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Abstract. Current data integration approaches are mostly limited to
few data sources, partly due to the use of binary match approaches
between pairs of sources. We thus advocate for the development of more
holistic, clustering-based data integration approaches that scale to many
data sources. We outline different use cases and provide an overview
of initial approaches for holistic schema/ontology integration and entity
clustering. The discussion also considers open data repositories and so-
called knowledge graphs.

1 Introduction

Data integration aims at providing uniform access to data from multiple sources
[17]. It has become a pervasive task for data analysis in business and scientific
applications. The most popular data integration approaches such as data ware-
houses or big data platforms utilize a physical data integration where the source
data is combined within a new dataset or database tailored for analysis tasks.
This is in contrast to virtual data integration where data entities remain in
their original data sources and are accessed at runtime, e.g., for federated query
processing. Federated query processing has also become popular in the so-called
Web of Data, also referred to as Linked Open Data (LOD), and is supported by
semantic links interconnecting different sources [63,67].

Key tasks for data integration include data preprocessing (data cleaning [62],
data enrichment), entity resolution (data matching) [13,20], entity fusion [9], as
well as matching and merging metadata models such as schemas and ontolo-
gies [7,61]. Data enrichment can often be achieved by linking entities and/or
metadata such as attribute names to background knowledge resources (e.g., dic-
tionaries, ontologies, knowledge graphs), which is a non-trivial mapping and data
integration problem in itself [68]. The different data integration tasks have been
the focus of a huge amount of research and development. Still, the mentioned
tasks are inherently complex and are in many cases not performed fully automat-
ically but incur a high degree of manual interaction. This is because data sources
may be of low data quality, may be unstructured or follow different data formats
(relational, JSON; etc.) and exhibit a high degree of semantic heterogeneity since
they are mostly developed independently for different purposes.

These problems increase with the number of data sources to be integrated.
As a result, most data integration approaches and efforts focus on only a few
data sources. Data matching and schema matching approaches mostly determine
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correspondences (links) between only two sources. While pairwise matching is a
building block for most data integration solutions, the sole generation of such
binary mapping approaches does not scale to many data sources as the number
of possible mappings increases quadratically with the number of sources. For
example, fully interlinking 200 LOD sources would require the determination
and maintenance of almost 20,000 mappings.

We thus see a strong and increasing need for holistic data integration
approaches that can integrate many data sources. To be scalable, holistic data
integration should not be limited to pairwise matching and integration of sources
but support a clustering-based integration of both metadata' and instance data
to holistically combine the information from many sources. The need for such
holistic approaches is fueled by the availability of relevant data in millions of web-
sites and the provision of large data and metadata collections in public (open
data) repositories. Platforms such as data.gov, www.opensciencedatacloud.org,
datahub.io and webdatacommons.org contain thousands of datasets and millions
of web extractions (e.g., web tables) for many topics in different domains. There
are also repositories for metadata (schemas, ontologies) and mappings, e.g.,
schema.org, medical-data-models.org, Linked Open Vocabularies (lov.okfn.org),
BioPortal [52], and LinkLion [49], supporting the re-use of this information to
facilitate data integration tasks.

To achieve scalability to many sources, holistic data integration approaches
should be fully automatic or require only minimal manual interaction. It should
also be easily possible to add and utilize additional data sources and deal with
changes in the data sources. As with all data integration approaches, high effi-
ciency and high data integration quality need to be supported which becomes
more challenging due to the increased number of (heterogeneous) sources and
the typically much increased data volume. High efficiency asks for the utiliza-
tion of powerful (big data) platforms for parallel processing and blocking-like
techniques to reduce the search space for match tasks. Achieving high data inte-
gration quality and avoiding/minimizing manual interaction are contradictory
goals so that viable compromises need to be found.

The main goal of this paper is to motivate the need for holistic data integra-
tion with different use cases and to provide an overview of initial approaches. In
Sect. 2, we outline six use cases for holistic integration of metadata or entities.
Section 3 discusses approaches to match and merge many schemas and ontologies
as well as the use of open data repositories. In Sect. 4, we focus on the holistic
clustering of entities of different types, e.g. for LOD sources or to determine
knowledge graphs. Finally, we summarize our observations and discuss opportu-
nities for future research.

