
Online Chromatic Number is PSPACE-Complete

Martin Böhm(B) and Pavel Veselý(B)

Computer Science Institute of Charles University, Prague, Czech Republic
{bohm,vesely}@iuuk.mff.cuni.cz

Abstract. In the online graph coloring problem, vertices from a graph
G, known in advance, arrive in an online fashion and an algorithm must
immediately assign a color to each incoming vertex v so that the revealed
graph is properly colored. The exact location of v in the graph G is not
known to the algorithm, since it sees only previously colored neighbors
of v. The online chromatic number of G is the smallest number of colors
such that some online algorithm is able to properly color G for any
incoming order. We prove that computing the online chromatic number
of a graph is PSPACE-complete.

1 Introduction

In the classical graph coloring problem we assign a color to each vertex of a given
graph such that the graph is properly colored, i.e., no two adjacent vertices have
the same color. The chromatic number χ of a graph G is the smallest k such
that G can be colored with k distinct colors. Deciding whether the chromatic
number of a graph is at most k is well known to be NP-complete, even in the
case with three colors.

The online variant of graph coloring can be defined as follows: The vertices of
G arrive one by one, and an online algorithm must color vertices as they arrive so
that the revealed graph is properly colored at all times. When a vertex arrives,
the algorithm sees edges to previously colored vertices. The online algorithm may
use additional knowledge of the whole graph G; more precisely, a copy of G is sent
to the algorithm at the start of the input. However, the exact correspondence
between the incoming vertices and the vertices of the copy of G is not known to
the algorithm. This problem is called Online Graph Coloring.

In this paper we focus on a graph parameter called the online chromatic num-
ber χO(G) of a graph G. This parameter is analogous to the standard chromatic
number of a graph: It denotes the smallest number k such that there exists a
deterministic online algorithm which is able to color the specified graph G using
k colors.

The online chromatic number has been studied since 1990 [3]. One of the
main open problems in the area is the computational complexity of deciding

M. Böhm–Supported by CE-ITI under grant P202/12/G061 of GA ČR and by the
GAUK project 548214.
P. Veselý–Supported by the GAUK project 548214.

c© Springer International Publishing Switzerland 2016
V. Mäkinen et al. (Eds.): IWOCA 2016, LNCS 9843, pp. 16–28, 2016.
DOI: 10.1007/978-3-319-44543-4 2

Online Chromatic Number is PSPACE-Complete 17

whether χO(G) ≤ k for a specified simple graph G, given G and k on input;
see e.g. Kudahl [10]. We denote this decision problem as Online Chromatic

Number. In this paper, we fully resolve this problem:

Theorem 1. The decision problem Online Chromatic Number is PSPACE-
complete.

As is usual in the online computation model, we can view Online Graph

Coloring as a game between two players, which we call Painter (representing
the online algorithm) and Drawer (often called Adversary in the online algo-
rithm literature). In each round Drawer chooses an uncolored vertex v from
G and sends it to Painter without telling him to which vertex of G it corre-
sponds, only revealing the edges to the previously sent vertices. Then Painter

must properly color (“paint”) v, i.e., Painter cannot use a color of a neighbor
of v. We stress that in this paper Painter is restricted to be deterministic. The
game continues with the next round until all vertices of G are colored.

Deciding the outcome of many two-player games is PSPACE-complete;
among those are Amazons, Checkers and Hex, to name a few. However, in most
of these games both players have roughly the same power. This does not hold
for Online Graph Coloring which is highly asymmetric, since Drawer has
perfect information (knows which vertices are sent and how they are colored),
but Painter does not. Painter may only guess to which part of the graph
does the colored subgraph really belong. This is the main difficulty in proving
PSPACE-hardness.

Examples. Consider a path P4 on four vertices. Initially, Drawer sends two
nonadjacent vertices. If Painter assigns different colors to them, then these are
the first and the third vertex of P4, thus the second vertex must get a third
color; otherwise they obtained the same color a and they are the endpoints of
P4, therefore the second and the third vertex get different colors which are not
equal to a. In both cases, there are three colors on P4 and thus χO(P4) = 3,
while χ(P4) = 2.

