away, in retrospect a more accurate 
assessment is that they were merely abstracted away. In molecular biology, the com-
plexity of the organism’s organization was taken for granted as the experimental 
focus shifted towards the detailed mapping and analysis of metabolic pathways, 
signalling cascades, and the regulation of gene expression. Likewise, in the Modern 
Synthesis view of evolution, the agency and  autonomy   of organisms were not even 
recognised as theoretical problems but were simply presupposed in the models of 
 population genetics      and behavioural  ecology  .” 

 One of the things that may have blocked the road towards consensus about a defi -
nition of the organism concept is that classical approaches start with inventories of 
different kinds of things that are viewed as organisms such as bacteria,  viruses  , 
archaea,  protozoa  , sponges, corals,  plants  , algae, fungi,  lichens   and animals. After 
this inventory has been made, criteria are sought that can cover all these cases. What 
is special about such an approach is that the examples were selected more or less 
 haphazardly     , based on a loose collection of criteria that roughly coincide with prop-
erties that organisms generally have. For example, one may have used  reproduction   
as a criterion for considering an example as an organism. Indeed most of the exam-
ples may potentially reproduce. But the technical aspect that is relevant for a defi ni-
tion is, whether or not reproduction offers a necessary and  suffi cient criterion        ? Can 
it be confi rmed that every example that is considered as an organism can always 
reproduce (think of a single animal that is locked up in a cage)? And is it always true 
that if a system cannot reproduce it can never be an organism (think of a  sterilised 
cat  , or a  mule  )? Similarly, one could focus on the use of  metabolism   as a criterion 
for whether or not an entity represents an organism. Now it is easy to on the one 
hand indicate many things that have some form of metabolism but are not organism- 
like, such as a fl ame, or a compost heap. And on the other hand, there exist things 
that are organisms but that do not have  metabolism  , such as a frozen bacterium. The 
use of  reproduction   and metabolism as criteria also leads to questions about what 
 exactly  is meant with these concepts. If one uses for example reproduction or 
metabolism as criteria for deciding whether or not an object belongs to the set of 
organisms the next challenge becomes to defi ne precisely what the criterion means, 
because any variation in the  interpretation      of reproduction or metabolism will lead 
to a different selection of objects. 

 The Operator Theory now offers an alternative approach to defi ning the  organism 
concept   that contributes to resolving the above discussions. As was discussed in 
Jagers op Akkerhuis ( 2010b ,  2012a ,  b ), the Operator Theory offers a basis for defi n-
ing the organism concept in two steps. The hierarchy of all the operators serves as 
the fi rst step. And as the second step, one can choose to -by defi nition- only select 
as organisms those kinds of operators that are at least as complex as the cell. If one 
uses these two steps, the  organism concept   is defi ned  from the bottom up  . Based on 
this approach, only the following kinds of operators represent organisms: the cell 
(conventionally called a  prokaryote  ), the (prokaryote) multicellular (e.g. blue-green 
algae), the  endosymbiont    cell   (conventionally called a eukaryotic cell, but named 
differently by the Operator Theory because of the relevance of the endosymbiont), 
the  endosymbiont multicellular   (e.g. a  plant  ) and the organism with neural network 
(the so-called  memon  , see Fig.  2.3 ). 
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 As has been discussed for example in Jagers op Akkerhuis ( 2010b ,  2012a , b ) 
using the Operator Hierarchy as a basis for defi ning the organisms, offers clarity 
about which entities are organisms and which are not. The operator-based criteria 
allow one to identify the operators that are organisms amidst of the many other sys-
tems which are not an  operator     , such as the slug of a slime  mould  , symbiotic rela-
tionships,  herds  , colonies and bee hives. As a consequence of this approach some of 
the classical examples of organisms, such as  viruses  , sponges and  lichens   have to be 
set aside. And the classical criteria such as  reproduction  ,  metabolism   and response 
to stimuli will have to be reconsidered. When using the new defi nition, only specifi c 
kinds of complex operators are viewed as organisms, and the essential property of 
an organism has become its level-dependent kind of dual closure. This novel 
approach implies a major  re-conceptualisation   of the discussions in this fi eld. 

