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Lattices

by R. Freese and J. B. Nation

This is an extended version of our chapter in the book LatticeTheory: Spe-
cial Topics and Applications, vol 2, edited by George Grätzer and Friederich
Wehrung. This version has one additional section, The generalized word prob-
lem and automorphisms. All of the numbering remains the same except this
version has its own bibliography.

2-1. Introduction

Since free lattices are covered in Section 1-5 of LTF and in great detail in
our book with Ježek [11], in this chapter we present the theory of finitely
presented lattices including some new results, and then specialize to the case
of free lattices. The authors wish to thank Alejandro Guillen for several
helpful suggestions.

2-2. Preliminaries

Terms (or lattice terms) are defined in Section 4.1 of Chapter I of LTF. Recall
that

x ∨ y ∨ z x ∨ (y ∨ z) (x ∨ y) ∨ z

27



28 2. Free and Finitely Presented Lattices

are all terms in {x, y, z}. We define the rank of a term slightly differently
from the definition given in LTF. A variable has rank 1, and if ti is a term of
rank ri, then t1 ∨ · · · ∨ tk and t1 ∧ · · · ∧ tk both have rank 1 + r1 + · · · + rk.
This gives preference to terms with unnecessary parentheses removed: the
first term above has rank 4, while the other two have rank 5.

We define the depth of a term as the depth of the term tree; that is,
variables have have depth 0, and if ti has depth di then t1 ∨ · · · ∨ tk and
t1 ∧ · · · ∧ tk both have depth 1 + max{d1, . . . , dk}.

The set of subterms of a term is defined as usual: if t is a variable then {t}
is its set of subterms, and if t = t1 ∨ · · · ∨ tk or t = t1 ∧ · · · ∧ tk then the set of
subterms is the union of {t} and the subterms of ti for i = 1, . . . , k. Thus the
subterms of the first term above are {x∨ y∨ z, x, y, z}. Note neither x∨ y nor
y∨ z is a subterm. However, y∨ z is a subterm of the middle term x∨ (y∨ z).

2-2.1 Day’s doubling construction

A useful construction for free lattice theory is Alan Day’s doubling construc-
tion. We will use this construction in this chapter to derive one of the basic
properties of free lattices, Whitman’s condition, following Day’s approach [2].
The doubling construction also plays a crucial role in the proof of Day’s im-
portant result [1] that free lattices are weakly atomic.

Let L be a lattice. A subset C of L is convex if whenever a and b are in C
and a ≤ c ≤ b, then c ∈ C. Of course an interval of a lattice is a convex set,
as are lower and upper pseudo-intervals. A subset C of L is a lower pseudo-
interval if it is a finite union of intervals, all with the same least element. An
upper pseudo-interval is the dual concept.

Let C be a convex subset of a lattice L and let L[C] be the disjoint union
(L− C) ∪ (C × 2). Order L[C] by x ≤ y if one of the following holds.

(i) x, y ∈ L− C and x ≤ y holds in L,

(ii) x, y ∈ C × 2 and x ≤ y holds in C × 2,

(iii) x ∈ L− C, y = (u, i) ∈ C × 2, and x ≤ u holds in L,

(iv) x = (v, i) ∈ C × 2, y ∈ L− C, and v ≤ y holds in L.

There is a natural map λ from L[C] back onto L given by

(2-2.1) λ(x) =

{
x if x ∈ L− C
v if x = (v, i) ∈ C × 2.

The next theorem shows that, under this order, L[C] is a lattice.

Theorem 2-2.1. Let C be a convex subset of a lattice L. Then L[C] is a
lattice and λ : L[C]→ L is a lattice epimorphism.
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Proof. Routine calculations show that L[C] is a partially ordered set. Let
xi ∈ L − C for i = 1, . . . , n and let (uj , kj) ∈ C × 2 for j = 1, . . . ,m. Let
v =

∨
xi ∨

∨
uj in L and let k =

∨
kj in 2; if m = 0, then let k = 0. Then in

L[C],

(2-2.2) x1 ∨ . . . ∨ xn ∨ (u1, k1) ∨ . . . ∨ (um, km) =

{
v if v ∈ L− C,

(v, k) if v ∈ C.

To see this, let y be the right side of the above equation, i.e., let y = v if
v ∈ L − C and y = (v, k) if v ∈ C. It is easy to check that y is an upper
bound for each xi and each (uj , kj). Let z be another upper bound. First
suppose z = (a, r) where a ∈ C. Since z is an upper bound, it follows from
the definition of the ordering that a ≥ v and r ≥ k, and this implies z ≥ y.
Thus y is the least upper bound in this case. The case when z /∈ C is even
easier. The formula for meets is of course dual. Thus L[C] is a lattice, and it
follows from equation (2-2.2) and its dual that λ is a homomorphism which
is clearly onto L.

H. Reppe [25], and T. Holmes and J. B. Nation [20], have shown that the
doubling construction yields a lattice for subsets more general than convex
sets and have characterized the finite lattices that can be obtained with this
construction.

The next result follows easily from (2-2.2) and its dual.

Corollary 2-2.2. Let L be a lattice generated by a set X, and let C be a
convex subset of L with X ∩ C = ∅. Let s be a term with variables in X
whose evaluation in L is v. Then the evaluation of s in L[C] is v if v /∈ C,
and either (v, 0) or (v, 1) otherwise.

2-3. Finitely presented lattices and the word problem

Let X be a set (of variables). A lattice relation is a formal expression of the
form s ≈ t, where s and t are terms with variables from X. We also consider
s ≤ t to be a relation, which in lattices is obviously equivalent to s ≈ s∧ t. A
presentation is a pair (X,R) where X is a set and R is a set of relations with
variables from X. We say that (X,R) is a finite presentation if both X and
R are finite.

A lattice F is the lattice finitely presented by (X,R) if there is a map
ϕ : X → F such that F is generated by ϕ(X), F satisfies the relations R
under the substitution x 7→ ϕ(x), for x ∈ X, and F satisfies the following
mapping property: if L is a lattice and ψ : X → L is a map such that L
satisfies R under the substitution x 7→ ψ(x), then there is a homomorphism
f : F → L such that fϕ(x) = ψ(x) for all x ∈ X. Using the definition it
is easy to see that the lattice finitely presented by (X,R) is unique up to
isomorphism. This lattice is denoted Free(X,R).
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The existence of Free(X,R) is easy to see: using the universal mapping
property of the free lattice Free(X) one can easily verify that Free(X)/θR,
where θR is the congruence generated by R, is Free(X,R). The word problem
for (X,R) is, given terms s and t with variables from X, to decide if the
interpretations of s and t in Free(X,R) are equal. Equivalently, is (s, t) ∈ θR?
We shall see later that Free(X,R) is a subdirect product of finite lattices and
this shows the word problem is decidable. The rough idea is to alternately
try to prove s ≈ t and to try to find a finite lattice that witnesses that it is
not true. This is the approach of McKinsey [23] and Evans [5, 6].

Recently, Stan Burris discovered that Thoralf Skolem in his 1920 paper [26]
gave a very simple and efficient algorithm for deciding the word problem,
which we present now.

2-3.1 Skolem’s solution to the word problem

Skolem viewed a lattice as a relational structure with one binary relation
denoted ≤ and two ternary relations ∨ and ∧. In this perspective, a ∨ b = c
would be written as (a, b, c) ∈ ∨. His axioms are what one would expect except
he only required ≤ to be a quasiorder. In this regard ∨ is not a function: it is
possible for both (a, b, c) ∈ ∨ and (a, b, c′) ∈ ∨ even though c 6= c′. (However,
as we shall see, this implies c ≤ c′ and c′ ≤ c.) To formalize this we define a
relational quasilattice as follows.

Definition 2-3.1. A set U with three relations ≤, ∨ and ∧ of arities 2,
3 and 3, respectively, is a relational quasilattice if it satisfies the following
axioms and the duals of (iii)–(vi):

(i) ≤ is reflexive.

(ii) ≤ is transitive.

(iii) If (x, y, z) ∈ ∧, then (z, x) and (z, y) are in ≤.

(iv) If (x, y, z) ∈ ∧ and both (u, x) and (u, y) are in ≤ then (u, z) is in ≤.

(v) If (x, y, z) ∈ ∧ and (x, x′), (x′, x), (y, y′), (y′, y), (z, z′), (z′, z) are all
in ≤, then (x′, y′, z′) ∈ ∧.

(vi) For all x, y there is a z with (x, y, z) ∈ ∧.

Clearly if L is a lattice then one obtains a relational quasilattice by in-
terpreting the join and meet operations as relations. The easiest example of
a relational quasilattice that is not a lattice is U = {a, b} and ≤ = U2 and
∨ = ∧ = U3.

It is easier to give Skolem’s algorithm for deciding universal Horn sen-
tences. This is slightly more general in that it gives a solution to the uniform
word problem. Let

(2-3.1) s1 ≈ t1 & · · · & sk ≈ tk −→ s ≈ t
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be a Horn formula. The problem is to decide if this is true in every lattice
under every substitution of the variables. The algorithm creates a relational
structure (U,≤,∨,∧), where U is the set of all subterms of the terms of s, si,
t and ti, i = 1, . . . , k. All three relations are initially empty.

A minor technical problem arises, which can be resolved in various ways.
The simplest is to write the Horn formula (2-3.1) regarding ∧ and ∨ as binary
operations. For example, we would write (x∨y)∨z rather than x∨y∨z. In that
way, our definition of subterm agrees with Skolem’s. (Alternatively, one could
use a different definition of subterm, or modify the definition of relational
quasilattice and the algorithm of Theorem 2-3.2 to allow (x1, . . . , xk, z) ∈ ∧
and ∨.)

Theorem 2-3.2 (Skolem’s Algorithm). The following polynomial time al-
gorithm decides if the implication (2-3.1) is valid. Let U be the set of all
subterms of the terms s, si, t and ti, i = 1, . . . , k.

(a) For i = 1, . . . , k add (si, ti) and (ti, si) to ≤.

(b) If r = r1 ∨ r2 is a subterm, add (r1, r2, r) to ∨.

(c) If r = r1 ∧ r2 is a subterm, add (r1, r2, r) to ∧.

(d) Close (U,≤,∨,∧) under axioms (i)–(iv) and the duals of (iii) and (iv).

(e) If both (s, t) and (t, s) are in ≤ then (2-3.1) is true; otherwise not.

Proof. Suppose the closure (d) shows that both (s, t) and (t, s) are in ≤. Then
this derivation constitutes a proof that (2-3.1) is true.