Note also that we may think of Drawer deciding where an incoming vertex
belongs at some time after it is colored provided that the choice still allows for at
least one isomorphism to the original G. This is possible only for a deterministic
Painter.

A particularly interesting class of graphs in terms of χO is the class of bino-
mial trees. A binomial tree of order k is defined inductively: The binomial tree
of order 0 is a single vertex (the root) and the binomial tree of order k is created
by taking two disjoint copies of binomial trees of order k − 1, adding an edge
between their roots and choosing one of their roots as the root for the resulting
tree. Thus P4 is a binomial tree of order 2 with root on the second vertex of P4.

It is not hard to generalize the example of P4 and show that the online
chromatic number of the binomial tree of order k is k + 1 [3]. This shows that
the ratio between χO and χ may be arbitrarily large even for the class of trees.

History and Related Work. The online problem Online Graph Color-

ing has been known since 1976 [1], originally studied in the variant where the

18 M. Böhm and P. Veselý

algorithm has no extra information at the start of the input. Bean [1] showed
that no online algorithm that is compared to an offline algorithm can perform
well under this metric. The notion of online chromatic number was first defined
in 1990 by [3].

For the online problem, Lovász, Saks and Trotter [11] show an algorithm
with a competitive ratio O(n/ log∗ n), where the competitive ratio is a ratio of
the number of colors used by the online algorithm to the (standard) chromatic
number. This was later improved to O(n log log log n/ log log n) by Kierstad [8]
using a deterministic algorithm. There is a better O(n/ log n)-competitive ran-
domized algorithm against an oblivious adversary by Halldórsson [5]. A lower
bound on the competitive ratio of Ω(n/ log2 n) was shown by Halldórsson and
Szegedy [7].

Our variant of Online Graph Coloring, where the algorithm receives a
copy of the graph at the start, was suggested by Halldórsson [6], where it is
shown that the lower bound Ω(n/ log2 n) also holds in this model. (Note that
the previously mentioned algorithmic results are valid for this model also.)

Kudahl [9] recently studied Online Chromatic Number as a complexity
problem. The paper shows that the problem is coNP-hard and lies in PSPACE.
Later [10] he proved that if some part of the graph is precolored, i.e., some
vertices are assigned some colors prior to the coloring game between Drawer

and Painter and Drawer also reveals edges to the precolored vertices for each
incoming vertex, then deciding whether χO(G) ≤ k is PSPACE-complete. We
call this decision problem Online Chromatic Number with Precoloring.
The paper [10] conjectures that Online Chromatic Number (with no pre-
colored part) is PSPACE-complete too. Interestingly, it is possible to decide
χO(G) ≤ 3 in polynomial time [4].

Keep in mind that while Online Graph Coloring is an online prob-
lem, Online Chromatic Number is an (offline) decision problem of checking
whether χO(G) ≤ k.

Proof Outline. It is not hard to see that Online Chromatic Number belongs
to PSPACE: The online coloring is represented by a game tree which is evaluated
using the Minimax algorithm. This can be done in polynomial space, since the
number of rounds in the game is bounded by n, i.e., the number of vertices, and
possible moves of each player can be enumerated in polynomial space: Painter
has at most n possible moves, because it either uses a color already used for a
vertex, or it chooses a new color, and Drawer has at most 2s moves where s is
the number of colored vertices, since it chooses which colored vertices shall be
adjacent to the incoming vertex. Drawer must ensure that sent vertices form
an induced subgraph of G, but this can be checked in polynomial space.

Inspired by [10], we prove the PSPACE-hardness of Online Chromatic

Number by a reduction to Q3DNF-SAT, i.e., the satisfiability of a fully quan-
tified formula in the 3-disjunctive normal form (3-DNF). An example of such a
formula is

∀x1∃x2∀x3∃x4... : (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x4) ∨ . . .

Online Chromatic Number is PSPACE-Complete 19

The similar problem of satisfiability of a fully quantified formula in the 3-
conjunctive normal form is well known to be PSPACE-complete. Since PSPACE
is closed under complement, Q3DNF-SAT is PSPACE-complete as well. Note
that by an easy polynomial reduction, we can assume that each 3-DNF clause
contains exactly three literals.

