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Abstract. In the online graph coloring problem, vertices from a graph
G, known in advance, arrive in an online fashion and an algorithm must
immediately assign a color to each incoming vertex v so that the revealed
graph is properly colored. The exact location of v in the graph G is not
known to the algorithm, since it sees only previously colored neighbors
of v. The online chromatic number of G is the smallest number of colors
such that some online algorithm is able to properly color G for any
incoming order. We prove that computing the online chromatic number
of a graph is PSPACE-complete.

1 Introduction

In the classical graph coloring problem we assign a color to each vertex of a given
graph such that the graph is properly colored, i.e., no two adjacent vertices have
the same color. The chromatic number y of a graph G is the smallest k such
that G can be colored with k distinct colors. Deciding whether the chromatic
number of a graph is at most k is well known to be NP-complete, even in the
case with three colors.

The online variant of graph coloring can be defined as follows: The vertices of
G arrive one by one, and an online algorithm must color vertices as they arrive so
that the revealed graph is properly colored at all times. When a vertex arrives,
the algorithm sees edges to previously colored vertices. The online algorithm may
use additional knowledge of the whole graph G; more precisely, a copy of G is sent
to the algorithm at the start of the input. However, the exact correspondence
between the incoming vertices and the vertices of the copy of GG is not known to
the algorithm. This problem is called ONLINE GRAPH COLORING.

In this paper we focus on a graph parameter called the online chromatic num-
ber x°(G) of a graph G. This parameter is analogous to the standard chromatic
number of a graph: It denotes the smallest number k£ such that there exists a
deterministic online algorithm which is able to color the specified graph G using
k colors.

The online chromatic number has been studied since 1990 [3]. One of the
main open problems in the area is the computational complexity of deciding
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whether x©(G) < k for a specified simple graph G, given G and k on input;
see e.g. Kudahl [10]. We denote this decision problem as ONLINE CHROMATIC
NUMBER. In this paper, we fully resolve this problem:

Theorem 1. The decision problem ONLINE CHROMATIC NUMBER is PSPACE-
complete.

As is usual in the online computation model, we can view ONLINE GRAPH
COLORING as a game between two players, which we call PAINTER (representing
the online algorithm) and DRAWER (often called ADVERSARY in the online algo-
rithm literature). In each round DRAWER chooses an uncolored vertex v from
G and sends it to PAINTER without telling him to which vertex of G it corre-
sponds, only revealing the edges to the previously sent vertices. Then PAINTER
must properly color (“paint”) v, i.e., PAINTER cannot use a color of a neighbor
of v. We stress that in this paper PAINTER is restricted to be deterministic. The
game continues with the next round until all vertices of G are colored.

Deciding the outcome of many two-player games is PSPACE-complete;
among those are Amazons, Checkers and Hex, to name a few. However, in most
of these games both players have roughly the same power. This does not hold
for ONLINE GRAPH COLORING which is highly asymmetric, since DRAWER has
perfect information (knows which vertices are sent and how they are colored),
but PAINTER does not. PAINTER may only guess to which part of the graph
does the colored subgraph really belong. This is the main difficulty in proving
PSPACE-hardness.

Examples. Consider a path P, on four vertices. Initially, DRAWER sends two
nonadjacent vertices. If PAINTER assigns different colors to them, then these are
the first and the third vertex of P, thus the second vertex must get a third
color; otherwise they obtained the same color a and they are the endpoints of
Py, therefore the second and the third vertex get different colors which are not
equal to a. In both cases, there are three colors on P, and thus XO(P4) = 3,
while x(Py) = 2.

Note also that we may think of DRAWER deciding where an incoming vertex
belongs at some time after it is colored provided that the choice still allows for at
least one isomorphism to the original G. This is possible only for a deterministic
PAINTER.

A particularly interesting class of graphs in terms of x© is the class of bino-
mial trees. A binomial tree of order k is defined inductively: The binomial tree
of order 0 is a single vertex (the root) and the binomial tree of order k is created
by taking two disjoint copies of binomial trees of order k — 1, adding an edge
between their roots and choosing one of their roots as the root for the resulting
tree. Thus P, is a binomial tree of order 2 with root on the second vertex of Pj.