For the other direction suppose either (s, t) or (t, s) is not in ≤ after com-
pleting part (d). Note that ≤ is a quasiorder by axioms (i) and (ii). Moreover,
axiom (v) and its dual hold for (U,≤,∨,∧). Let ≡ be the equivalence relation
associated with this quasiorder: u ≡ v if (u, v) and (v, u) are in ≤. Let u be
the equivalence class of u and U = {u : u ∈ U}. Of course U is an ordered
set. Also note that if (a, b, c) ∈ ∨ then by axioms (iii) and (iv), c is the least
upper bound of a and b under the order of U .

Definition 2-3.3. A partially defined lattice is a partially ordered set (P,≤)
together with two partial functions,

∨
and

∧
, from subsets of P into P such

that if p =
∨
S then p is the least upper bound of S in (P,≤), and dually.

We use (P,≤,
∨
,
∧

) to denote this structure.

By the above remarks, (U,≤,
∨
,
∧

) is a partially defined lattice where
∨

is given by the rule: for each (a, b, c) ∈ ∨ we have
∨
{a, b} = c, and dually

for
∧

. As we show in the proof of Dean’s Theorem below, partially defined
lattices are embedded into their ideal lattice, Idl0(U,≤,

∨
,
∧

). If x1, . . . , xn
are the variables occurring in the terms of (2-3.1), we assign the variable xi
to id(xi) (the principal ideal generated by xi). A straightforward inductive
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argument shows that if r ∈ U (so r is a subterm) then the evaluation in
Idl0(U,≤,

∨
,
∧

) of r under the substitution xi 7→ id(xi) is id(r). Thus we
can obtain axiom (vi) and its dual by embedding (U,≤,

∨
,
∧

) into its ideal
lattice. Since si = ti, i = 1, . . . , k and s 6= t, we see that this substitution into
Idl0(U,≤,

∨
,
∧

) witnesses the failure of (2-3.1).
After initialization U never increases in size, so the relations are bounded

in size by |U |3. Since |U | is the input size of the problem, it is not hard to see
the algorithm is polynomial time. We leave the details to the reader.

Some observations: first the connection between partially defined lattices,
weak partial lattices and partial lattices. The latter two are defined in LTF.
Partially defined lattice is the weakest of these notions, but all have an under-
lying (partial) order; see Lemma 80 of LTF. In [9, 11] partially defined lattices
are just called partial lattices. Also the defined joins and meets in a partially
defined lattice are not restricted to be binary. So, for example, d = a ∨ b ∨ c
is allowed (assuming d is the least upper bound in P , of course), while a ∨ b
may not be defined and may not even exist in P .

The second observation is that given a finite presentation (X,R) we can
form a partially defined lattice as in the proof of Theorem 2-3.2. First set U
to be the union of X and all subterms of the terms occurring in R and
perform steps (a)–(d). Then form (P,≤,

∨
,
∧

) where P = U/≡. In this
way (P,≤,

∨
,
∧

) can be viewed as a finite presentation. Moreover, as the
reader can show, Free(X,R) ∼= Free(P,≤,

∨
,
∧

). Consequently, in our study
of finitely presented lattices we will study Free(P,≤,

∨
,
∧

).

2-3.2 Dean’s Theorem

An ideal I in a partially defined lattice (P,≤,
∨
,
∧

) is a subset of P such
that if a ∈ I and b ≤ a then b ∈ I, and if a1, . . . , ak are in I and a =

∨
ai

is defined then a ∈ I. It is worth pointing out that these two rules may
have to be applied repeatedly to find the ideal generated by a set. The set
of all ideals of (P,≤,

∨
,
∧

) including the empty ideal forms a lattice denoted
Idl0(P,≤,

∨
,
∧

) or just Idl0(P ). The map p 7→ id(p) embeds P into Idl0(P ),
preserving the order (and its negation) and all the defined joins and meets.
This is easy to see: if a < b in P then id(a) ( id(b), and if a = a1 ∨ · · · ∨ ak is
a defined join then a is in the ideal I generated by the union of the id(ai)’s,
whence it follows that I = id(a). If b is the greatest lower bound in (P,≤)
of {a1, . . . , ak} then id(b) = id(a1) ∩ · · · ∩ id(ak), so the meet relations are
certainly preserved. Hence the map p 7→ id(p) extends to a map

ψ : Free(P,≤,
∨
,
∧

)→ Idl0(P,≤,
∨
,
∧

),

and this shows in particular that (P,≤) is embedded in Free(P,≤,
∨
,
∧

).
If w ∈ Free(P,≤,

∨
,
∧

) we let

w = idP (w) = {a ∈ P : a ≤ w},
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the ideal of P below w. Define w, the filter above w, dually. If w1, . . . , wk ∈
Free(P,≤,

∨
,
∧

) let idP (w1, . . . , wk) be the ideal of (P,≤,
∨
,
∧

) generated by
w1∪· · ·∪wk which of course is the ideal w1∨· · ·∨wk. The filter filP (w1, . . . , wk)
is defined dually. One can show by induction on the rank of w that, for the
map ψ above,

ψ(w) = idP (w) = w.

The next theorem is Dean’s solution to the word problem [3].

Theorem 2-3.4. Let s and t be terms with variables in P . Then s ≤ t holds
in Free(P,≤,

∨
,
∧

) if and only if one of the following holds:

(i) s ∈ P and t ∈ P and s ≤ t in (P,≤);

(ii) s = s1 ∨ · · · ∨ sk and ∀ i si ≤ t;

(iii) t = t1 ∧ · · · ∧ tk and ∀ j s ≤ tj;

(iv) s ∈ P and t = t1 ∨ · · · ∨ tk and s ∈ idP ({t1, . . . , tk});

(v) s = s1 ∧ · · · ∧ sk and t ∈ P and t ∈ filP({s1, . . . , sk});

(vi) s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm and ∃ i si ≤ t or ∃ j s ≤ tj or
∃ a ∈ P s ≤ a ≤ t.

Proof. Since (P,≤) is embedded in Free(P,≤,
∨
,
∧

), if s and t are in P ,
then s ≤ t holds in Free(P,≤,

∨
,
∧

) if and only if it holds in (P,≤). A
straightforward inductive argument shows that if (iv) or (v) holds then s ≤ t
holds in Free(P,≤,

∨
,
∧

). Clearly if (ii), (iii) or (vi) holds then s ≤ t holds in
Free(P,≤,

∨
,
∧

). Thus any of (i) to (vi) implies s ≤ t.
For the converse suppose s ≤ t holds in Free(P,≤,

∨
,
∧

). Suppose s ∈ P
and t = t1 ∨ · · · ∨ tk. Using the homomorphism ψ above

idP (s) ≤ idP (t) = idP (t1 ∨ · · · ∨ tk)

= idP (t1) ∨ · · · ∨ idP (tk)

= idP ({t1, . . . , tk}),

and so s ∈ idP ({t1, . . . , tk}), as desired.
Now suppose s ≤ t and s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm and that

there is no i with si ≤ t, no j with s ≤ tj and no a ∈ P with s ≤ a ≤ t. Let
C be the interval [s, t] and let FP [C] be the lattice with C doubled, where
FP = Free(P,≤,

∨
,
∧

). Since P ∩ C = ∅, (P,≤) is embedded in FP [C], and
by (2-2.2) the image satisfies the join and meet relations. Hence there is a
homomorphism ϕ : FP � FP [C]. Let v be the interpretation of s in FP and
let u be the interpretation of t. By Corollary 2-2.2 the interpretation of s in
FP [C] is either (v, 0) or (v, 1). But s = s1 ∧ · · · ∧ sk and each si is not in
C and thus above (v, 1). It follows that the interpretation of s in FP [C] is
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(v, 1). Similarly, the interpretation of t in FP [C] is (u, 0). So ϕ(s) = (v, 1)
and ϕ(s) = (u, 0). But (v, 1) 6≤ (u, 0), which is a contradiction since s ≤ t.

The remaining cases are straightforward.

If there are no defined joins then idP ({t1, . . . , tk}) is simply the set of
elements below one of the ti’s. Hence condition (iv) of Dean’s Theorem can
be simplified to saying that if s ∈ P and t = t1 ∨ · · · ∨ tk, then s ≤ t if and
only if s ≤ ti for some i. In other words the elements of P are join prime.
Also note that in this case condition (vi) simplifies to

(W) s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm implies ∃ i si ≤ t or ∃ j s ≤ tj

This is known as Whitman’s condition.
If no joins and no meets are defined and the order on P is an antichain,

then Dean’s solution reduces to Whitman’s solution to the word problem for
free lattices.

Definition 2-3.5. If S and T are subsets of a lattice, we say that S refines
T (or S lower refines T ) if for all s ∈ S there is a t ∈ T with s ≤ t. We denote
this by S � T . The relation S � T is defined dually and we say that S upper
refines T in this case.

Lemma 2-3.6. If x ∈ P and x ≤ t1 ∨ . . . ∨ tn in Free(P,≤,
∨
,
∧

) then there
is a set Y ⊆ P such that Y � {t1, . . . , tn} and x ≤

∨
Y in Free(P,≤,

∨
,
∧

).

Proof. By (iv) of the Dean’s Theorem, the hypotheses imply that x is in the
ideal of (P,≤,

∨
,
∧

) generated by Y = {y ∈ P : y ≤ ti for some i}. Clearly
Y � {t1, . . . , tn}. The join of Y may not be defined in (P,≤,

∨
,
∧

), but it
is easy to see that every element of the ideal of (P,≤,

∨
,
∧

) generated by Y ,
idP (Y ), is below

∨
Y in Free(P,≤,

∨
,
∧

), and hence x ≤
∨
Y .

2-4. Canonical form

Each element in a free lattice has a shortest term representing it, which is
unique up to commutativity and associativity. This is called the canonical
form of the element. This syntactical concept is closely related to the arith-
metic of the free lattice. We will see that the elements of Free(P,≤,

∨
,
∧

) also
have a canonical form and that there is a nice connection between this form
and the arithmetic of the finitely presented lattice. A related but different
canonical form is considered in Grätzer, Huhn and Lakser [19]. Our canonical
form has the nice property that when applied to free lattices, it agrees with
Whitman’s.

As we mentioned above, the major difference between Dean’s algorithm
and Whitman’s lies in conditions (iv), (v) and (vi). However if we are deal-
ing with a certain kind of term, which we will call adequate, these difficult
conditions can be replaced with the simple free lattice conditions.
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Definition 2-4.1. Let (P,≤,
∨
,
∧

) be a finite partially defined lattice. A
term t with variables from P is called adequate if it is an element of P , or if
t = t1 ∨ · · · ∨ tn is a formal join, each ti is adequate, and if p ≤ t for p ∈ P
then p ≤ ti for some i. If t is formally a meet the dual condition must hold.