We show the hardness in several iterative steps. First, in Sect. 2, we present a
new, simplified proof of the PSPACE-hardness of Online Chromatic Number

with Precoloring in which the sizes of both precolored and non-precolored
parts of our construction are linear in the size of the formula.

Then, in Sect. 3, we strengthen the result by reducing the size of the precol-
ored part to be logarithmic in the size of the formula. This is achieved by adding
linearly many vertices to our construction.

Finally, in Sect. 4, we show how to remove one precolored vertex and replace
it by a non-precolored part, while keeping the PSPACE-hardness proof valid.
The cost for removing one vertex is that the size of the graph is multiplied by
a constant, but since we apply it only logarithmically many times, we obtain a
graph of polynomial size and with no precolored vertex. This will complete the
proof of Theorem1.

We remark that removing the last precolored vertex is the most difficult
part of proving PSPACE-hardness of Online Chromatic Number. Still, our
technique for removing a precolored vertex can be used for any graph satisfying
a few assumptions.

We omit some proofs and some technical aspects of our construction due to
space restrictions. A preprint version [2] with full details can be found at https://
arxiv.org/abs/1604.05940.

In our analysis, Painter often uses the natural greedy algorithm FirstFit,
which is ubiquitous in the literature (see [6,11]):

Definition 1. The online algorithm FirstFit colors an incoming vertex u
using the smallest color not present among colored vertices adjacent to u.

2 Construction with a Large Precolored Part

Our first construction will reduce the PSPACE-complete problem Q3DNF-SAT

to Online Coloring with Precoloring with a large precolored part. Given
a fully quantified formula Q in the 3-disjunctive normal form, we will create a
graph G1 that will simulate this formula. We assume that the formula contains
n variables xi, (1 ≤ i ≤ n) and m clauses Ca, (1 ≤ a ≤ m), and that variables
are indexed in the same order as they are quantified.

Our main resource will be a large precolored clique Kcol on k vertices and
naturally using k colors; the number k will be specified later. Using such a
precolored clique, we can restrict the allowed colors on a given uncolored vertex
v by connecting it with the appropriate vertices in Kcol, i.e., we connect v to all
vertices in Kcol which do not have a color allowed for v.

For simplicity we use the precoloring in the strong sense, i.e., Painter is able
to recognize which vertex in Kcol is which. We use this to easily recognize colors.

https://arxiv.org/abs/1604.05940
https://arxiv.org/abs/1604.05940

20 M. Böhm and P. Veselý

However, it is straightforward to avoid the strong precoloring by modifying the
precolored part; for example by creating i independent and identical copies of
the i-th vertex in Kcol, each having the same color and the same edges to other
vertices in Kcol and the rest of the graph. With such a modification, Painter
would able to recognize each color by the number of its vertices in Kcol.

Each vertex in Kcol thus corresponds to a color. Colors used by Painter are
naturally denoted by numbers 1, 2, 3, . . . , k, but we shall also assign meaningful
names to them.

We want to construct a graph G1 that has the online chromatic number k
if and only if the quantified 3-DNF formula can be satisfied. See Fig. 1 for an
example of G1 and an overview of our construction. We use the following gadgets
for variables and clauses:

1. For a variable xi which is quantified universally, we will create a gadget
consisting of universal vertices xi,t and xi,f , connected by an edge. The vertex
xi,t represents the positive literal xi, while xi,f represents the negative literal
¬xi. Both vertices have exactly two allowed colors: seti and unseti. If xi,t is
assigned the color seti, it corresponds to setting the variable xi to 1, and vice
versa.
Note that if Drawer presents a vertex xj,t to Painter, Painter is able to
recognize that it is a vertex corresponding to the variable xj , but it is not
able to recognize whether it is the vertex xj,t or xj,f .