It is not hard to generalize the example of P, and show that the online
chromatic number of the binomial tree of order k is & + 1 [3]. This shows that
the ratio between y© and y may be arbitrarily large even for the class of trees.

History and Related Work. The online problem ONLINE GRAPH COLOR-
ING has been known since 1976 [1], originally studied in the variant where the
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algorithm has no extra information at the start of the input. Bean [1] showed
that no online algorithm that is compared to an offline algorithm can perform
well under this metric. The notion of online chromatic number was first defined
in 1990 by [3].

For the online problem, Lovdsz, Saks and Trotter [11] show an algorithm
with a competitive ratio O(n/log* n), where the competitive ratio is a ratio of
the number of colors used by the online algorithm to the (standard) chromatic
number. This was later improved to O(nlogloglogn/loglogn) by Kierstad [8]
using a deterministic algorithm. There is a better O(n/logn)-competitive ran-
domized algorithm against an oblivious adversary by Halldérsson [5]. A lower
bound on the competitive ratio of £2(n/log®n) was shown by Halldérsson and
Szegedy [7].

Our variant of ONLINE GRAPH COLORING, where the algorithm receives a
copy of the graph at the start, was suggested by Halldérsson [6], where it is
shown that the lower bound £2(n/log®n) also holds in this model. (Note that
the previously mentioned algorithmic results are valid for this model also.)

Kudahl [9] recently studied ONLINE CHROMATIC NUMBER as a complexity
problem. The paper shows that the problem is coNP-hard and lies in PSPACE.
Later [10] he proved that if some part of the graph is precolored, i.e., some
vertices are assigned some colors prior to the coloring game between DRAWER
and PAINTER and DRAWER also reveals edges to the precolored vertices for each
incoming vertex, then deciding whether x°(G) < k is PSPACE-complete. We
call this decision problem ONLINE CHROMATIC NUMBER WITH PRECOLORING.
The paper [10] conjectures that ONLINE CHROMATIC NUMBER (with no pre-
colored part) is PSPACE-complete too. Interestingly, it is possible to decide
x?(G) < 3 in polynomial time [4].

Keep in mind that while ONLINE GRAPH COLORING is an online prob-
lem, ONLINE CHROMATIC NUMBER is an (offline) decision problem of checking
whether x(G) < k.

Proof Outline. It is not hard to see that ONLINE CHROMATIC NUMBER belongs
to PSPACE: The online coloring is represented by a game tree which is evaluated
using the Minimax algorithm. This can be done in polynomial space, since the
number of rounds in the game is bounded by n, i.e., the number of vertices, and
possible moves of each player can be enumerated in polynomial space: PAINTER
has at most n possible moves, because it either uses a color already used for a
vertex, or it chooses a new color, and DRAWER has at most 2° moves where s is
the number of colored vertices, since it chooses which colored vertices shall be
adjacent to the incoming vertex. DRAWER must ensure that sent vertices form
an induced subgraph of GG, but this can be checked in polynomial space.

Inspired by [10], we prove the PSPACE-hardness of ONLINE CHROMATIC
NUMBER by a reduction to Q3DNF-SAT), i.e., the satisfiability of a fully quan-
tified formula in the 3-disjunctive normal form (3-DNF). An example of such a
formula is

Va1dxoVasdzy... : (x1 Axa A—xsg) V (mxp Az A —xg) V...
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The similar problem of satisfiability of a fully quantified formula in the 3-
conjunctive normal form is well known to be PSPACE-complete. Since PSPACE
is closed under complement, Q3DNF-SAT is PSPACE-complete as well. Note
that by an easy polynomial reduction, we can assume that each 3-DNF clause
contains exactly three literals.

We show the hardness in several iterative steps. First, in Sect. 2, we present a
new, simplified proof of the PSPACE-hardness of ONLINE CHROMATIC NUMBER
WITH PRECOLORING in which the sizes of both precolored and non-precolored
parts of our construction are linear in the size of the formula.

Then, in Sect. 3, we strengthen the result by reducing the size of the precol-
ored part to be logarithmic in the size of the formula. This is achieved by adding
linearly many vertices to our construction.