! In this paper, we are only concerned with metadata in the form of schemas and
ontologies and their components like attributes or concepts. We are thus not consid-
ering the wide range of additional metadata (e.g., provenance information, creator,
creation time, etc.) despite their importance, e.g., for data quality.
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2 Use Cases

Table 1 lists six examples for holistic data integration together with estimates on
the number of domains, the number of sources, features about the kind of data
integration (physical vs. virtual), and whether the focus is on data integration
for metadata (schemas/ontologies) and/or instance data. We also indicate the
kind of clustering and to what degree data integration can likely be automated.

The first two use cases, meta-search and the use of open data, focus on simple
schemas such as web forms or tables consisting of relatively few attributes. Meta-
search is a virtual data integration approach based on metadata integration.
The goal is to integrate the search forms of several databases of the so-called
hidden web to support a meta-search across all sources, e.g., for comparing
products from different online shops. Schema integration mainly entails grouping
or clustering similar attributes, which is simpler than matching and merging
complex schemas. As a result, scalability to dozens of sources is typically feasible.
Proposed approaches include Wise-Integrator and MetaQuerier [12,33].

A completely different situation is when there is an enormous number of
datasets such as web tables made available within open data repositories. The
physically collected datasets are typically from diverse domains and initially
not integrated at all. To enable their usability, e.g., for query processing, it is
useful to group the datasets into different domains and to semantically annotate
attributes. Google Fusion Tables has demonstrated the utilization of millions of
such semantically annotated web tables to better answer certain search queries
[4]. Semantically enriched attributes could also be used to match and cluster
datasets such as web tables within the repository. Problems similar to those
for open data repositories arise for so-called “data lake” approaches to collect
datasets in their original format for later use [27,55].

Table 1. Use cases for holistic data integration.

Use case Data integration #domains | #sources Clustering? | Degree of
automated
data
integration

(1) Meta-search | Virtual Metadata 1 Low - Attributes | Medium

medium

(2) Open data |Physical |Primarily Many Very high | (Possible) |High, but limited

collection |metadata integration

(3) Integrated Physical Metadata 14+ Low - Concepts Low - medium

ontology medium

(4) Knowledge |Physical |Data + Many Low - high |Entities + |Medium - high

graphs metadata concepts/
attributes

(5) Entity Physical |Data 1 Very high | Entities High

search (4 metadata)
engines

(6) Comparison |Physical/ |Data 1+ High Entities High

portal hybrid + metadata
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The next two use cases are concerned with physical data integration to deter-
mine integrated background knowledge resources such as large domain ontologies
or multi-domain knowledge graphs. In the first case (use case 3) the goal is to
semantically merge several related ontologies into a combined ontology to con-
sistently represent the knowledge of a domain. This implies the identification of
synonymous concepts across all source ontologies as well as the derivation of a
consistent ontology structure for these concepts and their relations. An example
of such an integration effort is the biomedical ontology UMLS Metathesaurus
[10] which currently (2016) combines more than three million concepts and more
than 12 million synonyms from more than 100 biomedical ontologies and vocabu-
laries. The integration process is highly complex and involves a significant effort
by domain experts. Another example for holistic metadata integration is the
construction of an integrated product catalog from several merchant-specific
catalogs, e.g., for price comparisons.

The generation of so-called knowledge graphs [18] is a related use case for
holistic data integration where concepts as well as entities from different sources
are physically integrated. Popular knowledge graphs in the Web of Data are
DBpedia, Yago and Wikidata [3,41,70,73] that extract information about mil-
lions of real-world entities (such as persons or locations) of different domains as
well as concepts from other resources such as Wikipedia or WordNet. The entities
are placed within a categorization or class (concept) hierarchy and interlinked
with a variety of semantic relationships. Web search engines such as Google or
Bing utilize even larger knowledge graphs [51] combining information from addi-
tional resources as well as from web pages and search queries. Knowledge graphs
can provide valuable background knowledge, e.g., to enrich entities mentioned
in text documents or to enhance the search results for web queries. Web-scale
knowledge graphs for many domains ask for highly automated data integration
methods but face substantial challenges regarding data quality and semantic het-
erogeneity [18,26]. So-called enterprise knowledge graphs focus on the datasets
relevant for an enterprise and their semantic integration [22].