Lemma 2-4.2. Let s and t be adequate terms. Then s ≤ t in Free(P,≤,
∨
,
∧

)
if and only if s ≤ t in Free(P,≤).

Here (P,≤) denotes P as a partially ordered set, with no nontrivial joins
and meets defined. This lemma follows from Theorem 2-3.4 and the remarks
which follow it.

An easy inductive argument shows that for every element w of the lattice
Free(P,≤,

∨
,
∧

) there is an adequate term representing w. Also every term
is adequate in the case of free lattices. The next theorem will show that there
is a shortest adequate term representing w, and that this term is unique up
to commutativity. We call such a term the canonical form of w.

Theorem 2-4.3. For each element of Free(P,≤,
∨
,
∧

) there is an adequate
term of minimal rank representing it, and this term is unique up to commu-
tativity.

Proof. Suppose that s and t are both shortest adequate terms that represent
the same element w in Free(P,≤,

∨
,
∧

). If either s or t is in P , then clearly
s = t.

Observe that if t = t1∨· · ·∨tn and some ti is formally a join, we could lower
the rank of t by removing the parentheses around ti. Since ti is adequate, the
resulting term would still adequately represent w. But this would violate the
minimally of t. Thus we conclude that each ti is not formally a join.

Suppose that t = t1∨· · ·∨ tn and s = s1∨· · ·∨sm. Then ti ≤ s1∨· · ·∨sm.
This implies that either ti ≤ sj for some j, or ti =

∧
tij and tij ≤ s for

some j, or there is an x ∈ P with ti ≤ x ≤ s1 ∨ · · · ∨ sm. In the second
case we have ti ≤ tij ≤ t, and replacing ti by tij in t produces a shorter term
still representing w. It is easy to see that this term is still adequate, violating
the minimality of the term t. If the third case holds then, by the adequacy
of s, x ≤ sj for some j. Hence in all cases there is a j such that ti ≤ sj .
Thus {t1, . . . , tn} � {s1, . . . , sm}. By symmetry, {s1, . . . , sn} � {t1, . . . , tm}.
Since both are antichains (by the minimality) they represent the same set of
elements of Free(P,≤,

∨
,
∧

). Thus m = n and after renumbering si ≈ ti.
Now by induction si and ti are the same up to commutativity.

If t = t1 ∨ · · · ∨ tn and s = s1 ∧ · · · ∧ sm, then, since neither s nor t is in P ,
(W) implies that either ti = t for some i or sj = s for some j, violating the
minimality.

The remaining cases can be handled by duality.

Examining the proof of this theorem we see that an adequate term t =
t1 ∨ · · · ∨ tn is a minimal adequate term if every proper subterm is a minimal
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adequate term, the ti’s form an antichain, and if ti =
∧
j tij , then tij � t for

every j. The next theorem is an easy consequence.

Theorem 2-4.4. If a term t = t1 ∨ · · · ∨ tn with n > 1 is in canonical form
then following conditions hold.

(a) The ti’s form an antichain.

(b) If ti =
∧m
j=1 tij with m > 1, then tij 6≤ t for all j.

In free lattices the canonical form is associated with nonrefinable join
representations, which in free lattices are unique. The next theorem will
show that in a finitely presented lattice each element can have only finitely
many nonrefinable join representations, and these can be easily found from
the canonical form. We define the canonical join representation of w ∈
Free(P,≤,

∨
,
∧

) to be w1 ∨ · · · ∨wm if the canonical form of w is t1 ∨ · · · ∨ tm
and the interpretation of ti in Free(P,≤,

∨
,
∧

) is wi. It is useful to separate
out the elements of P in such a representation. Thus let

w = w1 ∨ · · · ∨ wn ∨ x1 ∨ · · · ∨ xk(2-4.1)

=
∨∧

wij ∨
∨
xi

be the canonical join representation of w where xi ∈ P , i = 1, . . . , k, and the
canonical meet representation of wi is wi =

∧
wij .

Definition 2-4.5. A finite subset U of a lattice is said to be a nonrefinable
join representation of an element w if w =

∨
U , and whenever w =

∨
V for a

finite subset V with V � U , then U ⊆ V .

Note that if U is a nonrefinable join representation of w then U is an
antichain.

Theorem 2-4.6. Let the canonical join representation for w be given by (2-4.1).
Every join representation of w can be refined to a nonrefinable join representa-
tion of w. If w = v1∨· · ·∨vm in Free(P,≤,

∨
,
∧

) then there exist y1, . . . yr ∈ P
such that

w = w1 ∨ · · · ∨ wn ∨ y1 ∨ · · · ∨ yr
and

{w1, . . . , wn, y1, . . . , yr} � {v1, . . . , vm}.

Every nonrefinable join representation of w contains {w1, . . . , wn} and also
contains every xi which is join irreducible.

Note that an element x ∈ P is join irreducible in Free(P,≤,
∨
,
∧

) except
when some (z1, . . . , z`, x) ∈

∨
is among the defining relations of (P,≤,

∨
,
∧

)
and x 6= zi, i = 1, · · · , `.



2-4. Canonical form 37

Proof. Assume w = v1 ∨ · · · ∨ vm. Since, for i = 1, . . . , n,

wi ≤ v1 ∨ · · · ∨ vm = w

we have that either (i) wi ≤ vj for some j, (ii) wij ≤ w, or (iii) wi ≤ x ≤
w for some x ∈ P . If either (ii) or (iii) held, we could produce a shorter
adequate term representing w, violating the minimality of the representation
w = w1 ∨ · · · ∨ wn ∨ x1 ∨ · · · ∨ xk. Hence (i) must hold.

Since xi ≤ v1 ∨ · · · ∨ vm, by Lemma 2-3.6 there is a set {z1, . . . , zs} ⊆ P
such that xi ≤ z1 ∨ · · · ∨ zs in Free(P,≤,

∨
,
∧

) and

{z1, . . . , zs} � {v1, . . . , vm}.

Hence if we let {y1, . . . yr} be the union of the z’s obtained from all of the
xi’s,

w = w1 ∨ · · · ∨ wn ∨ y1 ∨ · · · ∨ yr

and

{w1, . . . , wn, y1, . . . , yr} � {v1, . . . , vm}.

This proves the first part of the theorem and also shows that every nonre-
finable join representation of w must be a subset of {w1, . . . , wn, y1, . . . , yr}
for some y1, . . . , yr in P . The argument at the beginning of this proof shows
that no wi can be omitted from this subset and hence every nonrefinable join
representation of w has the form {w1, . . . , wn, y1, . . . , yr} for some y1, . . . , yr
in P .

This proves everything except the statement about the join irreducible
xi’s. First we claim that each xi in (2-4.1) is a maximal element of idP (w).
If xi < y ≤ w then we could replace xi by y in (2-4.1). The resulting expression
would still correspond to an adequate term, in violation of the uniqueness of
the canonical form. Assume {v1, . . . , vm} is a nonrefinable join representation
of w. By Theorem 2-3.4, xi ≤ v1 ∨ · · · ∨ vm means that xi is in the ideal
of P generated by

⋃
j idP (vj). This ideal is obtained from this union by

alternately taking joins of subsets of this union that are defined in (P,≤,
∨
,
∧

)
and adding all elements less than something in the set. Obviously all such
elements will be less than or equal to w. But since xi is a maximal element
in P below w, the only way for a join of elements of P below w to contain
(be greater than or equal to) xi is for it to equal xi. Thus, in the case that
xi is join irreducible, we must have xi ≤ vj for some j. We have shown that
{v1, . . . , vm} = {w1, . . . , wn, y1, . . . , yr} for some yj ’s. Since xi ≤ wk would
violate the canonical form (2-4.1) of w, we must have xi ≤ yj for some j. But
the maximality of xi implies xi = yj , proving the last statement.

Notice that this proof shows that every nonrefinable join representation
of w refines the canonical join representation.
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Recall that a lattice is join-semidistributive if for all a, b and c

a ∨ b = a ∨ c implies a ∨ b = a ∨ (b ∧ c).

This implication is denoted SD∨. A lattice is semidistributive if satisfies SD∨
and its dual SD∧.

2-4.1 Exercises

2.1. Let (P,≤) be a countable partially ordered set. Let f : Free(P ) �
Free(P,≤) be the homomorphism from the free lattice to the free
lattice over P induced by the identity map on P . Show there is a
map g : Free(P,≤) � Free(P ) such that f(g(x)) = x. In particular
Free(P,≤) (and (P,≤) are embedded into Free(P ).

2.2. Show there are no uncountable chains in free lattices; see [16]. Also
show that the partially ordered set of of atoms and coatoms of the
lattice of subsets of an uncountable set cannot be embedded into a
free lattice; see [13, 24].

2.3. Use canonical form to show that free lattices are semidistributive.

2.4. Show that a finitely presented lattice is join-semidistributive if and
only if every element has a unique nonrefinable join representation;
see [10].

2.5. Show that every finite semidistributive lattice has a homomorphism
onto the two-element lattice.

In the following exercises a partially defined lattice (P,≤,
∨
,
∧

) is given.
You should decide if Free(P,≤,

∨
,
∧

) is finite. If it is finite you should draw
it, and if it is infinite you should give infinitely many elements. To do this
give infinitely many terms all in canonical form.

2.6. P = {a, b, c} with b ≤ c and no defined joins or meets.

2.7. P = {a, b, c, d} with b ≤ c ≤ d and no defined joins or meets.

2.8. P = {a, b, c, d, e} with b ≤ c ≤ d ≤ e and no defined joins or meets.

2.9. P = {a, b, c, d, e, 0, 1} with order given in Figure 2-4.1 and defined
joins 1 = a+ e = b+ d and c = d+ e, and defined meet 0 = abc.

2-5. A structure theorem of Grätzer, Huhn, and Lakser

In this section we prove the following theorem of G. Grätzer, H. Lakser and
A. Huhn [19]. Our proof, though different in detail, is very much in the spirit
of the original.

Theorem 2-5.1. Every finitely presented lattice is a disjoint union of finitely
many convex sublattices, each of which can be embedded into a free lattice.
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0 = abc

d e

a bc

1 = a+ e = b+ d

c = d+ e

Figure 2-4.1: The diagram P

Let (P,≤,
∨
,
∧

) be a partially defined lattice and consider the following
algebras:

• Term(P ), the (completely free) algebra of lattice terms generated by P ,

• Free(P,≤) = Free(P,≤,∅,∅), the free lattice generated by the ordered
set (P,≤),

• Free(P,≤,
∨
,
∧

), a finitely presented lattice,

• the ideal lattice L0 = Idl0(P,≤,
∨
,
∧

),

• the filter lattice L1 = Fil1(P,≤,
∨
,
∧

),

• the direct product L0 × L1.

