Key Topics

2.1

This chapter provides an introduction to fundamental building blocks in mathe-
matics such as sets, relations and functions. Sets are collections of well-defined
objects; relations indicate relationships between members of two sets A and B; and

Sets

Set Operations

Russell’s Paradox

Computer Representation of sets

Relations

Composition of Relations

Reflexive, Symmetric and Transitive Relations
Relational Database Management System
Functions

Partial and Total Functions

Injective, Surjective and Bijective Functions
Functional Programming

Introduction

© Springer International Publishing Switzerland 2016

G. O’Regan, Guide to Discrete Mathematics, Texts in Computer Science,

DOI 10.1007/978-3-319-44561-8_2

26 2 Sets, Relations and Functions

functions are a special type of relation where there is exactly (or at most)' one
relationship for each element a € A with an element in B.

A set is a collection of well-defined objects that contain no duplicates. The term
‘well defined’ means that for a given value it is possible to determine whether or not
it is a member of the set. There are many examples of sets such as the set of natural
numbers N, the set of integer numbers 7Z, and the set of rational numbers Q. The
natural numbers N is an infinite set consisting of the numbers {1, 2, ...}. Venn
diagrams may be used to represent sets pictorially.

A binary relation R (A, B) where A and B are sets is a subset of the Cartesian
product (A x B) of A and B. The domain of the relation is A and the codomain of the
relation is B. The notation aRb signifies that there is a relation between a and b and
that (a, b) € R. An n-ary relation R (A}, A,, ... A,) is a subset of (A; X Ay X ... X
A,). However, an n-ary relation may also be regarded as a binary relation R(A,
B) with A=A X Ay X ... X A,—; and B = A,.

Functions may be total or partial. A total function /2 A — B is a special relation
such that for each element a €A there is exactly one element b €B. This is written
as fla) = b. A partial function differs from a total function in that the function may
be undefined for one or more values of A. The domain of a function (denoted by
dom f) is the set of values in A for which the partial function is defined. The domain
of the function is A provided that fis a total function. The codomain of the function
is B.

2.2 Set Theory

A set is a fundamental building block in mathematics, and it is defined as a col-
lection of well-defined objects. The elements in a set are of the same kind, and they
are distinct with no repetition of the same element in the set.” Most sets encountered
in computer science are finite, as computers can only deal with finite entities. Venn
diagrams® are often employed to give a pictorial representation of a set, and they
may be used to illustrate various set operations such as set union, intersection and
set difference.

There are many well-known examples of sets including the set of natural
numbers denoted by N; the set of integers denoted by Z; the set of rational numbers
is denoted by Q; the set of real numbers denoted by R; and the set of complex
numbers denoted by C.

'We distinguish between total and partial functions. A total function f: A — B is defined for every
element in A whereas a partial function may be undefined for one or more values in A.

*There are mathematical objects known as multi-sets or bags that allow duplication of elements.
For example, a bag of marbles may contain three green marbles, two blue and one red marble.

*The British logician, John Venn, invented the Venn diagram. It provides a visual representation of

a set and the various set theoretical operations. Their use is limited to the representation of two or
three sets as they become cumbersome with a larger number of sets.

2.2 Set Theory 27
Example 2.1 The following are examples of sets.

The books on the shelves in a library

The books that are currently overdue from the library

The customers of a bank

The bank accounts in a bank

The set of Natural Numbers N = {1, 2, 3, ...}

The Integer Numbers Z = {..., =3, -2, -1, 0, 1, 2, 3, ...}
The non-negative integers Z* = {0, 1, 2, 3, ...}

The set of Prime Numbers = {2, 3, 5, 7, 11, 13, 17, ...}
The Rational Numbers is the set of quotients of integers

Q={p/q:p,q € Zandg # 0}

A finite set may be defined by listing all of its elements. For example, the set
A ={2,4,6, 8, 10} is the set of all even natural numbers less than or equal to 10.
The order in which the elements are listed is not relevant: i.e. the set {2, 4, 6, 8, 10}
is the same as the set {8, 4, 2, 10, 6}.

A

Sets may be defined by using a predicate to constrain set membership. For
example, the set S = {n: N: n < 10 Anmod 2 = 0} also represents the set {2, 4, 6,
8, 10}. That is, the use of a predicate allows a new set to be created from an existing
set by using the predicate to restrict membership of the set. The set of even natural
numbers may be defined by a predicate over the set of natural numbers that restricts
membership to the even numbers. It is defined by

Evens = {x|x € N A even(x)}.

In this example, even(x) is a predicate that is true if x is even and false otherwise.
In general, A = {x € E | P(x)} denotes a set A formed from a set E using the
predicate P to restrict membership of A to those elements of E for which the
predicate is true.