Entity search engines such as Google Scholar or Bing Shopping (use case 5)
cluster corresponding entities such as publication records or product offers from
thousands to millions of data sources or web pages. The focus is on physical
clustering at the instance level. The quality and usability of clustering can be
improved by assigning the entities to categories, e.g., for products, which may be
arranged in a product catalog, e.g., organized as a hierarchical taxonomy. Com-
parison portals for hotel bookings, product offers, etc. (use case 6) are similar to
entity search engines in that they cluster comparable offers for the same prod-
uct or booking request. They are typically more selective in the sources they
include and may obtain their data in curated form rather than by extracting
the entities from web pages as in the case of Google Scholar. Data integration
is mostly physical but may also be virtual to retrieve the most recent informa-
tion, e.g., about the availability of bookable items such as flight seats or hotel
rooms. Furthermore, the categorization of entities along different dimensions is
the norm to enhance the browsing and search facilities for portal users. This kind
of use case involves highly challenging data integration problems, in particular
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to automatically cluster a huge number of continuously updated product offers
from many sources within thousands of product categories described by different
sets of attributes and schemas [54].

The discussed use cases show that holistic data integration has wide applica-
bility with significant differences in the considered characteristics. All use cases
with a large number of sources utilize physical data integration and are primarily
focused on instance-level integration based on a clustering of matching entities.
By contrast, metadata integration is limited to a small to medium number of
sources and depends more on manual interaction to deal with the typically high
complexity. Holistic metadata integration can utilize a clustering of concept syn-
onyms as well as a clustering of attributes per concept or entity type. Virtual
data integration generally depends on metadata integration and is thus of limited
scalability for complex sources. Scalability of virtual integration is also impaired
by likely performance problems for queries involving many sources that typically
differ in their capacity, utilization and availability.

3 Holistic Integration of Schemas and Ontologies

Most work on the integration of schemas and ontologies has focused on the
pairwise matching of such models, i.e., determining semantically correspond-
ing elements such as pairs of matching schema attributes or ontology concepts
[7,21,61]. Matches are usually identified by a combination of techniques to deter-
mine the similarity of elements. This includes 1. the linguistic similarity of ele-
ment names (based on string similarity measures or synonym information from
background knowledge resources such as dictionaries), 2. the structural similar-
ity of elements (e.g., based on the similarity of ancestors and/or descendants)
and 3. the similarity of associated instance data. The set of determined match
correspondences forms a mapping between the two aligned schemas/ontologies.
Such match mappings are useful input to merge or integrate the respective mod-
els since they indicate the elements that should only be represented once in the
integrated result. In fact, several such mapping-based merge approaches have
been proposed for both schemas [58,59] and ontologies [64].

In the following, we first discuss proposed holistic match and merge
approaches for complex schemas and ontologies, including for LOD sources.
Afterwards we discuss proposed data integration approaches for simple schemas
such as web forms and web tables.

Complex Schemas and Ontologies. In principle, the pairwise matching and
merging can be applied to more than two models by incrementally matching and
merging two models at a time. For instance, one can use one of the schemas as
the initial integrated schema and incrementally match and merge the next source
with the intermediate result until all source schemas are integrated. Such a binary
integration strategy for multiple schemas has already been considered in early
work on schema integration [6], however based on a largely manual process. More
recently it has been applied within the Porsche approach [66] to automatically
merge many tree-structured XML schemas. The approach holistically clusters all
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matching elements in the nodes of the integrated schema. The placement of new
source elements not found in the (intermediate) integrated schema is based on
a simplistic heuristic only. A general problem of incremental merge approaches
is that the final merge result depends on the order in which the input schemas
are matched and merged.