Recall that for a finite (or even countable) ordered set P , the free lattice over
the ordered set Free(P,≤) embeds into the free lattice Free(P ). In this proof,
it will be more convenient to use the former.

For lattice terms in P , the expresion canonical form refers to the finitely
presented lattice canonical form as presented in the previous section, while
free lattice canonical form designates the canonical form for Free(P,≤).

Lemma 2-5.2. If t ∈ Term(P ) is in canonical form, then it is in free lattice
canonical form.

Proof. This follows from an easily from induction using Theorem 2-4.4.

There are natural homomorphisms

Term(P )
ϕ−→ Free(P,≤)

π−→ Free(P,≤,
∨
,
∧

)
h−→ L0 × L1 .

Moreover, there is the canonical form map in the other direction

Term(P )←−
γ

Free(P,≤,
∨
,
∧

)
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which takes an element a in the finitely presented lattice to its canonical
form, i.e., γ(a) is the adequate term of minimal rank such that πϕγ(a) = a.
Then, by Lemma 2-5.2, ϕγ(a) is just the evaluation of γ(a) in the free lattice
Free(P,≤).

To emphasize the distinction between canonical form and canonical form
for free lattice, for terms s and t we write s ≤1 t if ϕ(s) ≤ ϕ(t) in Free(P,≤),
and s ≤2 t if πϕ(s) ≤ πϕ(t) in Free(P,≤,

∧
,
∨

). Clearly ≤1⊆≤2, i.e., s ≤1 t
implies s ≤2 t.

Theorem 2-5.3. Let K be a nonempty class of kerh. Then ϕγ|K is an
embedding of K into Free(P,≤).

We need to show that ϕγ|K is a homomorphism; it will then be an embed-
ding since πϕγ = id. Thus each such K is embedded into Free(P,≤) which
in turn is embedded into a free lattice by Exercise 2.1.

Lemma 2-5.4. Fix an ideal I0 ∈ L0 and a filter F0 ∈ L1. Let K =
h−1(I0, F0). Let t = t1 ∨ . . . ∨ tn with n > 1 be a term in canonical form.
Then πϕ(t) is in K if and only if for x, y ∈ P ,

(i) x ∈ I0 implies x ≤2 ti for some i,

(ii) y ∈ F0 implies y ≥2 ti for all i.

Proof. Part (i) is the definition of adequate, while (ii) holds in all lattices.

Theorem 2-5.5. Let s = s1 ∨ · · · ∨ sm and t = t1 ∨ · · · ∨ tn be terms in
canonical form such that hπϕ(s) = hπϕ(t). (We allow m = 1 and/or n = 1.)
Then the canonical form of s ∨ t is the free lattice canonical form of s ∨ t.

In other words, if the ci all come from K, then the canonical form of their
join in Free(P,≤,

∧
,
∨

) is the free lattice canonical form of the join of their
canonical forms in Free(P,≤).

Proof. Say hπϕ(s) = hπϕ(t) = (I0, F0). Then hπϕ(s ∨ t) = (I0, F0) as well.
Moreover, since t is adequate, each x ∈ I0 satisfies x ≤2 ti for some i and
similarly for s. Hence the term s∨ t is adequate. We show that the procedure
to put s∨ t into canonical form results in the same term as putting it into free
lattice canonical form.

One of the steps in putting s ∨ t into canonical form is to replace

{s1, . . . , sm, t1, . . . , tn} ∪ idP (s ∨ t)

with its maximal elements under ≤2. But idP (s ∨ t) = I0. Since s and t are
adequate, the maximal elements of {s1, . . . , sm, t1, . . . , tn} ∪ I0 are just the
maximal elements of {s1, . . . , sm, t1, . . . , tn} by Lemma 2-5.4. For free lattice
canonical form of s ∨ t we want to replace {s1, . . . , sm, t1, . . . , tn} with its
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maximal elements under ≤1. But since the si’s and the tj ’s are adequate, we
have, by Lemma 2-4.2, that si ≤1 tj if and only if si ≤2 tj , and vice versa.
Thus the result of this step is the same for canonical and free lattice canonical
form.

Let u be the formal join of the maximal elements from the previous step.
Then u may not be in canonical form, but it is adequate, and πϕ(s ∨ t) =
πϕ(u). Hence we have tij ≤2 u if and only if tij ≤1 u. So, if tij ≤2 u, the
step that replaces ti by tij gives the same result in both kinds of canonical
form.

Of course, the dual result holds for meets, and together these prove The-
orem 2-5.3, which in turn proves Theorem 2-5.1.

2-6. Covers

In [15] the authors gave an effective proceedure for determining if an element
of a free lattice had a lower cover, and finding it if it did. Here we prove a
similar result for finitely presented lattices.

Definition 2-6.1. A join cover of x ∈ L, where L is a (partially defined)
lattice, is a finite set S ⊆ L such that x ≤

∨
S. We use the term meet cover

for the dual notion, although this terminology is less than ideal. A subset S
of the join irreducible elements of L is said to be closed if for every u ∈ S,
every join cover of u can be refined to a join cover of u consisting of elements
of S. We call a join cover S of x a nonrefinable join cover of x if whenever T
is a join cover of x and T � S then S ⊆ T . A join cover S of x is nontrivial
if there is no s ∈ S with x ≤ s.

Lemma 2-6.2. Every join irreducible element w ∈ Free(P,≤,
∨
,
∧

) is con-
tained in a finite closed set.

Proof. Define a set J′(w) of join irreducibles associated with w as follows. If
w ∈ P then J′(w) = ∅. If the canonical meet representation of w is given by

(2-6.1) w =
∧∨

wij ∧
∧
xk

then we let
J′(w) = {w} ∪

⋃
ij

J′(wij).

We claim that T(w) = P ′∪J′(w) is closed, where P ′ consists of those elements
of P that are join irreducible in Free(P,≤,

∨
,
∧

). If w ∈ P ′ then this follows
from Lemma 2-3.6. Clearly if v ∈ T(w) then T(v) ⊆ T(w). Hence it suffices
to show that any join cover of w refines to one in T(w). Suppose w ≤

∨
U .

Since w ∈ T(w), the claim is obvious if w ≤ u for some u ∈ U . Otherwise,
wi ≤

∨
U for some i, or xj ≤

∨
U for some j. In the latter case the claim
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follows from Lemma 2-3.6 again. In the former case wij ≤
∨
U for all j. Since

each T(wij) ⊆ T(w), an inductive argument shows that there is a refinement
of U to a join cover Vij of wij . If V =

⋃
j Vij , then V is a join cover of wi,

and hence w, refining U .

Lemma 2-6.3. The intersection of a finite closed set with an arbitrary closed
set is closed.

Proof. Suppose that both S and T are closed sets with S finite and let w ∈
S ∩ T . If w ≤

∨
U then there is a join cover V ⊆ S refining U . Moreover,

since S is finite, we may assume that if V ′ ⊆ S is a join cover refining V , then
V ⊆ V ′. Since T is also closed, it has a subset V1 with V1 � V which is a
join cover of w. But since S is closed, it has a subset V2 � V1 which is a join
cover of w. By the choice of V , we have

V ⊆ V2 � V1 � V.

This implies V = V1. Thus V ⊆ S ∩ T , showing that S ∩ T is closed.

Using the last two lemmas we can show that if w is a join irreducible
element of Free(P,≤,

∨
,
∧

) then there is a unique smallest closed set contain-
ing w, which is denoted J(w). In fact, an induction argument shows that a fi-
nite closed set of minimum cardinality containing w will be J(w). The lemmas
also show that J(w) can be characterized as the smallest set S containing w
such that if u ∈ S and V is a nonrefinable join cover of u, then V ⊆ S. We
extend the definition of J(w) to include all elements of Free(P,≤,

∨
,
∧

) by
defining J(w) =

⋃
u J(u), where the union is over all elements u which lie in a

nonrefinable join representation of w. Notice that all the elements of J(w) are
join irreducible. A argument similar to the proof of the last two lemmas shows
that this extended J(w) is the smallest closed set such that any join cover of
w can be refined to one contained in J(w). We record this as a theorem.

Theorem 2-6.4. If w is join reducible, then J(w) =
⋃
u J(u), where the

union is over all elements u which lie in a nonrefinable join representation
of w. Moreover, every join cover of w can be refined to one contained in J(w).

For w ∈ Free(P,≤,
∨
,
∧

), we define the rank of w to be the rank of the
canonical form of w. The depth of w is defined similarly. In the proof of
Lemma 2-6.2, a closed set containing w was constructed as the union of J′(w)
and P ′. Since the elements of J′(w)− {w} all have depth less than the depth
of w, we have the following theorem.

Theorem 2-6.5. For each w ∈ Free(P,≤,
∨
,
∧

) there is a unique smallest
closed set, J(w), with the property that every join cover of w can be refined to
one whose elements lie in J(w). If w /∈ P then every element of J(w) − {w}
has lower depth than w. If w ∈ P then J(w) ⊆ P .
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Let P∧ be the closure under meets of all subsets of P , including the empty
set, in Free(P,≤,

∨
,
∧

). (The meet of the empty set is the greatest element.)
An element with no nontrivial join cover is said to be join prime.

Corollary 2-6.6. If w ∈ Free(P,≤,
∨
,
∧

) then J(w)∩P∧ 6= ∅. Furthermore,
if w ∈ P∧ then J(w)∩P 6= ∅ unless w is join prime. Let 0 =

∧
P be the least

element. Then J(0) = {0}, and 0 /∈ J(w) if w 6= 0.

Proof. We prove this by induction on the depth of w. If w ∈ P then this
corollary follows from the previous theorem. Thus we may assume w /∈ P .
If w is not join irreducible then J(w) is nonempty and all of its elements have
depth lower than the depth of w, so the result follows easily by induction.
Thus assume that w is join irreducible and that w /∈ P∧. If v ∈ J(w) − {w}
then by the last theorem the depth of v is less that of w. By induction
J(v)∩P∧ 6= ∅. Since J(v) ⊆ J(w), we are done unless J(w) = {w}. However,
if this were the case then w would be join prime. Since w is not in P∧, then
one of the canonical meetands, say w1, of w is not in P . If the canonical
joinands of w1 are w1j , j = 1, . . . , n, then by an easy application of part (b)
of Theorem 2-4.4, {w11, . . . , w1n} is a nontrivial join cover of w. Thus w is
not join prime. If w ∈ P∧−P and is not join prime, then by the last theorem
J(w)− {w} ⊆ P . Since w is not join prime, this set is not empty.