2. For a variable xj which is quantified existentially, we will create a gadget
consisting of three existential vertices xj,t (for the positive literal xj), xj,f

(for the literal ¬xj) and xj,h (the helper vertex), connected as a triangle.
Coloring of the first two variables also corresponds to setting the variable
xj to true or false, but in a different way: xj,t has allowed colors setj,t and
unsetj , while xj,f has allowed colors setj,f and unsetj . We want to avoid both
xj,t and xj,f to have the color of type set, and so the “helper” vertex xj,h can
be colored only by setj,t or setj,f .
Note that the color choice for the vertices of xj means that if Painter is
presented any vertex of this variable, Painter can recognize it and decide
whether to set xj to 1 (and color accordingly) or to 0.
We call existential and universal vertices together variable vertices.

3. For each clause Ca, we will add four new vertices. First, we create a vertex la,i
for each literal in the clause, which is connected to one of the vertices xi,t and
xi,f corresponding to the sign of the literal. For example if Ca = (xi∧¬xj∧xk),
then la,i is connected to xi,t, la,j is connected to xj,f and la,k to xk,t. The
allowed colors on a vertex la,i are {fa,unseti}.
Finally, we add a fourth vertex da connected to the three vertices la,i, la,j , la,k.
This vertex can be colored only using the color fa or the color falsea. The
color falsea is used to signal that this particular clause is evaluated to be 0. If
the color fa is used for the vertex da, this means that the clause is evaluated
to 1, because fa is not present on any of la,i, la,j , la,k, thus they have colors
of type unseti and their neighbors corresponding to literals have colors of
type set.

Online Chromatic Number is PSPACE-Complete 21

4. The last vertex we add to the construction will be F , a final vertex. The
vertex F is connected to all the vertices da corresponding to the clauses. The
allowed colors of the vertex F are false1, false2, false3, ..., falsem. This final
vertex corresponds to the final evaluation of the formula. If all clauses are
evaluated to 0, the vertex F has no available color left and must use a new
color.

We have listed all the vertices and colors in our graph G1 and the functioning
of our gadgets, but we will need slightly more edges. The reasoning for the edges
is as follows: If Drawer presents any vertex of the type la,i, da or F before
presenting the variable vertices, or in the case when the variable vertices are
presented out of the quantifier order, we want to give an advantage to Painter

so it can finalize the coloring.
This will be achieved by allowing Painter to treat all remaining universal

vertices as existential vertices, i.e., Painter can recognize which of the two
universal vertices xj,t, xj,f corresponds to setting xj to 1.

To be precise, we add the following edges to G1:

– Every existential vertex xj,t, xj,f , xj,h is connected to all previous universal
vertices xi,t, that is to all such xi,t for which i < j.

– Every universal vertex xj,t, xj,f is connected to all previous universal vertices
xi,t such that i < j.

– Every vertex of type la,i is connected to all the universal vertices xi′t for i′ �= i.
Note that la,i is connected either to xi,t, or to xi,f ; we do not add an edge to
such vertices.

– Every vertex of type da is connected to all universal vertices xi,t for all i.
– The vertex F is connected to all the universal vertices xi,t for all i.

x1,t x1,f xix3,t x3,fx2,t x2,f

∀x1∃x2∀x3 : (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

l1,1 l1,2 l1,3 l2,1 l2,2 l2,3

x2,h

d1 d2

F

Fig. 1. The construction for a sample formula. The thick black edges are the normal
edges of the construction, and the dashed orange edges are the additional edges that
guarantee precedence of vertices. The lists of allowed colors of each vertex are not listed
in the figure. (Color figure online)

22 M. Böhm and P. Veselý

We call all non-precolored vertices the gadgets for variables and clauses.
The number of colors allowed for Painter (the same as the size of Kcol)

is k = 2m + 2n∀ + 3n∃ where m is the number of clauses, n∀ the number of
universally quantified variables and n∃ the number of existentially quantified
variables.

The analysis of our construction is fairly straightforward (see [2] for details).

3 Construction with a Precolored Part
of Logarithmic Size

We now make a step to the general case without precoloring by reducing the
size of the precolored part so that it has only logarithmic size. Our construc-
tion is based on the one with a large precolored part; namely, all the vertices
xi,t, xi,f , xj,t, xj,f , xj,h, la,i, da, F (the gadgets for variables and clauses) and the
whole color clique Kcol will be connected the same way. Let G1 denote the
gadgets for variables and clauses and Kcol.