The matching between many schemas and ontologies can be facilitated by
the re-use of previously determined mappings between such models, especially if
such mappings are available in repositories like Bio-Portal [52]. Such a re-use of
mappings has already been proposed in the 2001 survey [61] and several match
approaches are utilizing re-use techniques based on a repository of schemas and
mappings [16,43,65]. A simple and effective approach is based on the compo-
sition of existing mappings to quickly derive new mappings. In particular, one
can derive a new mapping between schemas S; and Se by composing existing
mappings, e.g., mappings between Sjand S; and between S; and Sy for any
intermediate schema S; (Fig.1 left). Such composition approaches have been
investigated in [23,28] and were shown to be very fast and also effective, espe-
cially if one can combine several such derived mappings for improved coverage
of the schemas to be matched. A promising strategy is to utilize a hub schema
(ontology) per domain to which all other schemas are mapped. Then one can
derive a mapping between any two schemas by composing their mappings with
the hub schema (Fig. 1 right).

The next step would be to integrate all schemas with the hub schema together
with a clustering of the matching elements. Such integrated hub ontologies have
been determined in the life sciences, e.g., UMLS [10] and Uberon [45], although
with the need of a large amount of manual work by domain experts to achieve
a high-quality integration result. A more automatic integration becomes feasi-
ble for the integration of simpler ontologies such as dictionaries or thesauri. An
example is the SemRep repository [2] combining millions of concepts and seman-
tic relations (equal, is-a, part-of, etc.) between them extracted from Wikipedia
as well as obtained from existing resources such as WordNet.

Pairwise matching has been applied in [35] to match the terms of more than
4000 web-extracted ontologies (including large LOD sources such as DBpedia)
with a total of more than 2 million terms. The match process using a state-of-
the-art match tool took about one year on six computers showing the insufficient
scalability of pairwise matching. A holistic matching of concepts in LOD sources
has been proposed in [25]. The authors first cluster the concepts within different
topical groups and then apply pairwise matching of concepts within groups to
finally determine clusters of matching concepts. For clustering and matching they
derive keywords from the concept labels and descriptions, determine associated
(trees of) categories in Wikipedia and use these to derive concept similarities
(similarly as for the BLOOMS match technique [36]). In the evaluation, the
authors originally considered 1 million concepts from which less than 30 % could
be annotated with Wikipedia categories. Topical grouping was then possible
for 162K concepts (using the preferred configuration) that were assigned to
about 32K groups with a maximal size of about 5K concepts. Matching for
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Fig. 1. Composition of mappings to match many schemas

the largest group took more than 30 h. The approach is an interesting first step
but it requires improved scalability and coverage, e.g., by applying additional
match techniques than the use of Wikipedia categories. Furthermore, clustering
is needed not only for concepts but also for LOD entities (Sect. 4).

Simple Schemas. The holistic integration of many schemas has mainly been
studied for simple schemas such as web forms and web tables (use cases 1 and 2).
As we will discuss in the following, previous work for web forms focused on their
integration within a mediated schema as well as on their categorization into
different domains. For web tables, the focus has been on the semantic annotation
and matching of attributes.

The integration of web forms has been studied to support a meta-search
across deep web sources [12,33]. Schema integration implies clustering all sim-
ilar attributes from the web forms, mainly based on the linguistic similarity of
the attribute names (labels) [60]. The approaches also observe that similarly
named attributes co-occuring in the same schema (e.g., FirstName and Last-
Name) do not match and should not be clustered together [31]. Das Sarma and
colleagues propose the automatic generation of a so-called probabilistic medi-
ated schema from n input schemas, which is in effect a ranked list of several
mediated schemas [14]. Their proposed approach only considers the more fre-
quently occurring attributes and uses their pairwise similarities for determining
the different mediated schemas.

The holistic integration of several schemas is generally only relevant for
schemas of the same application domain. For a very large number of schemas, it
is thus important to first categorize schemas by domain. Several approaches have
been proposed for the automatic domain categorization problem of web forms
[5,32,44], typically based on a clustering of attribute names and the use of fur-
ther features such as explaining text in the web page where the form is placed.
While approaches such as [5,32] considered the domain categorization for only
few predefined domains, Mahmnoud and Aboulnaga [44] cluster schemas into
a previously unknown number of domain-like groups that may overlap. In [19],
this approach has also been applied for a domain categorization of web tables
from a large corpus.