The last sentence follows from the fact that 0 has no nontrivial join cover
and it is not part of a nontrivial join cover of any other element.

For computational purposes it is useful to have a more concrete description
of J(w). First we show that J′(w) defined above is contained in J(w).

Lemma 2-6.7. If w is join irreducible then

J′(w) ⊆ J(w).

Proof. Let

(2-6.2) w = w1 ∧ · · · ∧ wn ∧ x1 ∧ · · · ∧ xr =

n∧
i=1

∨
j

wij ∧
r∧

k=1

xk.

Now w ≤ wi =
∨
j wij , so {wi1, wi2, . . .} is a join cover of w. Suppose T is

a join cover of w with T � {wi1, wi2, . . .}. Then w ≤
∨
T ≤ wi. We apply

Dean’s Theorem to w ≤
∨
T . Certainly there is no x ∈ P with w ≤ x ≤∨

T ≤ wi by canonical form (2-6.2). Similarly if there is a t ∈ T with w ≤ t,
then since t ≤ wij , w ≤ wij , again contradicting canonical form. Finally if
wi′ ≤

∨
T then clearly i′ = i and so wi =

∨
T . Thus T is a join representation

of wi. Assuming it is a nonrefinable join representation of wi, Theorem 2-4.6
implies that it must contain each wij that is not in P (and every wij in P
that is join irreducible). Hence J′(w) ⊆ J(w).
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Note that if T is a nontrivial, nonrefinable join cover of w, then by canon-
ical form wi ≤

∨
T , for some i, or xk ≤

∨
T . This leads to the question: if

S is a nontrivial, nonrefinable join cover of xk, is it a nontrivial, nonrefinable
join cover of w? Not in general. However, we have the following.

Lemma 2-6.8. Suppose S is a nontrivial, nonrefinable join cover of xk such
that wi 6≤

∨
S for i = 1, . . . , n, and such that if T � S for some nontrivial,

nonrefinable join cover T of some xk′ , then T = S. Then S is a nontrivial,
nonrefinable join cover of w.

Theorem 2-6.9. Let w be a join irreducible element with canonical form
given by (2-6.2). To find J(w) we start with J′(w). For each nontrivial,
nonrefinable join cover S of some xk such that for all i, wi 6≤

∨
S we add J

applied to each element of S. We repeat this for each u ∈ J′(w).

Definition 2-6.10. Let L be a lattice and S a finite subsemilattice of L with
a least element. Of course, this implies S is a lattice. Assume also that, for
all s ∈ S and a, b ∈ L,

(2-6.3) s ≤ a ∨ b implies there is a T ⊆ S with T � {a, b} and s ≤
∨
T .

The standard homomorphism (or standard epimorphism) is the map f : L→ S
defined by

(2-6.4) f(u) =
∨
{v ∈ S : v ≤ u}.

Lemma 2-6.11. The standard homomorphism is a homomorphism.

Proof. Clearly f preserves order and satisfies f(u) ≤ u. Hence, for u ∈
Free(P,≤,

∨
,
∧

) and v ∈ S, v ≤ u if and only if v ≤ f(u). The reader can
check that f preserves meets. For joins, suppose that a, b ∈ L. Clearly
f(a ∨ b) ≥ f(a) ∨ f(b). For the other direction, suppose that v ≤ a ∨ b, for
some v ∈ S. Since v ∈ S, there is a set T ⊆ S with

T � {a, b} v ≤
∨
T.

Since T ⊆ S, f(t) = t for t ∈ T . Thus

v ≤
∨
T =

∨
t∈T

f(t) ≤ f(a) ∨ f(b),

showing that f(a ∨ b) = f(a) ∨ f(b).

If S is a subset of a lattice, S∨ denotes the join closure of S; that is, the
closure under joins of all finite subsets of S. This includes the join of the
empty set,

∧
S, if that exists. Note that S is a join subsemilattice of the

lattices, and, when S is finite, S is a lattice.
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Let Free(P,≤,
∨
,
∧

) is a finitely presented lattice. If we take S = P∨

(which, of course, is Idl0(P,≤,
∨
,
∧

)), or, more generally, if S = P∨(∧∨)
n

,
then, by Theorem 2-6.5, J(w) ⊆ S for each w ∈ S. It follows that S satisfies
(2-6.3) and so the standard homomorphism from Free(P,≤,

∨
,
∧

) onto S exits.
We define L(w) to be the join closure of J(w) in Free(P,≤,

∨
,
∧

). In
symbols

L(w) = J(w)∨.

By the remarks above, L(w) is a lattice, which is a join subsemilattice of
Free(P,≤,

∨
,
∧

) and which satisfies (2-6.3). So the standard homomorphism
f : Free(P,≤,

∨
,
∧

) → L(w) exits and, as is easy to see, can be defined just
using J(w):

f(u) =
∨
{v ∈ J(w) : v ≤ u}.

This standard homomorphism played an important role in [15] and will also
be important here.

We are interested in determining which elements of Free(P,≤,
∨
,
∧

) have
lower covers. Notice that a join irreducible element w has a lower cover if and
only if it is completely join irreducible, that is, there is a greatest element,
always denoted w∗, strictly less than w. We let κ(w) denote the set of elements
v maximal with the property that

(2-6.5) v ≥ w∗ and v � w.

Theorem 2-6.12. Let w ∈ Free(P,≤,
∨
,
∧

) be completely join irreducible.
Then κ(w) is finite and if v satisfies (2-6.5), then v ≤ m for some m ∈ κ(w).
Moreover, either |κ(w)| = 1 or κ(w) ⊆ P .

Proof. We will show that κ(w) is the set of maximal elements of the members
of non-upper refinable meet representations of w∗ that are not above w. By
the dual of Theorem 2-4.6 this set consists of the meet irreducible elements of
the canonical meet representation of w∗ that are not above w, together with
those elements p ∈ P maximal with the property p ≥ w∗ but p � w. If v ≥ w∗
but not v � w, then

w∗ = v ∧ w.

By the dual of Theorem 2-4.6, this meet can be upper refined to a maximal
one, proving the first part of the theorem.

Suppose that κ(w) contains an element m not in P . Now if w∗ = v∧w then
by the dual of Theorem 2-4.6 this meet representation can be upper refined to
a nonrefinable one. Again by Theorem 2-4.6 this refinement must contain m.
Since m � w we must have m ≥ v. This clearly implies |κ(w)| = 1.

Exercise 2.10 gives an example of a partially defined lattice P and p and
q ∈ P such that κ(p) = κ(q) = {w}, where w /∈ P∨.
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The next theorem shows that the question of the existence of a lower cover
of an arbitrary element can be reduced to the question for join irreducible
elements.

Theorem 2-6.13. An element w ∈ Free(P,≤,
∨
,
∧

) has a lower cover if and
only if there is a completely join irreducible element in some nonrefinable join
representation of w.

Proof. Let u be a completely join irreducible element in a nonrefinable join
representation of w. Let v be the join of the other elements of this represen-
tation. Then u∗ ∨ v < w and hence

u∗ = u ∧ (u∗ ∨ v).

Thus there is an m ∈ κ(u) with m ≥ u∗∨v. Since κ(u) is finite, we can choose
an m ∈ κ(u) such that m ∧ w is a maximal element in the set

{n ∧ w : n ∈ κ(u), n ≥ v}.

Then it is easy to check that w � w ∧m.

Conversely, suppose that w � v for some v. By Theorem 2-4.6 there
are only finitely many elements involved in nonrefinable join representations
of w. So we can choose u to be a minimal element of a nonrefinable join
representation with the property u � v. If

u ∧ v < a < u

then a ∨ v = w. By Theorem 2-4.6 this join can be refined to a nonrefinable
join, w =

∨
T . There must be a t ∈ T with t � v. Hence t ≤ a < u,

contradicting the minimality of u. Thus u � u∧v, and so u is completely join
irreducible.

An epimorphism f : K → L is called lower bounded if each element x ∈ L
has a least preimage. This least preimage, when it exists, is denoted β(x).
Upper bounded is defined dually and the greatest preimage, when it exists, is
denoted α(x). The map f is bounded if it is both upper and lower bounded.
Notice that it follows immediately from the definition that the standard ho-
momorphism is lower bounded.

Theorem 2-6.14. A join irreducible element w ∈ Free(P,≤,
∨
,
∧

) is com-
pletely join irreducible if and only if the standard homomorphism

f : Free(P,≤,
∨
,
∧

)→ L(w)

is bounded.



2-6. Covers 47

Proof. First suppose that f is bounded. Clearly w is join irreducible in L(w).
Let w† be its lower cover in L(w), that is,

(2-6.6) w† =
∨
{v ∈ J(w) : v < w}.

Also define κL(w)(w) to be the set of all meet irreducibles m ∈ L(w) satisfying
m ≥ w†, m � w. It is easy to check that w � w ∧ α(m) for m ∈ κL(w)(w).

Conversely, suppose that w is completely join irreducible with lower cover
w∗. Let ψ(w,w∗) be the unique largest congruence separating w from w∗;
such a congruence exists by Dilworth’s characterization of lattice congruences;
see [4]. Now L(w) is an image of Free(P,≤,

∨
,
∧

) separating w and w∗. It
is not difficult to show that any image of L(w) must identify w and w† (see
Theorem 4.1 of [15]). It follows that Free(P,≤,

∨
,
∧

)/ψ(w,w∗) ∼= L(w) and
ψ(w,w∗) is the kernel of f .

Recall that P∧ is the meet closure of P in Free(P,≤,
∨
,
∧

). Consider
P∧(∨∧)

n

, the n-fold closure of P∧ under joins and meets. This is a finite subset
of Free(P,≤,

∨
,
∧

) closed under meets and possessing a greatest element,
hence a lattice. If n is large enough this lattice will satisfy the relations of P .
The (dual) standard epimorphism (see Definition 2-6.10)

g : Free(P,≤,
∨
,
∧

)→ P∧(∨∧)
n

is a homomorphism and trivially it is upper bounded. If we choose n large
enough, g will separate w and w∗. Thus there will be an epimorphism
h : P∧(∨∧)

n → L(w) such that f = hg. Since P∧(∨∧)
n

is finite, h is clearly
bounded. Since g is upper bounded, f is upper bounded. Since f is the
standard homomorphism, it is also lower bounded.