 The operator theory also clarifi es the difference between cell theory, and organ-
ismal theory (e.g. as discussed by Nicholson  2010 ; Nicholson and Gawne  2014 , 
 2015 ). It does so by emphasising that a cell has dual closure, and that combinations 
of cells can also have dual closure. Both a cell, and a group of cells that have dual 
closure, are viewed as an organism. This indicates that in a single cell the criteria for 
dual closure and the criteria for being an organism are in full overlap. In systems 
that consist of multiple cells, however, the cells have one particular kind of dual 
 closure      and the multicellular organisation has another particular kind of dual clo-
sure. And for the Operator Theory it is the highest level closure that determines the 
kind of the operator.  

2.7.3     Relating Classical Hierarchy and the Operator Theory 

 Those readers who are familiar with classical approaches in natural hierarchy, in 
biological/ecological hierarchy and in ecotoxicology, will have noticed that such 
approaches generally make use of a linear  ranking  , a “ ladder  ”, in which lower level 
elements are subordinate in some way to higher level elements. However, the 
Operator Theory offers tools to allow that more complex hierarchies can be thought 
of, as is also suggested by the following citation of Bickhard and Campbell ( 2003 ) 
stating that: “The important point … is that ratchets of stability of emergent forms 
can form ladders and more complex hierarchies—hierarchies of some kinds of new 
organizations and emergents that make possible other kinds of organizations and 
emergents. Such hierarchies impose an organization on the potentialities of progres-
sive  emergence  : these hierarchies constitute intrinsic constraints on the possible 
courses of cosmology and evolution”. 

 As a supplementation of classical approaches that are based on a linear  ranking  , 
the Operator Theory proposes a conceptual framework for  synchronic   observations 
that works along three complementary lines, called dimensions (see Fig.  2.5 ). These 
dimensions are:

     1.    The  Operator Hierarchy   (the ranking of all the kinds of operators along the 
 upward dimension  ).   
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   2.    The organisation inside any  individual   operator (the  inward dimension  ).   
   3.    The organisation of systems that consist of interacting operators (the  outward 

dimension  ).    

  In fact, it can be suggested that changes over time can potentially be viewed as 
adding a fourth dimension, representing the  diachronic   perspective. 

 The motivation for this multi-dimensional viewpoint is that each of the dimen-
sions leads to a specifi c kind of  ranking   that is based on a specifi c kind of entities 
and ranking rules. For example the upward dimension selectively ranks operators of 
increasingly complex kinds, e.g.  atom  , molecule and cell. while the ranking rule is 
based on dual closures. The inward dimension focuses on an operator, and studies 
the material construction inside (e.g. organs and tissues in a  multicellular organ-
ism  ). The  outward dimension   ranks increasingly general subsets of objects. 

 While the  upward dimension   has a stringent  ranking   that is based on (dual) clo-
sures, the ranking of objects along the inward and outward dimension is sensitive to 
the perspective that is used during the  ranking   process. For rankings along the 
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approach of the Operator Theory ( right ) based on three dimensions.  Dashed circles  indicate 
abstract conceptual groupings of increasing inclusiveness. Classical approach: levels are con-
nected by  thick solid arrows . Operator Theory:  Thick solid arrows  indicate the levels of the 
 Operator Hierarchy   along the  upward dimension  .  Thin solid arrows  indicate parts along the  inward 
dimension  .  Dashed arrows  indicate the belonging of specifi c operators to one or more conceptual 
groupings along the  outward dimension         
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inward or outward  dimension     , one can choose different viewpoints that can be 
grouped according to the following major properties: Displacement,  Information  , 
Construction, and Energy. These different perspectives for analysing organisation 
have been indicated with the acronym DICE (Jagers op Akkerhuis  2008 ). The fol-
lowing paragraph offers some examples of how DICE can be applied to the inward 
and outward dimension. 

 When studying organisation along the  inward dimension   the following example 
demonstrates how DICE can be applied, Displacement can for example focus on the 
way that vessels and veins transport blood, and the way blood cells transport oxy-
gen. Informational relationships can focus for example on how ribosomes read the 
DNA and how messenger RNA is produced, and transcribed resulting in amino 
acids. Construction relationships can focus on organs in  multicellular organisms  , 
and on the way organs are constructed. And energy relationships can focus on the 
uptake of food, and the different ways energy from the food is used in the body. 