The elements of a finite set S are denoted by {x;, x», ... x,}. The expression x €
S denotes that the element x is a member of the set S, whereas the expression x ¢
S indicates that x is not a member of the set S.

A set Sis a subset of a set T (denoted S C T) if whenever s € Sthen s € T, and in
this case the set T is said to be a superset of S (denoted 7 O S). Two sets S and T are
said to be equal if they contain identical elements: i.e. S = T'if and only if S C T and
T C S. A set S is a proper subset of a set T (denoted S C 7) if S C T and S # T. That
is, every element of S is an element of 7 and there is at least one element in 7 that is
not an element of S. In this case, T is a proper superset of S (denoted 7 D).

28 2 Sets, Relations and Functions

The empty set (denoted by & or {}) represents the set that has no elements.
Clearly & is a subset of every set. The singleton set containing just one element x is
denoted by {x}, and clearly x € {x} and x # {x}. Clearly, y € {x} if and only if
X =y.

Example 2.2

®H {1, 2} € {1, 2, 3}
(i) JCcNCZcCcQcRcC

The cardinality (or size) of a finite set S defines the number of elements present in
the set. It is denoted by |S|. The cardinality of an infinite* set S is written as |S| = 0.
Example 2.3

(i) Given A = {2, 4, 5, 8, 10} then |A] = 5.

(i) Given A = {x € Z: x* = 9} then |A] = 2
(iii) Given A = {x € Z: x* = =9} then |A| = 0.

2.2.1 Set Theoretical Operations

Several set theoretical operations are considered in this section. These include the
Cartesian product operation; the power set of a set; the set union operation; the set
intersection operation; the set difference operation; and the symmetric difference
operation.

Cartesian Product
The Cartesian product allows a new set to be created from existing sets. The
Cartesian’ product of two sets S and T (denoted S x T) is the set of ordered pairs
{(s,0)| s €S, €T}. Clearly, S x T # T x S and so the Cartesian product of two
sets is not commutative. Two ordered pairs (sy, ¢) and (s,, ;) are considered equal
if and only if s; = 5, and ¢, = 1.

The Cartesian product may be extended to that of n sets Sy, S5, ..., S,. The
Cartesian product S; x S X ... X S, is the set of ordered tuples {(sy, s, ..., 5,) | 51

“The natural numbers, integers and rational numbers are countable sets whereas the real and
complex numbers are uncountable sets.

SCartesian product is named after René Descartes who was a famous 17th French mathematician
and philosopher. He invented the Cartesian coordinates system that links geometry and algebra,
and allows geometric shapes to be defined by algebraic equations.

2.2 Set Theory 29

€S, 5 €S8y, ..., 5, €8,}. Two ordered n-tuples (sy, s5, ..., s,) and (s{', s2', ..., s,,))
are considered equal if and only if s; = s{', 55, = 85/, ..., 5, = 5,,.

The Cartesian product may also be applied to a single set S to create ordered
n-tuples of S:ie. §"=8 X § X ... x S (n-times).

Power Set
The power set of a set A (denoted PA) denotes the set of subsets of A. For example,
the power set of the set A = {1, 2, 3} has 8 elements and is given by

PA={D, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}.

There are 2° = 8 elements in the power set of A = {1, 2, 3} and the cardinality of
A is 3. In general, there are 2l elements in the power set of A.

Theorem 2.1 (Cardinality of Power Set of A) There are 2M elements in the power
set of A
Proof Let |A| = n then the cardinality of the subsets of A are subsets of size 0, 1,

..., n. There are () subsets of A of size k.° Therefore, the total number of subsets of
A is the total number of subsets of size 0, 1, 2, ... up to n. That is

n

PAI =Y ()

k=0
The Binomial Theorem (we prove it in Example 4.2 in Chap. 4) states that

n

(=3 ()

k=0
Therefore, putting x = 1 we get that

2= (1+1)"=) (1" = [PA]
k=0

Union and Intersection Operations
The union of two sets A and B is denoted by A U B. It results in a set that contains
all of the members of A and of B and is defined by

AUB={rlreAorr € B}.
For example, suppose A = {1,2,3}and B = {2,3,4}thenA U B = {1, 2, 3,4}.

Set union is a commutative operation: i.e. A U B =B U A. Venn Diagrams are
used to illustrate these operations pictorially.

SWe discuss permutations and combinations in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-44561-8_4
http://dx.doi.org/10.1007/978-3-319-44561-8_5

30 2 Sets, Relations and Functions

A B A B
AUB ANB

The intersection of two sets A and B is denoted by A N B. It results in a set
containing the elements that A and B have in common and is defined by

ANB={rlr€Aandr € B}.

Suppose A = {1,2,3} and B = {2,3,4} then A N B = {2, 3}. Set intersection is
a commutative operation: i.e. A N B=B N A.