Finally, in Sect. 4, we show how to remove one precolored vertex and replace
it by a non-precolored part, while keeping the PSPACE-hardness proof valid.
The cost for removing one vertex is that the size of the graph is multiplied by
a constant, but since we apply it only logarithmically many times, we obtain a
graph of polynomial size and with no precolored vertex. This will complete the
proof of Theorem 1.

We remark that removing the last precolored vertex is the most difficult
part of proving PSPACE-hardness of ONLINE CHROMATIC NUMBER. Still, our
technique for removing a precolored vertex can be used for any graph satisfying
a few assumptions.

We omit some proofs and some technical aspects of our construction due to
space restrictions. A preprint version [2] with full details can be found at https://
arxiv.org/abs/1604.05940.

In our analysis, PAINTER often uses the natural greedy algorithm FIRSTFIT,
which is ubiquitous in the literature (see [6,11]):

Definition 1. The online algorithm FIRSTFIT colors an incoming vertex wu
using the smallest color not present among colored vertices adjacent to u.

2 Construction with a Large Precolored Part

Our first construction will reduce the PSPACE-complete problem Q3DNF-SAT
to ONLINE COLORING WITH PRECOLORING with a large precolored part. Given
a fully quantified formula @ in the 3-disjunctive normal form, we will create a
graph (G; that will simulate this formula. We assume that the formula contains
n variables z;, (1 < ¢ < n) and m clauses C,, (1 < a < m), and that variables
are indexed in the same order as they are quantified.

Our main resource will be a large precolored clique K., on k vertices and
naturally using k colors; the number k will be specified later. Using such a
precolored clique, we can restrict the allowed colors on a given uncolored vertex
v by connecting it with the appropriate vertices in K., i.e., we connect v to all
vertices in K., which do not have a color allowed for v.

For simplicity we use the precoloring in the strong sense, i.e., PAINTER is able
to recognize which vertex in K,,; is which. We use this to easily recognize colors.
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However, it is straightforward to avoid the strong precoloring by modifying the
precolored part; for example by creating ¢ independent and identical copies of
the i-th vertex in K., each having the same color and the same edges to other
vertices in K, and the rest of the graph. With such a modification, PAINTER
would able to recognize each color by the number of its vertices in K.

Each vertex in K, thus corresponds to a color. Colors used by PAINTER are
naturally denoted by numbers 1,2,3, ...k, but we shall also assign meaningful
names to them.

We want to construct a graph G; that has the online chromatic number k
if and only if the quantified 3-DNF formula can be satisfied. See Fig.1 for an
example of G; and an overview of our construction. We use the following gadgets
for variables and clauses:

1. For a variable x; which is quantified universally, we will create a gadget
consisting of universal vertices x; ; and x; r, connected by an edge. The vertex
x;,¢ represents the positive literal x;, while x; ; represents the negative literal
—z;. Both vertices have exactly two allowed colors: set; and unset;. If x;; is
assigned the color set;, it corresponds to setting the variable x; to 1, and vice
versa.

Note that if DRAWER presents a vertex x;; to PAINTER, PAINTER is able to
recognize that it is a vertex corresponding to the variable x;, but it is not
able to recognize whether it is the vertex z;, or z; .

2. For a variable z; which is quantified existentially, we will create a gadget
consisting of three existential vertices x;; (for the positive literal z;), x; ¢
(for the literal —~z;) and x; 5 (the helper vertex), connected as a triangle.
Coloring of the first two variables also corresponds to setting the variable
z; to true or false, but in a different way: x;; has allowed colors set;; and
unset ;, while x; ¢ has allowed colors set; ; and unset;. We want to avoid both
x5 and z; r to have the color of type set, and so the “helper” vertex z;j can
be colored only by set;; or set; .

Note that the color choice for the vertices of x; means that if PAINTER is
presented any vertex of this variable, PAINTER can recognize it and decide
whether to set z; to 1 (and color accordingly) or to 0.

We call existential and universal vertices together variable vertices.