 Along the  outward dimension   one can identify many different groupings of 
objects. Examples of such groupings at increasing levels of abstraction are for 
example a  population  , a community and an  ecosystem  . Or one can identify grouping 
of increasing size, such as hamlets, towns, cities and mega-cities. Many different 
perspectives can be used for the  ranking   of objects into groups. While such perspec-
tives can be ranked using the dimensions of the DICE approach, also other 
approaches can be selected. Using DICE one can for example analyse an  ecosystem   
as follows. When using feeding relationships, which belong in part to the construc-
tion dimension of DICE, and in part to the energy dimension, one can rank organ-
isms into food chains. And when using displacement interactions, one can create a 
classifi cation in which objects are transported either by wind or water, or by insects, 
birds, humans etc. And constructional relationships can be used to develop a tree of 
interactions in which for example bacteria grow on the skin of a mosquito larva, 
which lives in the water in the heart of a bromeliad, which grows on a tree, which 
grows in the soil. 

 The Operator Theory thus recognises three dimensions, upward, outward and 
inward, and suggests that classifi cations along the inward and  outward dimension   
always depend on the perspective that is chosen, while these perspectives can be 
grouped according to DICE. In this way, the  Operator Hierarchy   helps creating 
awareness about the use of distinct kinds of concepts and  ranking   rules. 

 As an example of how the viewpoint of the Operator Theory contributes to clas-
sical approaches, one can look at the following example of a classical  ranking  : cells, 
organs, organisms,  populations  . In this ranking the objects are of different kinds: 
cells are either operators or parts of an organism, organs are always parts of an 
operator, the organism represents a conceptual class that may include various bacte-
ria,  protozoa  ,  plants   and animals, and a population represents a conceptual grouping 
of selected objects. Besides that  ranking   of the Operator Theory organises the dif-
ferent kinds of objects, it also organises the broad range of ranking rules. For exam-
ple, the step from cell-to-organ, and from organ-to-organism will generally take 
place in an inverse direction, namely from a small multicellular organism with spe-
cialised cells, to a large  multicellular organism   that has multicellular organs. Finally, 
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the step from organism-to-population represents the conceptual step from a single 
element to a conceptual grouping of consciously chosen elements. 

 The three dimensions discussed so far are all  synchronic   dimensions, in the 
sense that they focus on the organisation of system at a specifi c moment. Of course 
one can also focus on the change or  development   of systems over time, using a 
 diachronic   perspective. The diachronic approach could be viewed as a new dimen-
sion that analyses things in a forward way. Along such a  forward dimension   one 
can analyse how organisms during their development change from one develop-
mental stage to the other, and how interactions in  ecosystems   change, e.g. during 
succession.  

2.7.4     Relationships with the Major Evolutionary Transitions 
 Theory      

 The  Operator Hierarchy   is closely related to the Major Evolutionary Transitions 
theory that has been proposed by Szathmáry and Maynard Smith ( 1995 ). The 
Operator Theory adds new insights concerning the use of structural criteria and the 
classifi cation of kinds of transitions. Firstly, all the major evolutionary transitions 
are based on the select use of three functional criteria (cooperation, competition 
reduction and  reproduction   as part of a larger  unit     ), while the Operator Theory elab-
orates this viewpoint by suggesting the use of structural criteria in addition to func-
tional criteria. Secondly, in the Major Evolutionary Transitions theory, all transitions 
that fi t the criteria are viewed indiscriminately as major evolutionary transitions. 
The Operator Theory adds to this that the transitions that are referred to as major 
transitions differ in their kinds, and can be named according to these kinds. The 
Operator Theory also indicates that some transitions are relatively more complex 
than others, such as the BOL transitions, and that transitions may on the one hand 
lead to new kinds of operators ( atoms  , molecules, cells etc.), while on the other hand 
they may lead to new kinds of systems consisting of interacting operators ( popula-
tions  , societies). Studying  the relationships between the Operator Theory and the 
Major Evolutionary Transition theory is relevant, because the relationships offer a 
basis for discussing how the use of structural  criteria      can contribute to the creation 
of  hierarchical rankings     . The relationships between the two approaches are dis-
cussed in detail in Chaps.   8    –  11    .  