Union and intersection are binary operations but may be extended to more
generalized union and intersection operations. For example

U’ ,A; denotes the union of 7 sets.

N’_,A; denotes the intersection of 7 sets

Set Difference Operations
The set difference operation A\B yields the elements in A that are not in B. It is
defined by

A\B = {ala € Aanda ¢ B}.

For A and B defined as A = {1, 2} and B = {2, 3} we have A\B = {1} and
B\A = {3}. Clearly, set difference is not commutative: i.e. AAB # B\A. Clearly,
A = J and A\D = A.

The symmetric difference of two sets A and B is denoted by A A B and is given
by

AAB = A\BUB\A

The symmetric difference operation is commutative: i.e. A A B=B A A. Venn
diagrams are used to illustrate these operations pictorially.

A B A B A B
A\B B\A AAB

The complement of a set A (with respect to the universal set U) is the elements in
the universal set that are not in A. It is denoted by A“ (or A’) and is defined as

A={uuec Uandu ¢ A} = U\A

2.2 Set Theory 31

The complement of the set A is illustrated by the shaded area below
u

- Ac

2.2.2 Properties of Set Theoretical Operations

The set union and set intersection properties are commutative and associative. Their
properties are listed in Table 2.1.

These properties may be seen to be true with Venn diagrams, and we give a
proof of the distributive property (this proof uses logic which is discussed in
Chaps. 14-16).

Proof of Properties (Distributive Property)
ToshowA N BUC)=ANB UMANO
Suppose x € A N (B U C) then

x€EANx€e (BUCQ)

=x€AN(xeBVxe()

Table 2.1 Properties of set operations

Property Description
Commutative Union and intersection operations are commutative: i.e.
SuT=TUS
SNT=TnS§S
Associative Union and intersection operations are associative: i.e.
RUSUD=RUSHUT
RNEND=RNSNT
Identity The identity under set union is the empty set &, and the identity under
intersection is the universal set U.
Sud=gUS=S
SNU=UNS=S
Distributive The union operator distributes over the intersection operator and vice versa.
RNESUD=RNSHSURNTID
RUSND=RUSHNRUT.
DeMorgan’s* The complement of S U T is given by
Law SuUuND'=8nNnT°
The complement of S N T is given by
SND'=8SUT
"De Morgan’s law is named after Augustus De Morgan, a nineteenth century English
mathematician who was a contemporary of George Boole

http://dx.doi.org/10.1007/978-3-319-44561-8_14
http://dx.doi.org/10.1007/978-3-319-44561-8_16

32 2 Sets, Relations and Functions

= x€AANxeEB)V(xeANx€e(C)
=xe€(ANB)Vxe (ANC)
=x€(ANB)UANC)

Therefore, A N (B U C)CANB UM@ANOC
Similarly (A N By U A N C)CA N B UO
Therefore, A N (B U CO)=ANB UMANO

2.2.3 Russell’s Paradox

Bertrand Russell (Fig. 2.1) was a famous British logician, mathematician and
philosopher. He was the co-author with Alfred Whitehead of Principia Mathe-
matica, which aimed to derive all of the truths of mathematics from logic. Russell’s
Paradox was discovered by Bertrand Russell in 1901, and showed that the system
of logicism being proposed by Frege (discussed in Chap. 14) contained a
contradiction.

Question (Posed by Russell to Frege)
Is the set of all sets that do not contain themselves as members a set?

Russell’s Paradox
Let A={Sasetand S ¢ S}. Is A € A? Then A € A = A ¢ A and vice versa.
Therefore, a contradiction arises in either case and there is no such set A.

Two ways of avoiding the paradox were developed in 1908, and these were
Russell’s theory of types and Zermelo set theory. Russell’s theory of types was a
response to the paradox by arguing that the set of all sets is ill formed. Russell
developed a hierarchy with individual elements the lowest level; sets of elements at
the next level; sets of sets of elements at the next level; and so on. It is then
prohibited for a set to contain members of different types.

A set of elements has a different type from its elements, and one cannot speak of
the set of all sets that do not contain themselves as members as these are of different

Fig. 2.1 Bertrand russell

http://dx.doi.org/10.1007/978-3-319-44561-8_14

2.2 Set Theory 33

types. The other way of avoiding the paradox was Zermelo’s axiomatization of set
theory.

Remark Russell’s paradox may also be illustrated by the story of a town that has
exactly one barber who is male. The barber shaves all and only those men in town
who do not shave themselves. The question is who shaves the barber.

If the barber does not shave himself then according to the rule he is shaved by
the barber (i.e. himself). If he shaves himself then according to the rule he is not
shaved by the barber (i.e. himself).

The paradox occurs due to self-reference in the statement and a logical exami-
nation shows that the statement is a contradiction.

