
A Recovery Method for the Robotic
Decentralized Control System
with Performance Redundancy

Iakov Korovin1, Eduard Melnik2, and Anna Klimenko3(&)

1 Southern Federal University, Rostov-on-Don, Russia
2 Southern Scientific Center of the Russian Academy of Sciences (SSC RAS),

Rostov-on-Don, Russia
3 Scientific Research Institute of Multiprocessor Computing Systems,

Southern Federal University, Taganrog, Russia
anna_klimenko@mail.ru

Abstract. The fault of the robotic control system is critical and leads to the
general system failure, while autonomous robots have to gain their aims without
any maintenance. Contemporary academic studies propose decentralized control
systems as prospective from the robustness point of view. On the other hand, a
performance redundancy allows to optimize resource utilization and improve the
fault-tolerance potential of the control system. This paper is devoted to the
recovery method of the robotic decentralized control system with performance
redundancy. A reconfiguration problem has been formalized, decentralized
method of the solution obtaining is represented. Also some simulation results are
given and discussed.

Keywords: Decentralized control system � Robustness � Fault-tolerance �
Simulated annealing � Autonomous robots control

1 Introduction

Fault-tolerance is extremely important for autonomous robotic systems. The large
amount of them is performing their tasks in hazardous and aggressive environments,
where a man is not supposed to be located. Besides, autonomous robots perform and
must achieve their goals without any repair for a long terms of time.

In robotics, some classifiers of failures are proposed. For example, in [1] the general
failure levels are concerned: mechanical level (a joint becomes lock); hardware level
(sensor does not perform properly); controller level; controlling computer level.

Another classification of failures is described in [2]: sensors; effectors; communi-
cations; power system; control system.

Human and physical faults as a cause of failure are distinguished in [3], where the
detailed taxonomy (Fig. 1) also can be found.

In the scope of this paper the robot control systems are under consideration.
Contemporary control systems are the software and hardware complexes, where dis-
tributed computing paradigm is used widely. The monitoring and control tasks (MCTs)

© Springer International Publishing Switzerland 2016
A. Ronzhin et al. (Eds.): ICR 2016, LNAI 9812, pp. 9–17, 2016.
DOI: 10.1007/978-3-319-43955-6_2

within the control system are performed by computational units (CUs). Each MCT
allocates some computational resources, and each CU performs more then one MCT.
The control system architecture from the management point of view can be centralized,
hierarchical or decentralized. Some works show that the decentralized control system is
potentially more fault-tolerant then others [4], but needs additional research in the fields
of cooperative problem solving, multiagent systems, etc.

Author of [5] defines a fault-tolerant control system as a control system, which is
able to automatically maintain the system stability and an acceptable performance when
component failures occur. To gain these objectives, following principles must be
implemented: fault detection; fault isolation; fault identification; fault recovery.

Usually, passive or active recovery methods are used [2]. Within the active recovery
methods two main reconfiguration strategies are used. The first one propose using of
some pre-defined control laws, the second one is oriented to the on-line synthesis of the
system controller with respect to the fault identification.

In the scope of this paper recovery method for the decentralized control system with
the performance redundancy will be considered. The next section contains the brief
explanation of the performance redundancy in comparison to the structural one. Sec-
tion 3 is devoted to the reconfiguration problem formalization with the graceful system
degradation objective. Section 4 contains reconfiguration method, and, at last, Sect. 5
presents some experimental results and discussion.

2 Performance Redundancy and Decentralized Dispatching

Structural redundancy is widely used nowadays [4]. As mentioned in [5], redundancy is
the key ingredient in any fault-tolerant systems. Almost all of modern aircraft such as
Boeing 777 and Airbus A320/330/340 have used triplex- or quadriplex-redundant
activation systems, flight control computer and databus systems [6, 7].

Performance redundancy considers all CUs as performing elements with some
performance reserve. Advantages of performance redundancy are explained in details
in [8–10].

The way of ICS dispatching is important too: the centralized dispatching has
multiple drawbacks, in particular, the main dispatcher fault is the cause of the entire
system failure without the possibility to recover.