For huge collections of web tables the domain categorization is especially
important but cannot successfully be accomplished by only considering attribute
names which are often cryptic or very general. This is also a problem for further
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tasks such as finding related web tables (e.g., to answer queries or to extend
web tables with additional attributes) or matching attributes within a corpus of
web tables. Hence, it is necessary to consider additional information such as the
attribute (instance) values in tables as well as information from the table context
in the web pages [4]. Furthermore, it is necessary to semantically enrich attribute
information by utilizing external background information such as knowledge
graphs, in particular to determine the semantic data type or concept classes of
attributes, e.g., company, politician, date-of-birth, country, capital, population
etc. Also, relationships between attributes of the same table should be identified.
Such semantic enrichment approaches have been investigated in [15,30,42,72, 74]
utilizing different knowledge resources such as Yago, DBpedia, or Probase. In
[72], Google researchers utilized web-crawled knowledge of about 60,000 classes
with at least 10 associated entities to find about 1.5 million “subject” attributes
in a web table corpus (about 8 times more than using the Wikipedia-based Yago
knowledge base).

The Infogather system [76] utilizes such enriched attribute information to
match web tables with each other. To limit the scope they determine topic-
specific schema match graphs that only consider schemas similar to a specific
query table. The match graphs help to determine matching tables upfront before
query answering and to holistically utilize information from matching tables.
Instance-based approaches to match the attributes of web tables considering the
degree of overlap in the attribute values have been used in [19].

Despite such approaches the information in open data repositories is not yet
sufficiently utilized. Attribute matching could be improved by considering both,
attribute metadata and instances, not just one of them. Further approaches could
apply physical data integration, e.g., to combine and cluster matching entities
from different tables or to extract entities to build or extend domain-specific
knowledge graphs.

4 Holistic Integration of Entities

Entity resolution (also called deduplication, object matching or link dis-
covery) [13,20] has mostly been investigated for finding matching entities?
(e.g. persons, products, publications, and movies) within a single source or
between two sources. For a single source, matching entities are typically grouped
within disjoint clusters such that any two entities in a cluster should match with
each other and no entity should match with entities of other clusters. For two
sources, the match result is mostly a binary mapping consisting of pairs of match-
ing entities (also called match correspondences or links). Binary match mappings
may be postprocessed to determine clusters of matching entities, e.g., by calcu-
lating the transitive closure of the correspondences and refining the resulting
connected components (clusters) to ensure that indirectly linked entities are

2 To be more precise, we can only find matching records referring to the same real-
word object. For simplification, we use the term “entity” to refer to both the records
as well as the real-world objects they describe.
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really similar enough to stay in the same cluster [29,34,46]. Alternatively, one
can construct a similarity graph from the match correspondences and determine
subgraph clusters of connected and highly similar entities [24,57].

The match decision is typically based on the combined similarity of several
attribute values and possibly on the contextual similarity of entities. In current
systems, the combination of the similarity values for deriving a match decision is
either based on supervised classification models (learned from training examples)
or on manually determined match rules [38,48]. To achieve high efficiency for
large datasets, one has to avoid comparing each entity to all other entities. This is
made possible by utilizing so-called blocking strategies [13,53,75] and additional
filter techniques tailored to specific similarity or distance functions (e.g., the
triangle inequality for metric-space distance functions) [50]. Entity resolution
can also be performed in parallel on multiple processors and computing nodes,
e.g., on Hadoop platforms [37], to achieve additional performance improvements.

In the following, we first outline a general approach to holistically cluster
entities from many sources. We then discuss the use of such an approach for
LOD sources as well as for use cases of Sect.2. Finally, we briefly discuss the
integration of entities into knowledge graphs.

Holistic Clustering of Entities. To holistically match entities from many
sources, the prevalent approaches for pairwise matching, e.g., within the Web of
Data, are no longer sufficient and viable. This is because one would need up to
% binary match mappings for n data sources, i.e., up to 190 and 19,900
mappings for 20 and 200 sources, respectively. Since each mapping is already
expensive to determine for large datasets, it is obvious that the computational
effort to determine the mentioned number of mappings is infeasible for a large
number of sources. Holistic entity resolution thus should be clustering-based
by holistically determining match clusters such that all matching entities from
any source are combined in a single cluster. For n duplicate-free sources the
size of such a match cluster is limited to at most n entities. Each cluster of
k < n entities represents k(=1 1hatch pairs and is thus a much more compact
representation than with the use of correspondences. The entities of a cluster
should have common attributes to determine the entity similarity but can also
have different additional attributes that complement each other. By combining
the different attributes of the entities in a cluster within a fused entity it is
possible to enrich the entity information across all sources as desirable for data
integration. The fused entity can serve as a cluster representative that is used
to match against further entities.