2.2.4 Computer Representation of Sets

Sets are fundamental building blocks in mathematics, and so the question arises as
to how a set is stored and manipulated in a computer. The representation of a set
M on a computer requires a change from the normal view that the order of the
elements of the set is irrelevant, and we will need to assume a definite order in the
underlying universal set .ZZ from which the set M is defined.

That is, a set is always defined in a computer program with respect to an
underlying universal set, and the elements in the universal set are listed in a definite
order. Any set M arising in the program that is defined with respect to this universal
set .74 is a subset of .7Z4. Next, we show how the set M is stored internally on the
computer.

The set M is represented in a computer as a string of binary digits b1b, ... b,
where 7 is the cardinality of the universal set ..ZZ. The bits b; (where i ranges over
the values 1, 2, ... n) are determined according to the rule

b; = 1 if ith element of . Z/ is in M
b; = 0 if ith element of .ZZ is not in M

For example, if .#2 = {1, 2, ... 10} then the representation of M = {1, 2, 5, 8} is
given by the bit string 1100100100 where this is given by looking at each element
of .7/ in turn and writing down 1 if it is in M and O otherwise.

Similarly, the bit string 0100101100 represents the set M = {2, 5, 7, 8}, and this
is determined by writing down the corresponding element in ..ZZ that corresponds
to a 1 in the bit string.

Clearly, there is a one-to-one correspondence between the subsets of . #Z and all
possible n-bit strings. Further, the set theoretical operations of set union, intersec-
tion and complement can be carried out directly with the bit strings (provided that
the sets involved are defined with respect to the same universal set). This involves a
bitwise ‘or’ operation for set union; a bitwise ‘and’ operation for set intersection;
and a bitwise ‘not’ operation for the set complement operation.

34 2 Sets, Relations and Functions

2.3 Relations

A binary relation R(A, B) where A and B are sets is a subset of A X B:i.e. R C A X B.
The domain of the relation is A and the codomain of the relation is B. The notation
aRb signifies that (a, b) € R.

A binary relation R(A, A) is a relation between A and A. This type of relation
may always be composed with itself, and its inverse is also a binary relation on A.
The identity relation on A is defined by a iaa for all a € A.

Example 2.4 There are many examples of relations

(i) The relation on a set of students in a class where (a, b) € R if the height of a is
greater than the height of b.

(ii) The relation between A and B where A = {0, 1, 2} and B = {3, 4, 5} with
R given by

R = {(Oa 3)7 (07 4)7 (174)}
(iii) The relation less than (<) between and R and R is given by
{(x,y) e R 1 x<y}

(iv) A bank may represent the relationship between the set of accounts and the set
of customers by a relation. The implementation of a bank account will often be
a positive integer with at most eight decimal digits.
The relationship between accounts and customers may be done with a relation
R C A x B, with the set A chosen to be the set of natural numbers, and the set
B chosen to be the set of all human beings alive or dead. The set A could also
be chosen to be A = {n eN: n < 10%}

A relation R(A, B) may be represented pictorially. This is referred to as the graph
of the relation, and it is illustrated in the diagram below. An arrow from x to y is
drawn if (x, y) is in the relation. Thus for the height relation R given by {(a, p),
(a, r), (b, @)} an arrow is drawn from a to p, from a to r and from b to g to indicate
that (a, p), (a, r) and (b, g) are in the relation R.

A B

"

~

2.3 Relations 35

The pictorial representation of the relation makes it easy to see that the height of
a is greater than the height of p and r; and that the height of b is greater than the
height of q.

An n-ary relation R (A, Ay, ... A,) is asubset of (A; X A, X ... X A,,). However,
an n-ary relation may also be regarded as a binary relation R(A, B) with A = A; X
Ay X ... X A,—1 and B =A,,.

2.3.1 Reflexive, Symmetric and Transitive Relations

There are various types of relations including reflexive, symmetric and transitive
relations.

(1) A relation on a set A is reflexive if (a, a) € R for all a € A.
(i1) A relation R is symmetric if whenever (a, b) € R then (b, a) € R.
(iii) A relation is transitive if whenever (a, b) € R and (b, ¢) € R then (a, ¢) € R.

A relation that is reflexive, symmetric and transitive is termed an equivalence
relation.

Example 2.5 (Reflexive Relation) A relation is reflexive if each element possesses
an edge looping around on itself. The relation in Fig. 2.2 is reflexive.

Example 2.6 (Symmetric Relation) The graph of a symmetric relation will show
for every arrow from a to b an opposite arrow from b to a. The relation in Fig. 2.3 is
symmetric: i.e. whenever (a, b) € R then (b, a) € R.