Fig. 1. Failures taxonomy

10 I. Korovin et al.

Decentralized dispatching of the ICS operates with equal control elements.
Each CU is controlled by its own software agent (Fig. 2), which operates as a kind of
MCT. In the case of CU failure (software or hardware) agents of operational nodes
begin a recovery procedure via reconfiguration: MCTs from the faulted node can be
launched by the operational ones.

ICS with decentralized dispatching and performance redundancy has good recover
possibilities, but requires the design and implementation of the cooperative recovery
methods and algorithms.

3 Reconfiguration Problem Formalization

Let the input data be the following:

• A set of MCTs G = {xi}, i = 1…N, where xi – the size of task i, N – the number of
tasks.

• Let G ¼ Gc [Gnc, Gc \Gnc ¼ ;, where Gc – a subset of critical MCTs, Gnc — a
subset of non-critical ones. Non-critical MCTs can be eliminated from the system
during reconfiguration. The number of critical MCTs is Nc, and the number of
non-critical MCTs Nnc;

• Let Gf be the set of MCTs from the faulted CU. Gf�G, Gp is the performing tasks,
Gp�G, Gp \Gf ¼ ;.

• A planned completion time for the set G is Tplan.
• Number of CUs is M with the performance p.

Let’ s take into consideration that we have to allocate the MCTs from the set Gf

within the system of operational CUs, on which the tasks from the set Gp are allocated
with the constraint of completion time Tplan. Let the resource allocated by CU j for the
subtask i be kij. The tasks allocation before the failure is described by matrix R:

Fig. 2. Performance redundancy and software agents representing the CUs

A Recovery Method for the Robotic Decentralized Control System 11

R ¼
r11 r12 r1M
.
rN1 . . . rNM

�
�
�
�
�
�

�
�
�
�
�
�

; ð1Þ

where rij ¼ f ð xi
kijp

Þ, f ð xi
kijp

Þ ¼
xi
kijp

; if xi is running on CU j;
0; otherwise:

�

Let the failure occurred on the CU with number d. The column d of matrix R is
deleted, so there is M − 1 columns and N − |Gf| lines in the new matrix Rf. Renumber
the elements of Rf in the following way, saving the indexes from the matrix R in the
upper positions:

Rf ¼
rij11 rij12 riM1ðM�1Þ
.
rNj11 . . . rNMðN�Gf ÞðM�1Þ

�
�
�
�
�
�

�
�
�
�
�
�

: ð2Þ

Rf describes the system state before the reconfiguration and contains the allocation
of the operational tasks among the operational CUs. Rr will be the allocation of the task
set G on the M − 1 CUs. Formally, the subset Gf will be added to the Gp with the
number of CUs = M − 1:

Rr ¼
rij11 rij12 riM1ðM�1Þ
.
rNj11 . . . rNMðNÞðM�1Þ

�
�
�
�
�
�

�
�
�
�
�
�

; ð3Þ

rklij ¼ f ð xi
kijp

ÞgðxiÞ;

gðxiÞ ¼ 0; if xi 2 Gnc and eliminated from the system;
1; otherwise:

�

ð4Þ

Let’s consider matrix W:

W ¼ uðxkl1jÞ uðxkl2jÞ . . . uðxklNjÞ
� � ð5Þ

where uðxkl1jÞ ¼
0; l ¼ j;

n; otherwise

�

k; l — the saved indexes of matrix R, j — the number

of CU in matrix Rr, n — the integer number.
The matrix W describes if the MCT xi was relocated from CU l to CU j.
The first objective function can be written in the following manner:

F1 ¼
XN

i¼1

uðxklij Þ ! MIN: ð6Þ

12 I. Korovin et al.

The next objective function component is load balancing which can be written in
the following way.

F2 ¼ ð
XN

i¼1

kik �
XN

i¼1

kilÞ ! MIN; 8k; l; kik � Rr: ð7Þ

In other words, we need to find MCTs allocation with respect to load balancing
objective function. While the desirable option is to deliver the graceful system
degradation, it is useful to keep running as much MCTs as possible. The maximum
number of non-critical tasks running equals to the maximum summa of all g(xi) in the
matrix R’.