2.7.5     Using the Operator Theory for an Ontology of  Artefacts      

 From an ontological perspective, the Operator Theory primarily offers a hierar-
chy of kinds of operators. When looking at ontology from a causal perspective, 
this hierarchy itself represents a causal ranking of what came fi rst and what came 
later. For example the formation of a cell necessarily must precede the formation 
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of a multicellular. In the same way, one can create a conceptual classifi cation of 
different operators or  interaction systems   that could form because a specifi c opera-
tor was involved. For example, a farm can be viewed as a physical system that 
intelligent beings have constructed to produce agricultural products in an effi cient 
way. This implies that one fi rst needs intelligent beings, before there can be a 
farm. Basically, if one uses the logic of the Operator Theory, a farm classifi es as 
an interaction system. 

 One can even be more precise in the classifi cation of a farm as a  system kind  . In 
Jagers op Akkerhuis ( 2008 ) it was explained that the Operator Theory classifi es 
interaction-systems after the  highest-level operator   that is involved in the system. 
And the most complex entities involved in a farm-system are either the farm animals 
or the owner of the farm as a human animal. Animals with a neural network are also 
called  memons   by the Operator Theory. This implies that a farm classifi es as a 
memic interaction system. A scheme which organises all the causal relationships 
that lead to different kinds of operators and different kinds of interaction systems is 
offered in Fig.  2.6 ). As it is designed by humans, who classify as memons, a farm is 
viewed as a memic system of memic origin (Fig.   6.2    : an interaction system of the 
kind M -> M). Likewise, if humans modify a bacterium by means of  genetic engi-
neering  , such a bacterium would classify as an operator of the kind cell, of memic 
origin. Similarly, a hammer would classify as a molecular  interaction system   of 
memic origin (in Fig.  2.6 : M -> mA) because the hammer is constructed by memons, 
and because the most complex operators involved in the construction of the ham-
mer are of a molecular kind (the wooden/metal handle and the metal head). Likewise, 
a  lignin molecule   would classify as a molecular operator of multicellular origin (in 
Fig.  2.6 : mC -> mA). 

2.7.6        Summarising What Is New About the Operator Theory 

 The Operator Theory has been the inspiration for some marked innovations in the 
thinking about objects and hierarchy. 

 Firstly, the  Operator Hierarchy   suggests that, because it involves a mixture of 
kinds of objects and kinds of  ranking   criteria, it may be profi table to re-  conceptualise   
the classical perception of (ecological) hierarchy that is based on a single dimen-
sion. For unravelling which different kinds of objects and relationships are involved, 
a new approach is suggested which uses three independent dimensions (Jagers op 
Akkerhuis and van Straalen  1999 ; Jagers op Akkerhuis  2008 ):

    1.    An  upward dimension   for all the vertical transitions from  quarks   to neural net-
work organisms.   

   2.    An  inward dimension   for the levels of  organisation   inside an operator, such as 
organelles in a unicellular organism, and organs in a  multicellular organism  .   

   3.    An  outward dimension   for analysing complexity in  interaction systems  , such as 
 populations  .    
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  Secondly, dual closure is brought forward as a general criterion for the  hierarchi-
cal ranking   of systems which are all of the same  major kind  , namely that of the 
operator. The use of dual closure also offers a basis for a stringent ranking of levels 
of (a specifi c kind of) complexity. 

 Thirdly, in close relation with the three dimensions for hierarchy, the Operator 
Theory allows a stringent top-level classifi cation of major  system kinds   as operators 
and interaction systems (Jagers op Akkerhuis  2008 ). 

 Fourthly, the logic of the Operator Theory can be used to name developmental 
histories and  life cycles   after the highest kind of organisation included. Consequently, 
a bromeliad, a  mushroom  , and kelp classify as being part of a multicellular life 
cycle, while a tiger is part of the neural network life cycle. 

 Fifthly, the  operator hierarchy   offers a novel solution to the long standing chal-
lenge of defi ning the  organism concept  : only operators from the level of the cell and 
up are viewed as an organism.  
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F H A mA C eC mC

F H A mA C eC

F H A mA) C

F H A mA

F H A

F H

F

F H A mA C eC mC

F H A mA C eC

F H A mA C

F H A mA

F H A

F H

F
operator

interaction system

mC

eC

C

mA

A

H

F

M

  Fig. 2.6    A causal classifi cation of operators of different kinds, and the operators and  interaction- 
systems   they produce.  Middle : a  ranking   of operators of increasingly complex kinds.  Top : a rankig 
of interaction systems produced by operators.  Bottom : a ranking of operators produced by opera-
tors.  Abbreviations :  F  fundamental particles,  H  hadrons,  A  Atoms,  mA  multi-atoms (“molecules”), 
 C  cells (“prokaryotes”),  eC  endosymbiont cells (“eukaryotes”),  mC  multicellulars,  M  memons 
( neural network organisms  )       
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2.7.7     Current Status and Future Goals 