Example 2.7 (Transitive relation) The graph of a transitive relation will show that
whenever there is an arrow from « to b and an arrow from b to ¢ that there is an
arrow from a to c. The relation in Fig. 2.4 is transitive: i.e. whenever (a, b) € R and
(b, ¢) € R then (a, ¢) € R.

Example 2.8 (Equivalence relation) The relation on the set of integers Z defined
by (a, b) € R if a — b =2 k for some k € Z is an equivalence relation, and it
partitions the set of integers into two equivalence classes: i.e. the even and odd
integers.

Fig. 2.2 Reflexive relation

36 2 Sets, Relations and Functions

Fig. 2.3 Symmetric relation

Fig. 2.4 Transitive relation

Domain and Range of Relation

The domain of a relation R (A, B) is given by {a € A| 3b € B and (a, b) € R}. It is

denoted by dom R. The domain of the relation R = {(a, p), (a,), (b, @)} is {a, b}.
The range of a relation R (A, B) is given by {b € B|Ja € A and (¢, b) € R}. It is

denoted by rng R. The range of the relation R = {(a, p), (a, 1), (b, @)} is {p, q, r}.

Inverse of a Relation
Suppose R C A x B is a relation between A and B then the inverse relation
R™' C B x A is defined as the relation between B and A and is given by

bR 'aifand only if a R b
That is

R™' = {(b, a) € Bx A: (a, b) €R)}

Example 2.9 Let R be the relation between Z and Z* defined by mRn if and only if

m*=n. Then R={(m, n) € Zx Z": m*=n} and R"' = {(n, m) € Z*x Z:
2

m” = n}.

For example, -3 R9, -4 R 16,0 R 0, 16 R - 4,9 R - 3, etc.

Partitions and Equivalence Relations
An equivalence relation on A leads to a partition of A, and vice versa for every
partition of A there is a corresponding equivalence relation.

Let A be a finite set and let A, A,, ..., A, be subsets of A such A; # & for all i, A;
NA=Cifi#jandA = U]A;=A; U A, U ... UA,. The sets A; partition the
set A, and these sets are called the classes of the partition (Fig. 2.5).

2.3 Relations 37

Fig. 2.5 Partitions of A

Theorem 2.2 (Equivalence Relation and Partitions) An equivalence relation on A
gives rise to a partition of A where the equivalence classes are given by Class
(a) = {x| x € A and (a, x) € R)}. Similarly, a partition gives rise to an equivalence
relation R, where (a, b) € R if and only if a and b are in the same partition.

Proof Clearly, a € Class(a) since R is reflexive and clearly the union of the
equivalence classes is A. Next, we show that two equivalence classes are either
equal or disjoint.

Suppose Class(a) N Class(b) # . Let x € Class(a) N Class(b) and so (a, x)
and (b, x) € R. By the symmetric property (x,) € R and since R is transitive from
(a, x) and (x, b) in R we deduce that (a, b) € R. Therefore b € Class(a). Suppose y is
an arbitrary member of Class () then (b, y) € R therefore from (a, b) and (b, y) in R
we deduce that (a, y) is in R. Therefore since y was an arbitrary member of Class(a)
we deduce that Class(b) C Class(a). Similarly, Class(a) C Class(d) and so Class(a)
= Class(b).

This proves the first part of the theorem and for the second part we define a
relation R such that (a, b) € R if a and b are in the same partition. It is clear that this
is an equivalence relation.

2.3.2 Composition of Relations

The composition of two relations R|(A, B) and Ry(B, C) is given by R, o R; where
(a, ¢) € R, o R, if and only there exists b € B such that (a, b) € R, and (b, ¢) € R,.
The composition of relations is associative: i.e.

(R3 ORz)ORl = R30(R2 OR])

Example 2.10 (Composition of Relations) Consider a library that maintains two
files. The first file maintains the serial number s of each book as well as the details
of the author a of the book. This may be represented by the relation R; = sR,a. The
second file maintains the library card number ¢ of its borrowers and the serial

38 2 Sets, Relations and Functions

number s of any books that they have borrowed. This may be represented by the
relation Ry = ¢ Rys.

The library wishes to issue a reminder to its borrowers of the authors of all books
currently on loan to them. This may be determined by the composition of Ry 0 Ry:
i.e. ¢ Ry 0 R, a if there is book with serial number s such that ¢ R, s and s R; a.

Example 2.11 (Composition of Relations) Consider sets A = {qa, b, ¢}, B = {d, e,
f}, C={g, h, i} and relations R(A, B) = {(a, d), (a, /), (b, d), (c,)} and S(B,
O) ={(d, h), d, i), (e, g), (e, h)}. Then we graph these relations and show how to
determine the composition pictorially.

S o R is determined by choosing x € A and y € C and checking if there is a route
from x to y in the graph (Fig. 2.6). If so, we join x to y in S o R. For example, if we
consider a and & we see that there is a path from a to d and from d to & and therefore
(a, h) is in the composition of S and R.