Since Kcol is now not precolored and Drawer may send it after the gadgets,
we help Painter by a structure for recognizing vertices in G1 or for saving
colors.

We remark that there is also a simpler construction with a logarithmic num-
ber of precolored vertices. If we just add precolored vertices to recognize vertices
in G1, the following proof would work and be easier. However, when we replace
a precolored vertex v by some non-precolored graph in Sect. 4, we will use some
conditions on the graph G2 that this construction would not satisfy.

3.1 Nodes

Our structure will consist of many small nodes, all of them have the same internal
structure, only their adjacencies with other vertices vary.

p3

p2 p1

Fig. 2. Node

Each node consists of three vertices and a single edge; vertices
are denoted by p1, p2, p3 and the edge leads between p2 and p3.
We call the vertices p1 and p2 the lower partite set of the node,
p3 form the upper partite set. See Fig. 2 for an illustration of a
node. Clearly, the online chromatic number of a node is two. The
intuition behind the nodes is as follows:

– If Drawer presents vertices of a node in the correct way, Painter needs to
use two colors in the lower partite set of every node.

– No color can be used in two different nodes.
– Each vertex v ∈ G1 (in the gadgets and in Kcol) has its own associated node

A. If the vertex p3 from A does not arrive before v is sent, Painter can color
p3 and v with the same color, thus save a color. Otherwise, Painter can use
the node to recognize v.

– Universal vertices xi,t, xi,f for each universally quantified variable xi should be
distinguishable only by the same vertices as in the previous section. Therefore
they are both associated with the same two nodes.

Online Chromatic Number is PSPACE-Complete 23

Let N be the number of vertices in G1. We create N nodes, denoted by
A1, . . . , AN , one for each vertex in G1. For any two distinct nodes Ai and Aj

(i �= j), there is an edge between each vertex in Ai and each vertex in Aj .
Therefore, no color can be used in two nodes.

We have noted above that each node is associated with a vertex; we now
make the connection precise. Let v1, . . . , vN be the vertices in G1 (in an arbitrary
order). Then we say that Ai identifies the vertex vi. Moreover, if vi is a vertex
xk,t or xk,f for a universally quantified variable xk and vj is the other vertex,
then Aj also identifies vi and Ai also identifies vj . Thus each node identifies one
or two vertices and each vertex is identified by one or two nodes.

Edges between a vertex v in the original construction G1 and a node depend
on whether the node identifies v, or not. For a vertex v ∈ G1 and for a node A,
if A identifies v, we connect only the whole lower partite set of A to v, i.e., we
add two edges from v to both p1 and p2 of A. Otherwise, we add three edges –
one between v and every vertex in A.

3.2 Precolored Vertices

The only precolored part P of the graph is intended for distinguishing nodes.
Since there are N nodes in total, we have p = 	log2 N
 precolored vertices
z1, z2, . . . zp with no edges among them. Precolored vertices have a color that
may be used later for coloring G1 (the gadgets and Kcol). For simplicity, we
again use the precoloring in the strong sense, i.e., Painter is able to recognize
which precolored vertex is which.

We connect all vertices in the node Ai to zj if the j-th bit in the binary
notation of i is 1; otherwise zj is not adjacent to any vertex in Ai.

Clearly, the node to which an incoming vertex belongs can be recognized
by its adjacency to the precolored vertices. Note that a vertex from nodes is
connected to at least one precolored vertex and there is no edge between G1 and
precolored vertices.

So far, we have introduced all vertices and edges in our construction of the
graph G2. We omit the rest of the analysis due to space restrictions; see [2] for
details.

4 Removing Precoloring

In this section we show how to replace one precolored vertex by a large nonpre-
colored graph whose size is a constant factor of the size of the original graph,
while keeping Painter’s winning strategy in the case of a satisfiable formula.
Drawer’s winning strategy in the other case is of course preserved also and
easier to see. We prove the following lemma which holds for all graphs with
precolored vertices satisfying a few assumptions.