So to test if w is completely join irreducible and find w∗ if it is, we just
need to test if the standard homomorphism is upper bounded and to find α
if it is. The algorithm for this is presented in Section 5 of [9].

We close this section with a theorem which gives strong necessary condi-
tions for a join irreducible element to have a lower cover. The definition of w†
is given in (2-6.6). Let K(w) be the set of maximal elements of the set

{v ∈ L(w) : w† ≤ v, w 6≤ v}.

Let S denote the maximal elements of the set

{p ∈ P : w† ≤ p, w 6≤ p}.

It is worth noting that, in the next theorem, the condition w ≤
∨

K(w) is
equivalent to |K(w)| > 1. See Exercise 2.11 for additional information.

Theorem 2-6.15. The following are necessary conditions for a join irre-
ducible element w ∈ Free(P,≤,

∨
,
∧

) to be completely join irreducible.
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(i) Each element v ∈ J(w) is completely join irreducible.

(ii) If w ≤
∨

K(w) then for each u ∈ L(w) with w 6≤ w† ∨u, there is a p ∈ S
such that w† ∨ u ≤ p. That is, K(w) = S.

(iii) If w ≤
∨

K(w) then w ∧ s1 = w ∧ s2 for all s1, s2 ∈ S (the meets are
calculated in Free(P,≤,

∨
,
∧

)).

(iv) If w ≤
∨

K(w) then for all s1, s2 ∈ S, s1 ∨ (s2 ∧ (s1 ∨ w)) equals s1
or s1 ∨ w.

Proof. Assume that w is completely join irreducible. Let v ∈ J(w), so that
J(v) ⊆ J(w). Let f : Free(P,≤,

∨
,
∧

) → L(w) and g : Free(P,≤,
∨
,
∧

) →
L(v) be the standard epimorphisms. Just as in the proof of Theorem 2-6.11,
we can show that there is a epimorphism h : L(w)→ L(v) such that g = hf .
By Theorem 2-6.14, f is bounded. Since h is obviously bounded, it follows
that g is bounded. Thus v is completely join irreducible again by Theorem 2-
6.14.

If |κ(w)| = 1 and m is the unique element, then f(m) contains all elements
of L(w) which are above w† but not above w, where f is the standard homo-
morphism from Free(P,≤,

∨
,
∧

) onto L(w). In this case w 6≤
∨

K(w). Thus
for parts (ii), (iii), and (iv) we may assume that |κ(w)| > 1. This implies that
κ(w) ⊆ P by Theorem 2-6.12. Now if u ∈ L(w) satisfies w 6≤ w†∨u then there
is an element v ∈ K(w) with w† ∨ u ≤ v. Since the standard homomorphism
is upper bounded, α(v) ∈ κ(w) ⊆ P , completing the proof of (ii).

For (iii), by using this same reasoning as above, we see that S is the set
of maximal elements of the set

{p ∈ P : w∗ ≤ p, w 6≤ p}.

Thus s ∧ w = w∗ for each s ∈ S. Moreover, it follows that, for s ∈ S, s
is completely meet irreducible with unique upper cover s ∨ w. Property (iv)
follows easily from this.

Lemma 2-6.16. Suppose w is a completely join irreducible element and let
the canonical meet representation of w be w =

∧
wi. Let u ∈ Free(P,≤,

∨
,
∧

)
such that for some i,

w ≤ u ∨ w∗ ≤ wi and w � u,

Then u ∨ w∗ = wi.

Proof. By canonical form there is no x ∈ P with w ≤ x < wi. So applying
Dean’s Theorem to

w =
∧
wi′ ≤ u ∨ w∗ ≤ wi

gives wi′ ≤ u∨w∗ ≤ wi, for some i′. This implies i = i′ and so u∨w∗ = wi.
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Theorem 2-6.17. Suppose w is a completely join irreducible element with
lower cover w∗ and suppose |κ(w)| = 1. Let the canonical meet representation
of w be w =

∧
wi. Then the canonical join representation of wi =

∨
j wij

can be refined to a nonrefinable join representation {u1, . . . , ur} of wi with
uj ≤ w∗ for j = 2, . . . , r.

Proof. If wi is join irreducible, then {wi} is the only nonrefinable join rep-
resentation and the theorem holds. Let κ(w) = {m}. If for all j, wij ≤ m,
then wi ≤ m which is not possible because wi ≥ w and m � w. Hence there
is a j with wij � m, and thus w ≤ wij ∨ w∗. We take j = 1. By the lemma
wi = w∗ ∨ wi1. This implies that there is a nonrefinable join representation
{u1, · · · , ur} of wi such that {u1, . . . , ur} � {wi1, w∗} Now if wi1 is join irre-
ducible then it is one of the uj ’s, say u1, by Theorem 2-4.6. It follows that
uj ≤ w∗ for j = 2, . . . , r since none of them can be below u1.

So again by Theorem 2-4.6, wi1 ∈ P and thus the set

S = {x ∈ P : x ≤ wi1 and x ∨ w∗ = wi}

is not empty. Let y be a minimal element of this set. Refine wi = y ∨ w∗
to a nonrefinable join representation {u1, . . . , ur}. Not all of the uj ’s can be
below m; so we may assume u1 6≤ m. This implies u1 ≤ y. If u1 /∈ P then,
by Theorem 2-4.6, u1 = wij for some j. But then wij = u1 ≤ y ≤ wi1. This
forces j to be 1 and so u1 = wi1 ∈ P , contrary to assumption. So u1 ∈ P .
By the lemma u1 ∨ w∗ = wi and so u1 ∈ S. By the minimality of y, u1 = y.
Of course none of u2, . . . , ur can be below u1 = y, and hence they are all
below w∗, as desired.

We let κd denote the notion dual to κ. We gather some additional notation.

w† =
∨
{v ∈ J(w) : v < w}

K(w) = max{v ∈ L(w) : w† ≤ v, w 6≤ v}

M0 =
⋃
{κ(v) : v ∈ J(w)− {w}}

k† =
∧
{u ∈M0 : u ≥

∨
K(w)}

Theorem 2-6.18. If a join irreducible element w ∈ Free(P,≤,
∨
,
∧

) is com-
pletely join irreducible then

(i) w ∈ P and is completely join irreducible in Free(P,≤,
∨
,
∧

), or

(ii) w ∈ κd(p) for some p ∈ P , or

(iii) each u ∈ J(w)− {w} is completely join irreducible and

w 6≤
∨

K(w).
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Proof. Suppose w is completely join irreducible. If w ∈ P then (i) holds. If
|κ(w)| > 1 then κ(w) ⊆ P by Theorem 2-6.12 and so (ii) holds. So κ(w) =
{k} for some completely meet irreducible element k. Now

∨
K(w) ≤ k and

so w 6≤
∨

K(w). Each u ∈ J(w) − {w} is completely join irreducible by
Theorem 2-6.15.

2-6.1 Exercises

2.10. Let P = {p, p0, q, q0, r, c, d} have order

p0 < p < r and q0 < q < r

and defined joins
r = p0 + q = q0 + p

and no defined meets. Show that κ(p) = κ(q) = {w}, where

w = p0 ∨ q0 ∨ ((p ∨ c ∨ d) ∧ (q ∨ c ∨ d)).

This implies κdual(w) = {p, q}, showing both κ(p) is not necessarily
in P∨ and that it is possible for |κ(w)| > 1. (The latter is not
surprising: there are finite lattices that witness it.)

2.11. Suppose an element w of a finitely presented lattice is completely
join irreducible. Use the fact that the standard homomorphism is
bounded to show that |κ(w)| = |K(w)|. Use this to show that the
following are equivalent.

(i) |K(w)| > 1,

(ii) |κ(w)| > 1,

(iii) w ≤
∨
K(w).

2-7. Weak atomicity, the derivative, and coverless
lattices

A lattice is weakly atomic if every nontrivial interval contains a covering. As
we mentioned earlier, one of the most important theorems on free lattices is
Day’s Theorem that they are weakly atomic. He proved it using his doubling
construction. Two proofs are given in [11], so we shall omit the proof here.

Theorem 2-7.1 (Day [1]). Every finitely generated free lattice is weakly
atomic.

This result naturally raised the question if every finitely presented lattice
is weakly atomic. At the other extreme, is there a finitely presented lattice
without any covers at all? Of course every finitely generated lattice without
any covers is an image of a finitely generated free lattice with all of its covers
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collapsed. The congruence δ generated by all the covers of a lattice L is
called the derivation congruence, and L modulo this congruence is called the
derivative of L. It is denoted L′.

If we apply this to L = Free(X), where X is finite, two question arise.
First, is the derivation congruence finitely generated; this is, compact? This
is necessary (and sufficient) for L′ to be finitely presented. Second, is L′

coverless? In general this need not be the case. For example, the derivative of
ω + 1, a countable ascending chain with greatest element, is the two element
lattice.

Theorem 2-7.2. If X is finite, then the derivation congruence δ of Free(X)
is finitely generated, namely

δ =
∨
Y⊆X

con(
∧
Y,
∨

(X − Y ))

Hence the derivative of Free(X) is a finitely presented lattice.

Proof. If u � v in Free(X), then by Theorem 2-6.13 there is a completely join
irreducible element w such that [w∗, w] transposes up to [v, u]. Consequently
ψ(w,w∗) = ψ(u, v), where ψ(u, v) is the unique largest congruence separating
u from v.

So suppose w is completely join irreducible in Free(X). Then by Theo-
rem 2-6.14 and its proof, Free(X)/ψ(w,w∗) is isomorphic to L(w) and the map
from g : Free(X) � L(w) is the standard homomorphism and is bounded. By
Exercise 2.3, free lattices are semidistributive. The reader can show that a
bounded image of a semidistributive lattice is semidistributive, and so L(w)
is semidistributive. By Exercise 2.5, L(w) has a homomorphism onto the two-
element lattice. The composition of g with this map gives a homomorphism
f : Free(X) � 2. Let Y = {y ∈ X : f(y) = 1}. Then f separates the cover∧

Y �
(∧

Y
)
∧
∨

(X − Y ).

Thus what we have shown is that any homomorphism separating w from
w∗ must also separate a cover of the form displayed above. Consequently a
congruence that collapses all covers of the above form, must collapse every
cover. This is the content of the theorem.

Corollary 2-7.3. If |X| = 3, then Free(X)′ ∼= M3.

Proof. The description of δ from Theorem 2-7.2 shows that the derivative is
defined by the relations saying any two members ofX join above the other, and
dually. It is easy to see that the lattice defined by these relations is M3.