3. For each clause C, we will add four new vertices. First, we create a vertex l, ;

for each literal in the clause, which is connected to one of the vertices z; » and
x;, 5 corresponding to the sign of the literal. For example if Cy = (x;A—x;Az),
then [, ; is connected to x4, I, ; is connected to z; r and lg ; to x . The
allowed colors on a vertex [, ; are {f,, unset; }.
Finally, we add a fourth vertex d, connected to the three vertices lg i, a5, la k-
This vertex can be colored only using the color f, or the color false,. The
color false, is used to signal that this particular clause is evaluated to be 0. If
the color f, is used for the vertex d,, this means that the clause is evaluated
to 1, because f, is not present on any of lg s, j, .k, thus they have colors
of type unset; and their neighbors corresponding to literals have colors of
type set.
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4. The last vertex we add to the construction will be F', a final vertex. The
vertex F' is connected to all the vertices d, corresponding to the clauses. The
allowed colors of the vertex F' are falsep, falses, falses, ..., false,,. This final
vertex corresponds to the final evaluation of the formula. If all clauses are
evaluated to 0, the vertex F' has no available color left and must use a new
color.

We have listed all the vertices and colors in our graph GG and the functioning
of our gadgets, but we will need slightly more edges. The reasoning for the edges
is as follows: If DRAWER presents any vertex of the type [, ;,d, or F' before
presenting the variable vertices, or in the case when the variable vertices are
presented out of the quantifier order, we want to give an advantage to PAINTER
so it can finalize the coloring.

This will be achieved by allowing PAINTER to treat all remaining universal
vertices as existential vertices, i.e., PAINTER can recognize which of the two
universal vertices x;,x; s corresponds to setting x; to 1.

To be precise, we add the following edges to G:

— Every existential vertex x;+,x; f,2; is connected to all previous universal
vertices x; ¢+, that is to all such x;; for which i < j.

— Every universal vertex x; ¢, x; s is connected to all previous universal vertices
2 such that 7 < j.

— Every vertex of type l,; is connected to all the universal vertices x;/; for i’ # i.
Note that [, ; is connected either to z;+, or to z; f; we do not add an edge to
such vertices.

— Every vertex of type d, is connected to all universal vertices x;; for all i.

— The vertex F' is connected to all the universal vertices ; ; for all 4.

Va3woVas (1 A —wo Axs) V (mxp A xy A xg)

Fig. 1. The construction for a sample formula. The thick black edges are the normal
edges of the construction, and the dashed orange edges are the additional edges that
guarantee precedence of vertices. The lists of allowed colors of each vertex are not listed
in the figure. (Color figure online)
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We call all non-precolored vertices the gadgets for variables and clauses.

The number of colors allowed for PAINTER (the same as the size of K,)
is k = 2m + 2ny + 3ng where m is the number of clauses, ny the number of
universally quantified variables and n3 the number of existentially quantified
variables.

The analysis of our construction is fairly straightforward (see [2] for details).

3 Construction with a Precolored Part
of Logarithmic Size

We now make a step to the general case without precoloring by reducing the
size of the precolored part so that it has only logarithmic size. Our construc-
tion is based on the one with a large precolored part; namely, all the vertices
Tits Ti fyL55 L5, %5 hs lai, day F' (the gadgets for variables and clauses) and the
whole color clique K., will be connected the same way. Let G; denote the
gadgets for variables and clauses and K,;.

Since K., is now not precolored and DRAWER may send it after the gadgets,
we help PAINTER by a structure for recognizing vertices in G; or for saving
colors.

We remark that there is also a simpler construction with a logarithmic num-
ber of precolored vertices. If we just add precolored vertices to recognize vertices
in (1, the following proof would work and be easier. However, when we replace
a precolored vertex v by some non-precolored graph in Sect. 4, we will use some
conditions on the graph G, that this construction would not satisfy.

3.1 Nodes

Our structure will consist of many small nodes, all of them have the same internal
structure, only their adjacencies with other vertices vary.
Each node consists of three vertices and a single edge; vertices
are denoted by p1,po,ps and the edge leads between p; and ps. @
We call the vertices py and po the lower partite set of the node,
ps form the upper partite set. See Fig.2 for an illustration of a @ @
node. Clearly, the online chromatic number of a node is two. The
intuition behind the nodes is as follows: Fig. 2. Node

— If DRAWER presents vertices of a node in the correct way, PAINTER needs to
use two colors in the lower partite set of every node.