Lemma 1. Let G be a graph with precolored subgraph Gp created from a fully
quantified formula φ, and let vp ∈ Gp be a precolored vertex of G.

24 M. Böhm and P. Veselý

Let D be the induced subgraph with all nonprecolored vertices that are not
connected to vp and let E be the induced subgraph with all nonprecolored vertices
that are connected to vp.

Let k be an integer. Assume that the following holds:

1. χO(G) ≤ k if and only if φ is satisfiable,
2. in the winning strategy of Painter in the case if φ is satisfiable, Painter

can color E using FirstFit before two nonadjacent vertices from D arrive.
Moreover, in this case if FirstFit assigns the same color to a vertex in D
and to a vertex in E before two nonadjacent vertices from D arrive, Painter
can still color G using k colors.

Then there exists an integer k′ and a graph G′ with the following properties:

– G′ has only |V (Gp)| − 1 precolored vertices, and |V (G′)| ≤ 25|V (G)|,
– G′ can be constructed from G in polynomial time,
– it holds that χO(G′) ≤ k′ if and only if φ is satisfiable.

Theorem 1 follows by an iterative application of Lemma1; the details of this
application can be found in [2].

Construction of G′. Let N be the total number of vertices in D and E and
let S = 8N . Our graph G′ consists of precolored part G′

p := Gp\{vp}, graphs D
and E and three huge cliques A,B and C of size S; cliques A,B and C together
form a supernode. We keep the edges inside and between D and E and the edges
between G′

p and D ∪ E as they are in G.
We add a complete bipartite graph between cliques B and C, i.e., B ∪ C

forms a clique of size 2S. No vertex in A is connected to B or C. In other words,
the supernode is created from a node by replacing each vertex by a clique of size
S and the only edge in the node by a complete bipartite graph.

C

B A

D E

Fig. 3. Our construction
G′. (The remaining pre-
colored vertices are not
shown.)

There are no edges between the supernode (cliques
A and B∪C) and a precolored vertex in G′

p. It remains
to add edges between the supernode and D ∪ E. There
is an edge between each vertex in E and each vertex
in the supernode, while every vertex in D is connected
only to the whole A and B, but not to any vertex in
C. The fact that D and C are not adjacent at all is
essential in our analysis. Our construction is depicted
in Fig. 3.

Proof (Proof of Lemma 1). Let G′ be the graph defined as above. Note that the
number of vertices in G′ is at most 25|V (G)|, G′ can be constructed from G in
polynomial time and G′ has only |V (Gp)| − 1 precolored vertices. Therefore, it
remains to prove χO(G′) ≤ k′ if and only if φ is satisfiable for some k′. We set
k′ to k + 2S, since there will be at most 2S colors used in the supernode.

Assuming that φ is not satisfiable, it is straightforward to design a winning
strategy for Drawer on G′; we only need to adapt the approach of Sects. 2 and
3. See [2] for a full description of the strategy.

Online Chromatic Number is PSPACE-Complete 25

In the rest of this section we focus on the opposite direction: assuming that
φ is satisfiable, we show that Painter can color G′ with k′ colors regardless
of the strategy of Drawer. In the following, when we refer to the colored part
of G′, we do not take precolored vertices into account. Painter actually does
not look at precolored vertices unless it uses its winning strategy for coloring G,
which exists by the assumptions.

Intuition. At the beginning Painter has too little data to infer anything about
the vertices. Therefore, Painter shall wait for two nonadjacent vertices from
D and for two large cliques (larger than S/2) with a small intersection. Before
such vertices arrive, it will color greedily.

Note that the greedy coloring algorithm eventually stops before everything
is colored. Having two large cliques, one mostly from A and the other mostly
from B ∪C, and two nonadjacent vertices from D, Painter is able to recognize
where an incoming vertex belongs. Therefore, Painter can use the supernode
like a precolored vertex and colors the remaining vertices from D and E by its
original winning strategy on G.

This approach may fail if a part of D is already colored by Painter’s appli-
cation of the greedy strategy. To remedy this, we prove that colors used on D
so far are also used in C or E, or will be used on C later.