Clustering the entities across all sources can be performed with much less
effort than with determining the quadratic number of binary mappings. For
static sources, one can bootstrap the clustering process with one of the sources,
e.g., the largest one or a source with known high data quality, and use each of its
entities as an initial cluster (assuming duplicate-free sources). Then one matches
the entities of one source after another with the cluster representatives to decide
on the best-matching cluster or whether an entity should form a new cluster.
This process can be continued until all sources are matched and clustered. For
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Fig. 2. Holistic clustering of matching entities from multiple sources (clusters are
grouped by entity type and have a representative, e.g., r;; for cluster ¢;; of type T;)

any entity of any source but the first, the number of match computations is
restricted by the number of clusters, which is limited by the total number of
distinct entities across all sources. The number of clusters to be considered can
be reduced by blocking techniques [13]. In particular, only entities of the same
semantic type or class need to be compared with each other, i.e. one should
maintain a separate set of clusters for every entity type. Once the entity clusters
are established it is relatively easy to match and add new entities from any
source, e.g., in a streaming-like manner. Figure 2 illustrates this process where
new entities of different types T; from different sources D; are matched with
the centrally maintained clusters (specifically with cluster representatives r;;)
for this entity type. The entity type and other entity attributes may have to be
determined during a preprocessing step before the actual match and clustering
can begin.

Holistic Clustering of LOD Entities. A holistic clustering of entities is espe-
cially promising for LOD data integration which so far is solely based on the use
of binary mappings, mostly of type owl:sameAs [48]. While a large number of
such mappings has already been determined by different tools, the degree of
entity linking is still small. One step to improve the situation is to provide pre-
determined mappings within repositories such as LinkLion [49], and utilize these
mappings for deriving additional mappings, e.g., by their transitive composi-
tion as used in [11,28]. However, this approach is not sufficient given the large
number of LOD sources. Furthermore, existing mappings determined by auto-
matic tools are noisy so that their transitive composition can easily lead to
mappings of low quality.
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Fortunately, it is possible to apply the sketched holistic entity clustering
for LOD sources, as recently proposed in [47]. The approach utilizes existing
mappings between n sources of a certain domain, e.g., geographical entities, to
determine the transitive closure between them and to postprocess these clus-
ters to ensure a high cluster quality. The approach distinguishes multiple entity
types, e.g. cities, mountains, lakes, etc. The entity types provided by the sources
are heterogeneous and have to be unified during preprocessing using a prede-
fined type mapping. Unfortunately, for many entities the type is not provided
so that it could happen that such untyped entities are clustered with entities
of a different type. Furthermore, errors in the input mappings can also lead to
wrong entity clusters. For these reasons, the approach postprocesses initially
determined clusters to split them to obtain clusters with highly similar entities
of the same type. An iterative merge process is also applied to allow entities
that have been separated due to a cluster split can be merged with other clus-
ters. The evaluation results showed that the approach clusters many previously
unconnected entities thereby resulting in a significantly improved degree of data
integration. Furthermore, many errors in the existing mappings could be elimi-
nated, especially by utilizing the type information, e.g., to separate entities with
the same names but different types (e.g., city vs. lake).

Further Use Cases. Holistic entity clustering can also be applied for use cases
5 and 6 of Sect. 2, e.g., to cluster publications or product offers. All such use cases
require extensive data preprocessing and cleaning to consolidate the entities for
matching and also to determine their semantic type since most sources contain
different kinds of entities. This is especially the case for product offers, making
the operation of a comprehensive price comparison site a highly challenging task.
This is because there are typically thousands of product categories each described
by different schemas and sets of attributes. Furthermore, there are millions of
products offered in thousands of online stores. In addition, product offers change
continually (especially on price) and the structure of offers and the attribute
values may vary substantially between merchants even for the same product. To
facilitate the continuous integration of changing product offers it is important to
separate the different product categories and maintain clusters of product offers
separately per product type. Product offers should ideally be matched with clean
product descriptions serving as cluster representatives. Before new product offers
can be matched it is first necessary to determine their product category which
can be supported by supervised classification approaches [71]. Furthermore, it is
often necessary to extract match-relevant features from text attributes in product
offers (e.g., about the manufacturer), to resolve abbreviations and to perform
further data cleaning [1]. Matching can then be restricted to the product offers
of the selected category and should be based on category-specific match criteria,
e.g., category-specific learned classification models [39].