— No color can be used in two different nodes.

— Each vertex v € G; (in the gadgets and in K., ) has its own associated node
A. If the vertex ps from A does not arrive before v is sent, PAINTER can color
p3 and v with the same color, thus save a color. Otherwise, PAINTER can use
the node to recognize v.

— Universal vertices x; ¢, x;, 5 for each universally quantified variable x; should be
distinguishable only by the same vertices as in the previous section. Therefore
they are both associated with the same two nodes.
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Let N be the number of vertices in G;. We create N nodes, denoted by
Aq,..., Ay, one for each vertex in G;. For any two distinct nodes A; and A;
(¢ # j), there is an edge between each vertex in A; and each vertex in A;.
Therefore, no color can be used in two nodes.

We have noted above that each node is associated with a vertex; we now
make the connection precise. Let vy, ..., vy be the vertices in G; (in an arbitrary
order). Then we say that A; identifies the vertex v;. Moreover, if v; is a vertex
Tk, or Ty, for a universally quantified variable x; and v; is the other vertex,
then A; also identifies v; and A; also identifies v;. Thus each node identifies one
or two vertices and each vertex is identified by one or two nodes.

Edges between a vertex v in the original construction G; and a node depend
on whether the node identifies v, or not. For a vertex v € G; and for a node A,
if A identifies v, we connect only the whole lower partite set of A to v, i.e., we
add two edges from v to both p; and py of A. Otherwise, we add three edges —
one between v and every vertex in A.

3.2 Precolored Vertices

The only precolored part P of the graph is intended for distinguishing nodes.
Since there are N nodes in total, we have p = [logy N| precolored vertices
21, %2,...%p With no edges among them. Precolored vertices have a color that
may be used later for coloring G; (the gadgets and K.y ). For simplicity, we
again use the precoloring in the strong sense, i.e., PAINTER is able to recognize
which precolored vertex is which.

We connect all vertices in the node A; to z; if the j-th bit in the binary
notation of ¢ is 1; otherwise z; is not adjacent to any vertex in A;.

Clearly, the node to which an incoming vertex belongs can be recognized
by its adjacency to the precolored vertices. Note that a vertex from nodes is
connected to at least one precolored vertex and there is no edge between G and
precolored vertices.

So far, we have introduced all vertices and edges in our construction of the
graph G5. We omit the rest of the analysis due to space restrictions; see [2] for
details.

4 Removing Precoloring

In this section we show how to replace one precolored vertex by a large nonpre-
colored graph whose size is a constant factor of the size of the original graph,
while keeping PAINTER’s winning strategy in the case of a satisfiable formula.
DRAWER’s winning strategy in the other case is of course preserved also and
easier to see. We prove the following lemma which holds for all graphs with
precolored vertices satisfying a few assumptions.

Lemma 1. Let G be a graph with precolored subgraph G), created from a fully
quantified formula ¢, and let v, € G, be a precolored vertex of G.
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Let D be the induced subgraph with all nonprecolored vertices that are not
connected to v, and let E be the induced subgraph with all nonprecolored vertices
that are connected to v,,.

Let k be an integer. Assume that the following holds:

1. X9(G) < k if and only if ¢ is satisfiable,

2. in the winning strategy of PAINTER in the case if ¢ is satisfiable, PAINTER
can color E using FIRSTFIT before two nonadjacent vertices from D arrive.
Moreover, in this case if FIRSTFIT assigns the same color to a vertex in D
and to a vertex in E before two nonadjacent vertices from D arrive, PAINTER
can still color G using k colors.

Then there exists an integer k' and a graph G' with the following properties:

— G’ has only |V (G,)| — 1 precolored vertices, and |V (G')| < 25|V (G)|,
— G’ can be constructed from G in polynomial time,
— it holds that x©(G') < k' if and only if ¢ is satisfiable.

Theorem 1 follows by an iterative application of Lemma 1; the details of this
application can be found in [2].

Construction of G'. Let N be the total number of vertices in D and E and
let S = 8N. Our graph G’ consists of precolored part Gy, := Gp\{v,}, graphs D
and F and three huge cliques A, B and C of size S; cliques A, B and C together
form a supernode. We keep the edges inside and between D and E and the edges
between G;J and D U FE as they are in G.