The last objective function component will be as following:

F3 ¼ �
XN

i

gðxiÞ ! MIN: ð8Þ

Herewith the time constraint must be satisfied:

8j :
XN

i¼1

r0ij � Tplan; j 2 ½1. . .M�: ð9Þ

Let’s put the current multicriteria optimization problem to the following form:

F ¼
XN

i¼1

uðxklij Þ ! MIN; ð10Þ

ð
XN

i¼1

kik �
XN

i¼1

kilÞ� c; �
XN

i

gðxiÞ� l; 8j :
XN

i¼1

r0ij � Tplan; j 2 ½1. . .M�;

xi [0; 0\kij\1, where 0\c\1 is the assumed level of load dispersing, l is the
integer number.

4 Cooperative Problem Solving

The problem formalized earlier contains a kind of k-partition problem (or bean-packing
problem) which is NP-hard, so there is no polynomial algorithms for the solution
obtaining. In the scope of this research the simulated annealing (SA) with the
“quenching” temperature is used [11] to reach an acceptable solution in a reasonable
time.

With the shortage of time and the using of decentralized control, it is appropriate to
initiate a search for a new system configuration at all operational nodes (which are
represented by the agents, Fig. 2).

A Recovery Method for the Robotic Decentralized Control System 13

After CU or MCT fault detection and identification (which are out of this paper’s
scope), the reconfiguration is initialized, and every performing agents launches the new
configuration search.

As soon as one of the agents finds allowable configuration, solving, in fact, a
constraint satisfaction problem, it notifies other agents, which take the solution found as
a new configuration proposed to perform.

Here we have to make some assumptions. The system of agent is synchronous in
terms of work [12]. If one agent sends a message, agent-addressee receives it without
delay. There is no message losses in the communication network. The model of
communication network is fully connected graph. Then, the next assumption takes
place: some agents can broadcast incorrect solution as a result of search. So, the
cooperative configuration search method must have a kind of mechanism to prevent the
further usage of unviable solution.

Each agent also must have a queue (Q) for the incoming messages and a queue
(S) for the viable solution. Besides, we assume every agent know the constraints for the
MCTs: launching time spans, data transfer interconnections, etc.

Generalized method based on a simulated annealing for one agent is represented
below:

1. Set the initial parameters: temperature, quenching ratio, etc.
2. Generate solution R in a random manner.
3. If Q contains any solutions, go to the 4.
4. Beginning of the cycle

4:1. If Q contains any solutions, go to the 5:
4:2. Generation of new solutions: R.
4:3. Calculate the value of F.
4:4. Check the admissibility of F
4:5. If the current solution is acceptable, go to 5.
4:6. Temperature correction. Go to step 4.
5. Broadcast the solution reached.

5:1. Range the solutions in the Q.
5:2. Verify the best solution. If the verification is successful, go to 6.
5:3. If the solution is unviable, delete it from Q. Go to 5.2.
6. Broadcast the verified solution.
7. Choose the most frequent viable solution from S for the execution.
8. End.

The cooperative method described above allows every agent to have all solutions in
Q after at least one agent found a solution. Verification process contains the check of
constraints for the MCTs. The S queue contains solutions estimated as “viable”. We
assume that if solution S1 was accepted by N1 agents, and solution S2 was accepted by
N2 agents, S1 is “viable” if N1/N2 = 2 [12].

14 I. Korovin et al.

5 Simulation Results and Brief Discussion

Taking into consideration the shortage of time, the first simulation study is in the field
of solution obtaining speed. For this study SA with Boltzmann generation rule and
quenching ratios 0.9; 0.8; 0.7 was used (Fig. 3).

The results of pilot simulation allow to affirm that some local minimas can be
reached fast enough (10–20 iterations). It makes SA a perspective search method even
in the time shortage circumstances (2 eliminated non-critical tasks as a result).

Next simulation is made for the different number of calculating agents (5;10) with
the initial number of MCTs = 50 (Fig. 4).