Corollary 2-7.4. Every nontrivial 3-generated lattice contains a cover.
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Now we come to a deeper theorem which is a nice application of our theory
of coverings in finitely presented lattices.

Theorem 2-7.5. If |X| > 3, then Free(X)′ is coverless and infinite.

Proof. If X is infinite, Free(X) has no cover and the result is trivial. So we
assume X is finite.

Free(X)′ is the finitely presented lattice with relations∧
Y ≤

∨
(X − Y ), ∅ ( Y ( X.

We make a partially defined lattice corresponding to these relations. Let rY
be a symbol (representing

∨
Y ) and let qY be a symbol (representing

∧
Y ).

Define

R = {ry : Y ⊆ X and 2 ≤ |Y | ≤ n− 2}
Q = {qy : Y ⊆ X and 2 ≤ |Y | ≤ n− 2}

where n = |X|. Let P = X ∪R∪Q∪{0, 1}. Besides have 0 and 1 as the least
and greatest elements, the order on P is

qY ≤ x ≤ rY if x ∈ Y
rY ≤ rZ if Y ⊆ Z
qY ≤ qZ if Y ⊇ Z
qY ≤ rZ if Y ∩ Z 6= ∅ or Y ∪ Z = X.

It is the last case of the last relation that captures the relations above defining
Free(X)′.

The defined joins are
∨
Y = rY , for Y ⊆ X with 2 ≤ |Y | ≤ n − 2, and∨

Y = 1 if |Y | = n− 1. The defined meets are dual. Let Free(P,≤,
∨
,
∧

) be
the finitely presented over this partially defined lattice. As discussed earlier
in this chapter, Free(X)′ ∼= Free(P,≤,

∨
,
∧

).
We shall show that Free(P,≤,

∨
,
∧

) has no cover in a series of steps:

• if Free(P,≤,
∨
,
∧

) has a cover, it has a completely join irreducible ele-
ment;

• if it has a completely join irreducible element, it has one in P∧;

• if it has a completely join irreducible element in P∧, it has one in P ;
and

• if it has a completely join irreducible element in P , it has one in X.

We finish the proof by showing that no element of X is completely join
irreducible.
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The first step follows from duality and Theorem 2-6.13. Let w be com-
pletely join irreducible. By Theorem 2-6.6 J(w) ∩ P∧ 6= ∅. By Theorem 2-
6.15(i) each element of J(w) is completely join irreducible. Thus we may
assume w ∈ P∧. Theorem 2-6.6 again shows that J(w) ∩ P 6= ∅ if the ele-
ments of P∧ − P are not join prime, which we now show is the case.

So assume w ∈ P∧. Since Q ∪ {0} is closed under meets, the elements of
P∧ have one of the forms

rZ1
∧ · · · ∧ rZk

or qY ∧ rZ1
∧ · · · ∧ rZk

or y ∧ rZ1
∧ · · · ∧ rZk

(Note 0 ∈ P∧ but is neither completely join irreducible nor, by Theorem 2-6.6,
in J(w).)

If k = 0 then w = y, for some y, or w = qY , for some qY ∈ Q. But both
of these are already in P . So k ≥ 1 and since

∨
Z1 = rZ1

, Z1 is a join cover
of w. If this is nontrivial then w is not join prime and by Theorem 2-6.6 J(w)
contains an element of P . So we may assume w ≤ z for some z ∈ Z1. Since
the only defined meets of (P,≤,

∨
,
∧

) are of subsets of X, and since there is
no x ∈ X with rZi

≤ x, we must have by Dean’s Theorem that qY ≤ z (or
y = z if w has the last form above). But then qY ≤ rZi

(or y ≤ rZi
) and the

form of w given above is redundant, which we may assume is not the case.
This shows that if Free(P,≤,

∨
,
∧

) has a cover, then there is a completely
join irreducible element in P. The candidates are y, for some y ∈ X, or qY .
Since

qY ≤
∨

(X − Y )

is nontrivial, X − Y ⊆ J(qY ). This completes the proof of our last bullet
point.

To show that x is not completely join irreducible for x ∈ X, first note
J(x) = X because x ≤

∨
(X − {x}) is nontrivial and no other defined joins

contain x. So L(x) = X ∪R ∪ {0, 1}, x† = 0, and

K(x) = {rY : x /∈ Y and |Y | = n− 2}.

So x ≤
∨
K(w). The set S defined above Theorem 2-6.15 is X − {x}. By

part (iii) of that theorem, if x were completely join irreducible, then x ∧ y =
x ∧ z for distinct elements of X. In other words qY = qZ , where Y = {x, y}
and Z = {x, z}. This contradiction proves the theorem.

2-7.1 Exercises

2.12. Show that Mn is a homomorphic image of Free(X)′, where |X| =
n. (Actually every n-generated, subdirectly irreducible, modular
lattice is an image of Free(X)′.)

2.13. Show that weakly atomic finitely presented lattices are atomic. That
is, each nonzero element contains an atom.

Problem 2.1. Characterize weakly atomic finitely presented lattices.
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2-8. When is a finitely presented lattice finite?

In [27] V. Slav́ık gave a technical characterization of when a finite lattice has
a finite W-cover. A lattice L̂ is the W-cover of a lattice L if L̂ satisfies (W),
and there is a epimorphism f : L̂ � L such that if K is a lattice satisfying
(W) with a epimorphism g onto L, then there is a epimorphism h : K � L̂
such that g = f ◦ h. The reader can verify that the W-cover of a lattice is
unique and always exists.

If a lattice satisfies (W) then L̂ = L, of course. On the other hand the
W-cover of the free distributive lattice on three generators is Free(3), as was
shown by Alan Day. In fact he showed Free(3) could be constructed from the
free distributive lattice on three generators using his doubling construction
repeatedly to fix (W) failures. This played an important role in his proof that
finitely generated free lattice are weakly atomic [1], Theorem 2-7.1.

Of course a finitely presented lattice may fail (W). Indeed, every finite
lattice is finitely presented. However, looking at (vi) of Dean’s Theorem 2-3.4
we see that failures of (W) in Free(P,≤,

∨
,
∧

) can only occur in intervals
[
∧
i si,

∨
j tj ] which contain an element of P . Let A be a subset of a lattice L.

We define an interval I = [
∧
i si,

∨
j tj ] to be a (W,A)-failure if no si or tj

is in I and I ∩ A = ∅. The (W,A)-cover of L is defined analogously to the
W-cover of L.

Let (P,≤,
∨
.
∧

) be a partially defined lattice. As in Section 2-5 we let
L0 = Idl0(P,≤,

∨
,
∧

) and L1 = Fil1(P,≤,
∨
,
∧

) and L be the sublattice of
L0 ×L1 generated by {(x, x) : x ∈ P}. We identitify P with {(x, x) : x ∈ P}.
Alan Day called L the partial completion of (P,≤,

∨
,
∧

) and showed that
Free(P,≤,

∨
,
∧

) could be constructed from L by repeatedly using his doubling
construction to fix (W,P )-failures and taking the inverse limit. The details of
this construction are not hard and are presented in [1, 2] and in Section II.7
of [11].

Slav́ık showed that if the repeated doubling occurred too many times, the
construction produced an infinite lattice. This in turn leads to the following
theorem.

Theorem 2-8.1. Let F = Free(P,≤,
∨
,
∧

) and let L be the partial completion
of (P,≤,

∨
,
∧

). Let d be the number of elements of L−P that are both join and
meet reducible. Then F is finite if and only if it has at most 43(|L|+ d+ |P |)
elements. In particular, F is finite if and only if it has at most 86 |L| elements.

This yields the following algorithm to test if Free(P,≤,
∨
,
∧

) is finite (and
find it if it is).

• Find the size m of the partial completion of (P,≤,
∨
,
∧

).

• Calculate

P∨, P∨∧, P∨∧∨, · · ·
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Stop if the size of any of these exceeds 86m; Free(P,≤,
∨
,
∧

) is infinite
in this case. Also stop if any of these equals the previous one. In this
case Free(P,≤,

∨
,
∧

) is finite and is the last one.

The second part is efficient since putting terms into canonical form is.
The first step is potentially exponential since m is at least | Idl0(P,≤,

∨
,
∧

)|.
Nevertheless, the procedure works well in many examples. Much of the work
in [12] involved determining if certain finitely presented lattices are finite.
In that paper we used a modification of the algorithm above based on the
following fact: If Free(P,≤,

∨
,
∧

) contains a join irreducible element which
is not completely join irreducible or the dual holds, then it is infinite. Based
on this observation we can modify the algorithm above as follows:

• Find the size m of the partial completion of (P,≤,
∨
,
∧

).

• Sequentially calculate

P∨, P∨∧, P∨∧∨, · · ·

(i) If one of these closures equals the one before it, stop. In this case
Free(P,≤,

∨
,
∧

) is this last closure.

(ii) If the last closure calculated was the meet closure, check if any
of the new elements is not completely join irreducible (and dually
if the last closure was under joins). If a join irreducible element
which is not completely join irreducible (or dually) is found, stop,
Free(P,≤,

∨
,
∧

) is infinite.

(iii) If the size of any of these closures exceeds 86m, stop and conclude
that Free(P,≤,

∨
,
∧

) is infinite.

In all of the examples from [12] and all other examples we have encoun-
tered, step (iii) of the above algorithm has never been reached. In other
words, in all cases where Free(P,≤,

∨
,
∧

) is infinite a join irreducible, not
completely join irreducible element was found long before the size of the clo-
sure reached 86m. The exercises give some examples.

The authors of this chapter have implemented the above algorithm in Lisp;
write us if you would like a copy of the program, including the code.

There is an interesting open question here.

Problem 2.2. If Free(P,≤,
∨
,
∧

) is infinite, must it have an element that
is either join irreducible but not completely join irreducible, or is meet irre-
ducible but not completely meet irreducible.

2-8.1 Exercises

2.14. Let P = {0, a, b, c, 1} have the order of M3 and defined joins and
meets:

ab = ac = bc = 0 and a+ b = a+ c = 1
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Of course if we added the relation b+ c = 1, Free(P,≤,
∨
,
∧

) would
be M3, and so be finite. But without that relation the lattice is
infinite. Show that the partial completion of (P,≤,

∨
,
∧

) has 13
elements so in order to apply Theorem 2-8.1 we would need to show
that the closure has more than 86 · 13 = 1118 elements. Instead,
use Theorem 2-6.17 to show that a ∧ (b ∨ c) is join irreducible but
not completely join irreducible.