We add a complete bipartite graph between cliques B and C, i.e., BUC
forms a clique of size 25. No vertex in A is connected to B or C. In other words,
the supernode is created from a node by replacing each vertex by a clique of size
S and the only edge in the node by a complete bipartite graph.

There are no edges between the supernode (cliques
A and BUC) and a precolored vertex in GJ,. It remains 0 e 0
to add edges between the supernode and DU E. There \
is an edge between each vertex in £ and each vertex

in the supernode, while every vertex in D is connected
only to the whole A and B, but not to any vertex in
C. The fact that D and C are not adjacent at all is
essential in our analysis. Our construction is depicted
in Fig. 3.

Fig. 3. Our construction
G'. (The remaining pre-
colored vertices are not
shown.)

Proof (Proof of Lemmal). Let G’ be the graph defined as above. Note that the
number of vertices in G’ is at most 25|V (G)|, G’ can be constructed from G in
polynomial time and G’ has only |V(G,)| — 1 precolored vertices. Therefore, it
remains to prove x°(G’) < k' if and only if ¢ is satisfiable for some k’. We set
k' to k + 28, since there will be at most 25 colors used in the supernode.

Assuming that ¢ is not satisfiable, it is straightforward to design a winning
strategy for DRAWER on G’; we only need to adapt the approach of Sects. 2 and
3. See [2] for a full description of the strategy.
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In the rest of this section we focus on the opposite direction: assuming that
¢ is satisfiable, we show that PAINTER can color G’ with k' colors regardless
of the strategy of DRAWER. In the following, when we refer to the colored part
of G’, we do not take precolored vertices into account. PAINTER actually does
not look at precolored vertices unless it uses its winning strategy for coloring G,
which exists by the assumptions.

Intuition. At the beginning PAINTER has too little data to infer anything about
the vertices. Therefore, PAINTER shall wait for two nonadjacent vertices from
D and for two large cliques (larger than S/2) with a small intersection. Before
such vertices arrive, it will color greedily.

Note that the greedy coloring algorithm eventually stops before everything
is colored. Having two large cliques, one mostly from A and the other mostly
from BUC, and two nonadjacent vertices from D, PAINTER is able to recognize
where an incoming vertex belongs. Therefore, PAINTER can use the supernode
like a precolored vertex and colors the remaining vertices from D and E by its
original winning strategy on G.

This approach may fail if a part of D is already colored by PAINTER’s appli-
cation of the greedy strategy. To remedy this, we prove that colors used on D
so far are also used in C or FE, or will be used on C' later.

The other obstacle is that PAINTER might not be able to distinguish between
one clique from D and vertices in A if nothing from B arrives. Nevertheless, each
vertex u in such a “hidden” clique is connected to all other colored vertices in D
and to the whole colored part of F, otherwise it would be distinguishable from
vertices in A. Hence, it does not matter on the color of u.

In summation, the sheer size of the supernode should allow PAINTER to be
able to use it as if it would be precolored. Still, we need to allow for some small
margin of error. This leads us to the following definition:

Definition 2. Let N be the number of vertices of D U E as in the construction
of G'. For subgraphs X, Y C G’, we say that X is practically a subgraph of Y if
[V(X)\V(Y)| < N, and X is practically disjoint with Y if |[V(X)NV(Y)| < N.

We also say that a vertex v is practically universal to a subgraph X C G’ if
it is adjacent to all vertices in X except at most N of them. Similarly, we say
a vertex v is practically independent of a subgraph X C G’ if v has at most N
neighbors in X.

At first, the player PAINTER uses the following algorithm for coloring incom-
ing vertices, which may stop when it detects two useful vertices d; and ds:

Algorithm WAITFORD: For an incoming vertex u sent by DRAWER:

1. Let G’y be the revealed part of G’ (i.e., colored vertices and u, but not precol-
ored vertices)

2. Find a maximum clique in G’y and denote it as Kj.

3. Find a maximum clique in G’y practically disjoint with K7 and denote it as K.

4. If |[K2| > S/2 and there are two nonadjacent vertices di and ds in G5 which are
both not practically universal to K; or both not practically universal to Ks:

5. Stop the algorithm.

6. Otherwise, color u using FIRSTFIT.
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While the algorithm may seem to use a huge amount of computation for one step,
we should realize that we are not concerned with time complexity when designing
the strategy for PAINTER. In fact, even a non-constructive proof of existence of
a winning strategy would be enough to imply existence of a PSPACE algorithm
for finding it — we have observed already in Sect.1 that ONLINE CHROMATIC
NUMBER lies in PSPACE.