SoR

The union of two relations R;(A, B) and R,(A, B) is meaningful (as these are both
subsets of A x B). The union R; U R, is defined as (a, b) € Ry U R, if and only if
(a, b) € Rl or (a, b) S R2.

Similarly, the intersection of Ry and R, (R; N R,) is meaningful and is defined
as (a, b) € Ry N R, if and only if (a, b) € R, and (a, b) € R,. The relation R, is a
subset of R, (R; C R,) if whenever (a, b) € R, then (a, b) € R,.

The inverse of the relation R was discussed earlier and is given by the relation
R™" where R™' = {(b, a) | (a, b) € R}.

The composition of R and R™! yields: R'oR = {(a, a) | a € dom R} =i, and
RoR™'={(, b)|becdomR " =i

R(A,B) S(B,C)

Fig. 2.6 Composition of relations

2.3 Relations 39
2.3.3 Binary Relations

A binary relation R on A is a relation between A and A, and a binary relation can
always be composed with itself. Its inverse is a binary relation on the same set. The
following are all relations on A:

R*=ROR
R*=(RoR)oR

R° = i, (identity relation)
R?=R"'oR™'

Example 2.12 Let R be the binary relation on the set of all people P such that
(a, b) € R if a is a parent of b. Then the relation R” is interpreted as

R is the parent relationship

R? is the grandparent relationship

R’ is the great grandparent relationship.
R™! is the child relationship.

R? is the grandchild relationship.

R is the great grandchild relationship

This can be generalized to a relation R" on A where R"=RoRo ... o R
(n-times). The transitive closure of the relation R on A is given by

R = U% R =R'UR'UR*U...R"U...
where R is the reflexive relation containing only each element in the domain of R:
ie. R” =iy = {(a, a) | a € dom R).

The positive transitive closure is similar to the transitive closure except that it
does not contain R°. It is given by

R" = U% R =R'UR*U...UR"U...
a R* b if and only if a R" b for some n > 0: i.e. there exists ¢y, ¢, ... ¢, € A such that
aRcy,ciRca, . .., c,Rb
Parnas’ introduced the concept of the limited domain relation (LD-relation), and

a LD relation L consists of an ordered pair (R;, C;) where R; is a relation and C; is
a subset of Dom R;. The relation Ry is on a set U and C; is termed the competence

"Parnas made important contributions to software engineering in the 1970s. He invented
information hiding which is used in object-oriented design.

40 2 Sets, Relations and Functions

set of the LD relation L. A description of LD relations and a discussion of their
properties are in Chap. 2 of [1].

The importance of LD relations is that they may be used to describe program
execution. The relation component of the LD relation L describes a set of states
such that if execution starts in state x it may terminate in state y. The set U is the set
of states. The competence set of L is such that if execution starts in a state that is in
the competence set then it is guaranteed to terminate.

2.3.4 Applications of Relations

A relational database management system (RDBMS) is a system that manages data
using the relational model, and examples of such systems include RDMS developed
at MIT in the 1970s; Ingres developed at the University of California, Berkeley in
the mid-1970s; Oracle developed in the late 1970s; DB2; Informix; and
Microsoft SQL Server.

A relation is defined as a set of tuples and is usually represented by a table.
A table is data organized in rows and columns, with the data in each column of the
table of the same data type. Constraints may be employed to provide restrictions on
the kinds of data that may be stored in the relations. Constraints are Boolean
expressions which indicate whether the constraint holds or not, and are a way of
implementing business rules in the database.

Relations have one or more keys associated with them, and the key uniquely
identifies the row of the table. An index is a way of providing fast access to the data
in a relational database, as it allows the tuple in a relation to be looked up directly
(using the index) rather than checking all of the tuples in the relation.

The Structured Query Language (SQL) is a computer language that tells the
relational database what to retrieve and how to display it. A stored procedure is
executable code that is associated with the database, and it is used to perform
common operations on the database.

The concept of a relational database was first described in a paper ‘A Relational
Model of Data for Large Shared Data Banks’ by Codd [2]. A relational database is
a database that conforms to the relational model, and it may be defined as a set of
relations (or tables).

Codd (Fig. 2.7) developed the relational data base model in the late 1960s, and
today, this is the standard way that information is organized and retrieved from
computers. Relational databases are at the heart of systems from hospitals’ patient
records to airline flight and schedule information.

A binary relation R(A, B) where A and B are sets is a subset of the Cartesian
product (A x B) of A and B. The domain of the relation is A, and the codomain of
the relation is B. The notation aRb signifies that there is a relation between a and
b and that (a, b) € R. An n-ary relation R (A;, A,, ... A,) is a subset of the
Cartesian product of the n sets: i.e. a subset of (A} X A, X ... X A,). However, an

2.3 Relations 41

Fig. 2.7 Edgar Codd

n-ary relation may also be regarded as a binary relation R(A, B) with A = A; X A,
X ...x A,;and B=A,.