The other obstacle is that Painter might not be able to distinguish between
one clique from D and vertices in A if nothing from B arrives. Nevertheless, each
vertex u in such a “hidden” clique is connected to all other colored vertices in D
and to the whole colored part of E, otherwise it would be distinguishable from
vertices in A. Hence, it does not matter on the color of u.

In summation, the sheer size of the supernode should allow Painter to be
able to use it as if it would be precolored. Still, we need to allow for some small
margin of error. This leads us to the following definition:

Definition 2. Let N be the number of vertices of D ∪ E as in the construction
of G′. For subgraphs X,Y ⊆ G′, we say that X is practically a subgraph of Y if
|V (X)\V (Y)| ≤ N , and X is practically disjoint with Y if |V (X) ∩ V (Y)| ≤ N .

We also say that a vertex v is practically universal to a subgraph X ⊆ G′ if
it is adjacent to all vertices in X except at most N of them. Similarly, we say
a vertex v is practically independent of a subgraph X ⊆ G′ if v has at most N
neighbors in X.

At first, the player Painter uses the following algorithm for coloring incom-
ing vertices, which may stop when it detects two useful vertices d1 and d2:

Algorithm WaitForD: For an incoming vertex u sent by Drawer:

1. Let G′
A be the revealed part of G′ (i.e., colored vertices and u, but not precol-

ored vertices)
2. Find a maximum clique in G′

A and denote it as K1.
3. Find a maximum clique in G′

A practically disjoint with K1 and denote it as K2.
4. If |K2| ≥ S/2 and there are two nonadjacent vertices d1 and d2 in G′

A which are
both not practically universal to K1 or both not practically universal to K2:

5. Stop the algorithm.
6. Otherwise, color u using FirstFit.

26 M. Böhm and P. Veselý

While the algorithm may seem to use a huge amount of computation for one step,
we should realize that we are not concerned with time complexity when designing
the strategy for Painter. In fact, even a non-constructive proof of existence of
a winning strategy would be enough to imply existence of a PSPACE algorithm
for finding it – we have observed already in Sect. 1 that Online Chromatic

Number lies in PSPACE.
Let v be the incoming vertex u when WaitForD stops; note that v is not

colored by the algorithm and v can be from any part of G′.
One of the cliques K1 and K2 is practically a subgraph of B ∪ C and we

denote this clique by KBC . The other clique must be practically a subgraph of
A and we denote it by KA. (Keep in mind that both cliques may contain up to N
vertices from D ∪ E.) We remark that some vertices from C must have arrived,
as A and B alone are indistinguishable by Step 4 of WaitForD . By the same
argument, the player Painter knows whether K1 = KA or K1 = KBC .

Let d1 and d2 be the nonadjacent vertices that caused the algorithm to stop.
We observe that d1, d2 ∈ D by eliminating all other possibilities:

– Neither of d1 and d2 can be from E, since any vertex of E is practically
universal to both cliques.

– Both d1 and d2 cannot be from B ∪ C or both from A, as they would be
adjacent.

– If d1 is in B ∪ C and d2 in A, then we have a contradiction with the fact that
d1 and d2 are not practically universal to the same clique.

– If d1 ∈ D and d2 would be from A or B, then d1 and d2 are adjacent.
– Finally, if d1 ∈ D and d2 ∈ C, then the clique to which they are not practically

universal cannot be the same for both, since d1 is universal to the whole A
and d2 to the whole B ∪ C.

Having cliques KA and KBC and vertices d1, d2 ∈ D, Painter uses the
following rules to recognize where an incoming or a colored vertex u belongs:

– If u is practically universal to both KBC and KA, then u ∈ E.
– If u is practically universal to KBC and practically independent of KA and u

is adjacent to d1, then u ∈ B.
– If u is practically universal to KBC and practically independent of KA, but

there is no edge between d1 and u, then u ∈ C.
– If u is not practically universal to KBC , but it is practically universal to KA,

then u ∈ A or u ∈ D.
• Among such vertices, if there is a vertex not adjacent to u or u is not

adjacent to a vertex in E or u is adjacent to a vertex in B, then u ∈ D;
we say that such u is surely in D.