Knowledge Graphs. The generation and continuous refinement of large-scale
knowledge graphs (use case 4) has similarities to the discussed maintenance of
product entities and offers within a large set of heterogeneous product cate-
gories. Knowledge graphs typically cover many domains and integrate entities
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and concepts extracted from Wikipedia, web pages, web search queries and other
knowledge resources such as domain ontologies, thesauri etc. [69]. Each entity
is typically classified within a large category system and interrelated with other
entities. Entities typically have a large number of attributes and attribute values
collected and clustered from the different sources [26]. Furthermore, it is desir-
able to keep track of entity changes over time so that historical versions of entities
can be provided [8]. In 2012, the Google knowledge graph contained already 570
million entities within 1500 entity types and 18 billion facts (attribute values,
relations) [18]. However, the majority of the automatically collected information
is error-prone [18] so that the overall data quality in web-scale knowledge graphs
is a massive problem.

To integrate new entities and achieve good data quality, one needs approaches
similar to the integration of product offers (categorization of entities, error detec-
tion, consolidation of attribute values, entity resolution, etc.), however, they
should be able to deal with an even greater scope and diversity of entities.
Bellare et al. discuss in [8] the construction of the Yahoo! knowledge graph
utilizing a Hadoop infrastructure; entity resolution is based on blocking and
pairwise matching followed by a postprocessing to generate entity clusters. Data
integration for knowledge graphs also requires the determination and continuous
evolution of a fine-grained category system which so far has been largely based on
manual decisions. Several studies have begun to address the data quality prob-
lems for knowledge graphs, in particular by verifying entity information from
multiple sources [18,40]. Paulheim discusses such recent approaches to refine
knowledge graphs in [56].

5 Conclusions and Outlook

Traditional data integration approaches that focus on few data sources need to
be extended substantially to holistically integrate many sources. In particular,
the prevalent pairwise matching of schemas and entities is not scalable enough.
The discussion of several use cases and current solutions indicates that holistic
data integration should be based on physical data integration as well as on the
use of clustering-based approaches to match entities and metadata (concepts,
attributes). Scalability for metadata integration is inherently complex and best
achieved for simple schemas such as web forms or web tables utilizing a cluster-
ing of attributes. Even in this case it is important to utilize large background
knowledge resources to semantically categorize and enrich attributes to facilitate
data integration. For holistic entity resolution we proposed a general clustering
strategy differentiating multiple entity types. Such a scheme can be utilized for
a holistic integration of LOD sources as well as for other use cases, e.g., to inte-
grate product offers from numerous online stores. The determination and main-
tenance of knowledge graphs is especially challenging as it implies the integration
of an extremely large number of entities within a huge number of categories. In
virtually all use cases, an extensive preprocessing of entities to consolidate and
categorize them is of paramount importance for their subsequent integration and
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use. To limit the amount of manual work for holistic data integration, it seems
crucial to build up and re-use curated dictionaries (e.g., to resolve synonyms and
abbreviations), schema/ontology and mapping repositories.

The discussion has shown that there are many opportunities to develop new
or improved approaches for the holistic integration of metadata and instance
data. Open data collections need much more data integration to make them
usable, e.g. by categorizing their datasets, clustering entities or deriving domain-
specific knowledge graphs. The initial approaches for LOD need to be extended to
achieve holistic data integration for both metadata and entities. The approaches
for generating and using knowledge graphs need further improvements and eval-
uation, in particular for largely automatic holistic metadata integration as well
as for achieving high data quality. Furthermore, there is a growing need to sup-
port fast, near real-time integration of updates and new entities from different
sources and data streams. Lastly, scalability techniques including the use of par-
allel infrastructures and blocking need to be extended to meet the increased
performance requirements for holistic data integration.
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