 The Operator Theory is linked to the hypothesis that  topological rules      have guided 
 nature   through a long and specifi c sequence of increasingly complex operators. It 
seems as if there is a law in nature that limits the complexity of the operators to 
specifi c steps, that are guided by dual closure. In order to assess the validity of the 
Operator Theory one can examine the validity of the assumptions that underlay 
every  individual   transition. As another test, one can examine the  secondary structure   
of the Operator Hierarchy, or the predictions that result from extrapolating the 
Operator Theory towards future kinds of operators. 

 While the Operator Hierarchy can be viewed as an interesting innovation that 
offers a foundation for exciting theoretic developments, it cannot be excluded that 
other ways may be found for creating a structured overview of the foundations of 
the organisation of the  universe  . How can one choose between such alternatives? To 
answer this question one can use  Ockham’s razor   for comparing the effectiveness of 
the criteria of alternative hypotheses. 

 Focusing on the Operator Theory from an axiomatic perspective, there is an 
interesting observation to be made. Primarily, the goal of the Operator Theory is to 
develop a reasoning that results in an  ontology   that can be constructed  from the bot-
tom up  . Such ontology should start at the beginning of the  universe  , and should 
describe all kinds of systems that formed over time, until fi nally organisms with 
brains emerged who can reason and construct a conceptual framework for analysing 
complexity in  nature  . A particularly challenging task that remains is to express the 
logic of the Operator Hierarchy mathematically, in all its detail, for example by 
using a framework based on topology. Such a framework should enable the predic-
tion of every single step in the Operator Hierarchy and should also produce the 
hierarchy's secondary structure. The use of mathematics may assist in resolving 
some aspects of the theory which currently are not understood in full depth, such as 
the following aspects that still demand technical and conceptual elaboration: 1. The 
question of what exactly are the multicellular units that form the basis of the step 
from the multicellular to the memon, 2. The question of whether the hypothetical 
existence of unicellular organisms with multicellular endosymbionts is relevant for 
the structure of the Operator Hierarchy, or falls in the class of 'endosymbionts of any 
kind' which applies for example to the endo-endosymbiont cells, 3. In the electron 
shell of an atom the electrons originate from two levels below the level of the atom, 
which is in constrast with all other steps in the Operator Hierarchy where the next 
dual closure involves the operators of the preceding level, and 4. The challenge of 
predicting accuratley any next kind of operator above the level of the hardwired 
memon. While these four points still pose challenges, the Operator Theory in its 
current status can be viewed as providing a framework that suggests many novel 
pathways for theoretical and practical research in system science. 

 Interestingly, while in the universe all entities were formed in a long sequence of 
processes, it is not possible to use that same sequence as an axiomatic basis for 
thinking about the  universe  . The reason is that most of the time there was no one 
present to identify and classify the things that happened or were formed such that 
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they could be used for the construction of an axiomatic ontology. Things just hap-
pened. A possible solution to this problem is to accept that—with hindsight—one 
acts as if one can observe and classify the developments in the universe as through 
the eyes of an  independent observer  . And it is the role of this independent observer 
to construct a representation that suits the criteria of an axiomatic  ontology  , which 
fi nally includes sentient beings, and their thoughts about the world. As soon as a 
specifi c ontology includes sentient beings, and their thoughts, the ontology can use 
these entities as a basis for including conceptual representations. Subsequently, 
every object in the world can be described by means of a conceptual representation. 
From this point onwards, an intelligent being can work with a conceptual axiomatic 
ontology, representing his/her thoughts about what happened in the  universe   before 
the existence of intelligent beings capable of thinking about the universe. In fact, 
when talking about the Operator Hierarchy its structure represents the latter view-
point. The  Operator Hierarchy   offers a conceptual representation that describes and 
ranks all the construction steps in the universe that are based on (dual)closure, and 
the kinds of objects that are produced by such steps. 

 The Operator Theory is a new theory. The earliest conceptual drawings of it stem 
from 1994. Since that time, the approach has offered a starting point for many chal-
lenging theoretical developments, such as those discussed in the following chapters 
of this book.       
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