• Otherwise, Painter cannot yet recognize whether u ∈ A or u ∈ D.

The reader should take a moment to verify that indeed, the set of rules covers
all possible cases for u.

Let Ã, B̃, C̃, D̃, Ẽ be the colored parts of G′ when WaitForD stops. We
observe that in the last case of the recognition the vertices from D̃ which are

Online Chromatic Number is PSPACE-Complete 27

indistinguishable from A form a clique; we denote it by KD. Note that all vertices
in KD are connected to all vertices surely from D that arrived and KD contains
all vertices in D̃ that are not surely in D. We stress that Painter does not know
KD or even its size.

Intuition for the Next Step. Since Painter can now recognize the parts of
the construction (with an exception of KD), we may basically use the winning
strategy for Painter on G and FirstFit on the rest. More precisely, Painter
creates a virtual copy of G, adds vertices into it and simulates the winning
strategy on this virtual graph.

Our main problem is that some part of D (namely D̃) is already colored. We
shall prove that if D̃ is not a clique, Painter can ignore colors used in D̃ (but
not the colors that it will use on D), as they are already present in C or E or
they may be used later in C. If D̃ is a clique, it may be the case that C and A
arrived fully and have the same colors, thus Painter cannot ignore colors on D̃.

Another obstacle in the simulation is KD, the hidden part of D. To overcome
this, Painter tries to detect vertices in KD and reclassify them as surely in D.
Painter shall keep that all vertices in KD are connected to all currently colored
vertices in D and E, therefore it does not matter much on colors in KD.

When Painter discovers a vertex from KD, it adds the vertex immediately
to its simulation of G. On the other hand, the size of KD increases when Drawer

sends a vertex from D which is indistinguishable from A.
The details of the algorithm used by Painter to finish the coloring of G′

using k′ colors are omitted due to space restrictions and can be found in [2]. ��

Acknowledgments. The authors thank Christian Kudahl and their supervisor Jǐŕı
Sgall for useful discussions on the problem.

References

1. Bean, D.R.: Effective coloration. J. Symbolic Logic 41(2), 469–480 (1976)
2. Böhm, M., Veselý, P.: Online chromatic number is PSPACE-complete, arXiv

preprint (2016). https://arxiv.org/abs/1604.05940
3. Gyárfás, A., Lehel, J.: First fit and on-line chromatic number of families of graphs.

Ars Combinatoria 29C, 168–176 (1990)
4. Gyárfás, A., Kiraly, Z., Lehel, J.: On-line graph coloring and finite basis problems.

In: Combinatorics: Paul Erdos is Eighty, vol. 1, pp. 207–214 (1993)
5. Halldórsson, M.M.: Parallel and on-line graph coloring. J. Algorithms 23, 265–280

(1997)
6. Halldórsson, M.M.: Online coloring known graphs. Electron. J. Combinatorics 7(1),

R7 (2000)
7. Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theor.

Comput. Sci. 130(1), 163–174 (1994)
8. Kierstad, H.: On-line coloring k-colorable graphs. Israel J. Math. 105, 93–104

(1998)
9. Kudahl, C.: On-line graph coloring. Master’s thesis, University of Southern

Denmark (2013)

https://arxiv.org/abs/1604.05940

28 M. Böhm and P. Veselý

10. Kudahl, C.: Deciding the on-line chromatic number of a graph with pre-coloring
is PSPACE-complete. In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS,
vol. 9079, pp. 313–324. Springer, Heidelberg (2015)

11. Lovász, L., Saks, M., Trotter, W.T.: An on-line graph coloring algorithm with
sublinear performance ratio. Ann. Discrete Math. 43, 319–325 (1989)

http://www.springer.com/978-3-319-44542-7

	Online Chromatic Number is PSPACE-Complete
	1 Introduction
	2 Construction with a Large Precolored Part
	3 Construction with a Precolored Part of Logarithmic Size
	3.1 Nodes
	3.2 Precolored Vertices

	4 Removing Precoloring
	References