The data in the relational model are represented as a mathematical n-ary relation.
In other words, a relation is defined as a set of n-tuples, and is usually represented
by a table. A table is a visual representation of the relation, and the data are
organized in rows and columns. The data stored in each column of the table are of
the same data type.

The basic relational building block is the domain or data type (often called just
type). Each row of the table represents one n-tuple (one tuple) of the relation, and
the number of tuples in the relation is the cardinality of the relation. Consider the
PART relation taken from [3], where this relation consists of a heading and the
body. There are five data types representing part numbers, part names, part colours,
part weights, and locations in which the parts are stored. The body consists of a set
of n-tuples, and the PART relation given in Fig. 2.8 is of cardinality six.

For more information on the relational model and databases see [4]

2.4 Functions

A function f: A — B is a special relation such that for each element a € A there is
exactly (or at most)® one element b € B. This is written as f{a) = b.

—~

A |!.(J' _j'.____. o P I.'-I B
|. b] _,...--""/f q I|

\C)

8We distinguish between total and partial functions. A total function is defined for all elements in
the domain whereas a partial function may be undefined for one or more elements in the domain.

42 2 Sets, Relations and Functions

Weight
P1 Nut Red 12 London
P2 Bolt Green 17 Paris
P3 Screw Blue 17 Rome
P4 Screw Red 14 London
P5 Cam Blue 12 Paris
P6 Cog Red 19 London

Fig. 2.8 PART relation

A function is a relation but not every relation is a function. For example, the
relation in the diagram below is not a function since there are two arrows from the
element a € A.

A B
|II LR - . f P .'|
l .|| e |

The domain of the function (denoted by dom f) is the set of values in A for
which the function is defined. The domain of the function is A provided that fis a
total function. The codomain of the function is B. The range of the function
(denoted rng f) is a subset of the codomain and consists of

mgf = {r|r € Bsuchthatf(a) = rforsomea € A}.

Functions may be partial or total. A partial function (or partial mapping) may be
undefined for some values of A, and partial functions arise regularly in the com-
puting field (Fig. 2.9). Total functions are defined for every value in A and many
functions encountered in mathematics are total.

Example 2.13 (Functions) Functions are an essential part of mathematics and
computer science, and there are many well-known functions such as the trigono-
metric functions sin(x), cos(x), and tan(x); the logarithmic function In(x); the
exponential functions ¢*; and polynomial functions.

Fig. 2.9 Domain and range of a partial function

24 Functions 43

(1) Consider the partial function /2 R — R where

f(x)=1/x (wherex #0).

This partial function is defined everywhere except for x = 0

(i) Consider the function f: R — R where

flx) =x°

Then this function is defined for all x € R

Partial functions often arise in computing as a program may be undefined or fail
to terminate for several values of its arguments (e.g. infinite loops). Care is required
to ensure that the partial function is defined for the argument to which it is to be
applied.

Consider a program P that has one natural number as its input and which for some
input values will never terminate. Suppose that if it terminates it prints a single real
result and halts. Then P can be regarded as a partial mapping from N to R.

P:N—R

Example 2.14 How many total functions f: A — B are there from A to B (where
A and B are finite sets)?

Each element of A maps to any element of B, i.e. there are |B| choices for each
element a €A. Since there are |A| elements in A the number of total functions is
given by

|B| [B|...|B| (]A] times)
= |B|* total functions between A and B.

Example 2.15 How many partial functions f: A — B are there from A to B (where
A and B are finite sets) ?

Each element of A may map to any element of B or to no element of B (as it may
be undefined for that element of A). In other words, there are |B| + 1 choices for
each element of A. As there are |A| elements in A, the number of distinct partial
functions between A and B is given by

(B4 1)(|B[41)...(B[+1) (JA| times)
= B+ D"

44 2 Sets, Relations and Functions
Two partial functions f and g are equal if

1. dom f=dom g
2. fla) = g(a) for all a € dom f.

A function f'is less defined than a function g (f C g) if the domain of fis a subset
of the domain of g, and the functions agree for every value on the domain of f

1. dom f C dom g
2. fla) = g(a) for all a € dom f.

The composition of functions is similar to the composition of relations. Suppose
fA—Band g:B — Cthen gof A — Cis a function, and this is written as g o f
(x) or g(fix)) for x € A.

The composition of functions is not commutative and this can be seen by an
example. Consider the function £ R — R such that f(x) = x*> and the function g:
R — R such that g(x) = x + 2. Then

gof(x) = g(xz) =x+2.
fogx)=f(x+2) = (x+2)2: X2+ 4x+4.