2.15. Let P = {0, a, b, c, d, 1} have order a > b and d > c and 0 and 1 are
the least and greatest elements. The defined joins are only 1 = b+c
and the defined meets are only 0 = bc. Find the partial completion
of (P,≤,

∨
,
∧

). (It has 11 elements.) Show Free(P,≤,
∨
,
∧

) is
infinite by using Theorem 2-6.18 to show a ∧ d is join irreducible
but not completely join irreducible.

2.16. Show that if we modify the partially defined lattice in the previous
problem by adding the relation bd = 0, then the partial completion
has 10 elements and |Free(P,≤,

∨
,
∧

)| = 12.

2.17. Let P = {0, a, b, c} with 0 below the others as the only nontrivial
order relation. The meet relations are ab = ac = bc = 0 and no
defined joins. Find P∧, P∧∨, P∧∨∧ and P∧∨∧∨ and also find the
partial completion.

2.18. Show that if P is just an unordered set of size n, then it partial
completion has size 2n+1 + n− 1 and is distributive.

2.19. Let P = {a, b, c, d, e, 0, 1} with the order inherited from Figure 2-8.1.
The defined joins and meets are

d = a+ b, e = b+ c, 1 = a+ c, b = de, 0 = de

Show that Free(P,≤
∨
,
∧

) is the lattice of that figure. Since b = de,
this lattice is generated by the two-element chains a < d and c < e.
So one can use Rolf’s lattice (see Figure 121 in Chapter VII of LTF
or Firgue 5.3 of [11]) to verify the above claim. Note b is the only
element that is join irreducible but not completely join irreducible,
and there is no meet irreducible element that is not completely meet
irreducible. This lattice was constructed as an example of a lattice
that is weakly atomic but its partial completion is not a bounded
homomorphic image of it, refuting one of Alan Day’s conjectures.

2-9. McKenzie’s example

Here is an example of finitely generated sublattice, L1, of a finitely presented
lattice, L0, that is not finitely presented. Both the example and the proof are
due to Ralph McKenzie.
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0 = ae

c

a

b = de

b+ c = e d = a+ b

1 = a+ c

Figure 2-8.1: The diagram Free(P,≤
∨
,
∧

)

Example 2-9.1. Define a partial lattice on P = {x, y, z, u, v, w} whose order
is given in Figure 2-9.1, with no defined joins and with meets w = u ∧ x =
x ∧ v = u ∧ v. Let L0 = Free(P,≤,

∨
,
∧

).

Define x0 = x, y0 = y, z0 = z and xn+1 = xn ∨ (yn ∧ zn), yn+1 =
yn ∨ (xn ∧ zn) and zn+1 = zn ∨ (xn ∧ yn).

Now let L1 be the lattice freely generated by x, y and z subject to the
presentation xn = x, n = 0, 1, 2, . . .. We claim L1 is isomorphic to the sub-
lattice S of L0 generated by x, y and z and that L1 is not finitely presented.
First it is easy to see that x, y and z in L0 satisfy the relations of L1 and so
there is a homomorphism f : L1 → L0 with f(x) = x, f(y) = y and f(z) = z.
In the ideal lattice, IdL1, let U be the ideal generated by {yn : n = 0, 1, . . .}
and V the ideal generated by {zn : n = 0, 1, . . .}. It is easy to check that
id(x), id(y), id(z), U and V satisfy the relations defining L0 so there is a
homomorphism g : L0 → IdL1 with g(x) = id(x), g(y) = id(y), g(z) = id(z),
g(u) = U , g(v) = V , and g(w) = U ∩ V . Now gf : L1 → IdL1 sends x to
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y zw

u x v

Figure 2-9.1: The diagram P

id(x), y to id(y) and z to id(z), and so is the natural embedding of L1 into its
ideal lattice (since they agree on the generators). Thus f is one-to-one and
hence L1 is isomorphic to the sublattice S.

y

y1

y2

z

z1

z2

x = x1 = x2 = x3

y3 = z3 = x4

Figure 2-9.2: L1 is not finitely presented

If L1 were finitely presented then some finite subset of the relations {xn =
x : n = 0, 1, . . .} would define L1. The lattice of Figure 2-9.2 and extensions
of it show that this is not the case.

In contrast to McKenzie’s theorem, every finitely generated sublattice of
a free lattice is finitely presented, as we shall now show.

First a general lemma that applies to all algebras.

Lemma 2-9.2. A finitely generated projective algebra B is finitely presented.

Proof. Let F (X) be a finitely generated free algebra with a retraction r such
that B ∼= r(F (X)). Let θ be the congruence generated by {(x, r(x)) : x ∈ X},
let A = F (X)/θ, and let f : F (X) → A be the natural map. Since θ is
compact, A is finitely presented by the relations

x ≈ r(x).
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By the definition of θ, f(x) = f(r(x)) and so f maps B onto A. But since
r2 = r, B also satisfies the relations above. Thus there is a homomorphism
g : A → B. Moreover, since g(r/θ) = r(x) and f(r(x)) = r(x)/θ = x/θ, we
see that f |B and g are inverses. Thus B ∼= A is finitely presented.

Theorem 2-9.3. A finitely generated sublattice of a free lattice is finitely
presented.

Proof. The theorem follows from the Kostinsky-McKenzie result that finitely
generated sublattices of free lattices are projective; see [22, 11].

2-10. The generalized word problem and
automorphisms

This section is based primarily on the results of [14]. After the definition of
standard homomorphism, Definition 2-6.10, and in the proof of Theorem 2-
6.14 we introduced the lattice P∧(∨∧)

n

. We denote this lattice L1. It is a
meet subsemilattice of Free(P,≤,

∨
,
∧

). Moreover,

f1 : Free(P,≤,
∨
,
∧

)→ L1 = P∧(∨∧)
n

is the (dual of) the standard homomorphism. We let L0 = P∨(∧∨)
n

and f0
be the standard homomorphism. It is easy to see that f0 is the identity on
L0 and that f0(w) ≤ w for all w ∈ Free(P,≤,

∨
,
∧

). Similarly, f1 is the
identity on L1 and f1(w) ≥ w. Let f : Free(P,≤,

∨
,
∧

) → L0 × L1 be given
by f(w) = (f0(w), f1(w)).

Lemma 2-10.1. If w ∈ L0 ∩ L1, then f−1(f(w)) = {w}.

Proof. Since w ∈ L0 ∩ L1, f(w) = (w,w). So, if f(u) = f(w), then w =
f0(u) ≤ u. Similarly, w ≥ u.

Standard results in universal algebra give the following corollary.

Corollary 2-10.2. Finitely presented lattices are residually finite. Conse-
quently, the variety of lattices is generated by its finite members.

The generalized word problem for a finitely presented algebra A asks if
there is an algorithm to determine, for an arbitrary element d ∈ A and a
finite set U = {u1, . . . , uk} of elements of A, if d is in the subalgebra generated
by U .

Theorem 2-10.3. The generalized word problem for lattices is (uniformly)
solvable.
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Proof. Let d ∈ Free(P,≤,
∨
,
∧

) and let f be the homomorphism onto the
finite lattice described above. By the lemma f−1(f(d)) = {d}. Now let
u1, . . . , uk be elements of Free(P,≤,

∨
,
∧

). We claim d is in the sublattice
generated by u1, . . . , un if and only if f(d) is in the sublattice generated by
f(u1), . . . , f(un). If the latter condition holds, then there is a term t such
that

f(d) = t(f(u1), . . . , f(un)).

Since f is a homomorphism, t(f(u1), . . . , f(un)) = f(t(u1, . . . , un). Thus, by
the lemma, d = t(u1, . . . , un). The other direction is obvious. This construc-
tion is effective so the theorem follows from the claim.

The isomorphism problem for a variety V is to decide whether two finitely
presented V-algebras are isomorphic. Using the lemma we can bound the
complexity of the images under an isomorphism. This yields a solution to the
isomorphism problem. See [14] for the details.

Theorem 2-10.4. The isomorphism problem for lattices solvable.

These techniques also solve a problem raised by G. Grätzer in [17].

Theorem 2-10.5. If L is a finitely presented lattice, then Aut(L) is finite.

The method of this section of considering the standard homomorphism
from (P,≤,

∨
,
∧

) onto P∨(∧∨)
n

gives a solution to the word problem and
related problems that is conceptually easy. However, the results of Skolem
and Dean give much more efficient solutions. For example, using our Lisp
programs we calculate that if P is just a three element antichain, then P∨,
P∨∧, P∨∧∨, and P∨∧∨∧ have sizes 8, 18, 44, and 677. But our programs
found more that 106 elements in P∨∧∨∧∨ before we gave up.

In [18] Grätzer and Huhn gave an alternate proof Theorem 2-10.5. If, in
the construction used at the beginning of this section, we take n = 0, then
L0 = P∨. Since P∨ is the join closure of all subsets, including the empty set,
of P , it is easy to see L0 = P∨ ∼= Idl0(P,≤,

∨
,
∧

). Lemma 2-10.1 holds in this
case for d ∈ P . Using this, the authors are still able to bound the complexity
of the images of the generators under an automorphism, and thus prove the
theorem.

Modular lattices

The above theorems do not hold for all varieties of lattices. Let M be the
variety of all modular lattices. In [8] and [7], Freese shows that the word
problem for free modular lattices is not solvable and thatM is not generated
by its finite members. A. Huhn [21] constructed a finitely presented modular
lattice with an infinite automorphism group. Huhn defined a partially defined
lattice (Pn,≤,

∨
,
∧

) called an n-diamond. It consists of the Boolean lattice
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Bn+1 with n + 1 atoms and an addition element d. All of the defined joins
and meets of the Boolean lattice are part of the definition of (Pn,≤,

∨
,
∧

). In
addition we have the relations that w is a complement of each of the atoms
of the Boolean lattice.

Theorem 2-10.6 (Huhn [21]). Let Ln be the finitely presented modular lattice
generated by (Pn,≤,

∨
,
∧

) for n > 1. Then Aut(Ln) is infinite.

2-10.1 Exercises

2.20. Show that if P is an ordered set with no defined joins or meets, then
each element of P is both join and meet irreducible in Free(P,≤).
Consequently, if Y ⊆ Free(P,≤) generates Free(P,≤), then P ⊆ Y .

2.21. Let P4 be a 4-crown; that is, the ordered set with elements ai, bi for
i = 0, 1, 2, 3 and order ai < bi and ai < bi+1 (indices are calculated
modulo 4). The defined joins and meets are ai + ai+1 = bi+1 and
bibi+1 = ai. Find a subset Y ⊆ Free(P4,≤,

∨
,
∧

) with Y ∩ P = ∅
that generates Free(P4,≤,

∨
,
∧

).
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