Let v be the incoming vertex v when WAITFORD stops; note that v is not
colored by the algorithm and v can be from any part of G’.

One of the cliques K; and K5 is practically a subgraph of B U C and we
denote this clique by Kpc. The other clique must be practically a subgraph of
A and we denote it by K 4. (Keep in mind that both cliques may contain up to N
vertices from D U E.) We remark that some vertices from C' must have arrived,
as A and B alone are indistinguishable by Step 4 of WAITFORD. By the same
argument, the player PAINTER knows whether K1 = K4 or K1 = Kp¢.

Let d; and dy be the nonadjacent vertices that caused the algorithm to stop.
We observe that di,ds € D by eliminating all other possibilities:

— Neither of dy and dy can be from F, since any vertex of F is practically
universal to both cliques.

— Both d; and dy cannot be from B U C or both from A, as they would be
adjacent.

— If di is in BUC and ds in A, then we have a contradiction with the fact that
dy and dy are not practically universal to the same clique.

— If dy € D and ds would be from A or B, then d; and ds are adjacent.

— Finally, if d; € D and dy € C, then the clique to which they are not practically
universal cannot be the same for both, since d; is universal to the whole A
and dy to the whole BU C.

Having cliques K4 and Kpc and vertices di,dy € D, PAINTER uses the
following rules to recognize where an incoming or a colored vertex u belongs:

— If w is practically universal to both Kgc and K4, then u € E.
— If u is practically universal to Kpc and practically independent of K 4 and u
is adjacent to dp, then u € B.
— If w is practically universal to Kpc and practically independent of K 4, but
there is no edge between d; and u, then v € C.
— If w is not practically universal to Kpc, but it is practically universal to K 4,
then u € A or u € D.
e Among such vertices, if there is a vertex not adjacent to u or u is not
adjacent to a vertex in F or w is adjacent to a vertex in B, then u € D;
we say that such u is surely in D.
e Otherwise, PAINTER cannot yet recognize whether v € A or u € D.

The reader should take a moment to verify that indeed, the set of rules covers
all possible cases for u.

Let A,B,C, D, E be the colored parts of G when WAITFORD stops. We
observe that in the last case of the recognition the vertices from D which are
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indistinguishable from A form a clique; we denote it by K p. Note that all vertices
in Kp are connected to all vertices surely from D that arrived and Kp contains
all vertices in D that are not surely in D. We stress that PAINTER does not know
Kp or even its size.

Intuition for the Next Step. Since PAINTER can now recognize the parts of
the construction (with an exception of Kp), we may basically use the winning
strategy for PAINTER on G and FIRSTFIT on the rest. More precisely, PAINTER
creates a virtual copy of G, adds vertices into it and simulates the winning
strategy on this virtual graph.

Our main problem is that some part of D (namely ﬁ) is already colored. We
shall prove that if D is not a clique, PAINTER can ignore colors used in D (but
not the colors that it will use on D), as they are already present in C' or E or
they may be used later in C. If D is a clique, it may be the case that C' and A
arrived fully and have the same colors, thus PAINTER cannot ignore colors on D.

Another obstacle in the simulation is Kp, the hidden part of D. To overcome
this, PAINTER tries to detect vertices in Kp and reclassify them as surely in D.
PAINTER shall keep that all vertices in Kp are connected to all currently colored
vertices in D and F, therefore it does not matter much on colors in Kp.

When PAINTER discovers a vertex from Kp, it adds the vertex immediately
to its simulation of G. On the other hand, the size of Kp increases when DRAWER
sends a vertex from D which is indistinguishable from A.

The details of the algorithm used by PAINTER to finish the coloring of G’
using k' colors are omitted due to space restrictions and can be found in [2]. O
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