Fig. 3. SA with “quenching” temperature scheme convergence speed

Fig. 4. The number of eliminated MCTs within 5 and 10CUs cooperative problem solving

A Recovery Method for the Robotic Decentralized Control System 15

It is seen, that with the increasing of agents number the quality and the speed of the
solution obtaining becomes better. The best result for the 5 agents is 5 eliminated
non-critical tasks, while the best result for the 10 agents is 3 lost tasks.

6 Conclusions

Fault-tolerance is one of the important aspects for the autonomous robots. An enor-
mous field of tasks is performed without man’s assistance, so the robots should be
reliable, viable and fault-tolerant.

In the scope of this paper the decentralized robotic control system recovery is
considered. A reconfiguration problem is formalized, and a method for the cooperative
problem solving is proposed. A method represented bases on the parallel multistart SA
and provides some degree of robustness in the circumstances of incorrect agent
behavior. It must be noted, that SA with “quenching” temperature scheme can be “fast”
enough to find local minimas. Also, a group of searching agents improve solution
quality significantly. For example, if one agent can find a local minima of unaccepted
quality, another one, with different initial computational point, can find the acceptable
solution. It must be noted, that the redundancy must be sufficient.

The future work is proposed to be directed to the field of robust distributed algo-
rithms and one’s modelling and efficiency estimation.

Acknowledgements. The reported studywas funded by SSCRASproject 0256-2014-0008within
the task 007-01114-16 PR and by RFBR projects 14-08-00776-a and 15-37-20821-mol-a-ved.

References

1. Gini, M., Smith, R.: Monitoring robot actions for error detection and recovery. In:
Proceedings of the Workshop on Space Telerobotics, vol. 3, p. 67 (1987)

2. Crestani, D., Godary-Dejean, K.: Fault tolerance in control architectures for mobile robots:
fantasy or reality?. In: 7th National Conference on Control Architectures of Robots, Nancy,
France (2012)

3. Carlson, J., Murphy, R.R.: Reliability analysis of mobile robots. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2003), pp. 274–281 (2003)

4. Kalyaev, I.A., Melnik, E.V.: Decentralized Systems of Computer Control. Publishing SSC
RAS, Rostov-on-Don (2011)

5. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems.
Ann. Rev. Control 32(2), 229–252 (2008)

6. Bartley, G.F.: Boeing B-777: fly-by-wire flight controls. In: The Avionics Handbook. CRC
Press, Boca Raton (2001)

7. Biere, D., Favre, C., Traverse, P.: Electrical flight controls, from Airbus A320/330/340 to
future military transport aircraft: a family of fault-tolerant systems. In: The Avionic
Handbook. CRC Press, Boca Raton (2001)

8. Melnik, E.V.: Simulation options for redundancy in distributed information and control
systems with a decentralized organization. In: Proceedings of SFU, SER Technical science,
no. 3, pp. 184–193 (2013). (In Russian)

16 I. Korovin et al.

9. Melnik, E.V.: Principles of organization of the decentralized network-centric information
management systems. Herald Comput. Inf. Technol. 4, 25–30 (2013). (In Russian)

10. Melnik, E.V.: Effect processor computational load balancing devices in highly distributed
information management system. In: Mechatronics, Automation, Control, pp. 29–35 (2012).
(In Russian)

11. Ingber, L.: Simulated annealing: practice versus theory (1993). http://citeseer.uark.edu:8080/
citeseerx/viewdoc/summary?doi=10.1.1.15.1046

12. Tel, G.: Introduction to Distributed Algorithms, pp. 1–608. Cambridge University Press,
Cambridge (2000)

A Recovery Method for the Robotic Decentralized Control System 17

http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.15.1046
http://citeseer.uark.edu:8080/citeseerx/viewdoc/summary?doi=10.1.1.15.1046

http://www.springer.com/978-3-319-43954-9

	A Recovery Method for the Robotic Decentralized Control System with Performance Redundancy
	Abstract
	1 Introduction
	2 Performance Redundancy and Decentralized Dispatching
	3 Reconfiguration Problem Formalization
	4 Cooperative Problem Solving
	5 Simulation Results and Brief Discussion
	6 Conclusions
	Acknowledgements
	References