Clearly, g o fix) # f 0 g(x) and so composition of functions is not commutative.
The composition of functions is associative, as the composition of relations is
associative and every function is a relation. Forff A — B, g: B — C,and i: C — D
we have

ho(gof) = (hog)of

A function f: A — B is injective (one to one) if

f(al) :f(dz) = da; = ay.

For example, consider the function f R — R with f (x) =x° Then
f(3) =f(—3) =9 and so this function is not one to one.

A function fi A — CB is surjective (onto) if given any b € B there exists an a €
A such that fla) = b (Fig. 2.10). Consider the function f: R — R with flx) = x + 1.
Clearly, given any r € R then f (r — 1) = r and so f is onto.

A function is bijective if it is one to one and onto (Fig. 2.11). That is, there is a
one-to-one correspondence between the elements in A and B for each b € B there is
a unique a € A such that fla) = b.

The inverse of a relation was discussed earlier and the relational inverse of a
function f; A — B clearly exists. The relational inverse of the function may or may
not be a function.

24 Functions 45

A B A B

a

b e
1-1, Not Onto Onto, Not 1-1

Fig. 2.10 Injective and surjective functions

Fig. 2.11 Bijective function (One to one and Onto)

However, if the relational inverse is a function it is denoted by /'t B — A.
A total function has an inverse if and only if it is bijective whereas a partial function
has an inverse if and only if it is injective.

The identity function 15: A — A is a function such that 15(a) = a for all a € A.
Clearly, when the inverse of the function exists then we have that f~ Yo f=1, and

.f0f1=1B~

Theorem 2.3 (Inverse of Function) A rotal function has an inverse if and only if it
is bijective.

Proof Suppose f: A — B has an inverse f'. Then we show that f is bijective.

We first show that f is one to one.
Suppose fix;) = fix,) then

) =71 (F(x2))

= flof(x) =f"of(x)
= 1A(X|) = IA(XQ)
= X1 = X2

Next we first show that fis onto. Let » € B and let a = ' (b) then

fla) =f(f"'(b)) = bandsof is surjective

46 2 Sets, Relations and Functions

The second part of the proof is concerned with showing that if # A — B is
bijective then it has an inverse f'. Clearly, since fis bijective we have that for each
a € A there exists a unique b € B such that f (a) = b.

Define g: B — A by letting g(b) be the unique a in A such that fla) = b. Then we
have

gof(a) = g(b) = aandfog(b) = f(a) = b.

Therefore, g is the inverse of f.

2.5 Application of Functions

In this section, we discuss the applications of functions to functional programming,
which is quite distinct from the imperative programming languages used in com-
puting. Functional programming differs from imperative programming in that it
involves the evaluation of mathematical functions, whereas imperative program-
ming involves the execution of sequential (or iterative) commands that change the
state. For example, the assignment statement alters the value of a variable, and the
value of a given variable x may change during program execution.

There are no changes of state for functional programs, and the fact that the value
of x will always be the same makes it easier to reason about functional programs
than imperative programs. Functional programming languages provide referential
transparency: i.e. equals may be substituted for equals, and if two expressions have
equal values, then one can be substituted for the other in any larger expression
without affecting the result of the computation.

Functional programming languages use higher order functions,” recursion, lazy
and eager evaluation, monads,'® and Hindley—Milner type inference systems.''
These languages are mainly been used in academia, but there has been some
industrial use, including the use of Erlang for concurrent applications in industry.
Alonzo Church developed Lambda calculus in the 1930s, and it provides an
abstract framework for describing mathematical functions and their evaluation. It
provides the foundation for functional programming languages. Church employed
lambda calculus to prove that there is no solution to the decision problem for
first-order arithmetic in 1936 (discussed in Chap. 13).

9

Higher order functions are functions take functions as arguments or return a function as a result.
They are known as operators (or functionals) in mathematics, and one example is the derivative
function dy/dx that takes a function as an argument and returns a function as a result.

®Monads are used in functional programming to express input and output operations without
introducing side effects. The Haskell functional programming language makes use of uses this
feature.

"'This is the most common algorithm used to perform type inference. Type inference is concerned
with determining the type of the value derived from the eventual evaluation of an expression.

http://dx.doi.org/10.1007/978-3-319-44561-8_13

2.5 Application of Functions 47

Lambda calculus uses transformation rules, and one of these rules is variable
substitution. The original calculus developed by Church was untyped, but typed
lambda calculi have since been developed. Any computable function can be
expressed and evaluated using lambda calculus, but there is no general algorithm to
determine whether two arbitrary lambda calculus expressions are equivalent.
Lambda calculus influenced functional programming languages such as Lisp, ML
and Haskell.

Functional programming uses the notion of higher order functions. Higher order
takes other functions as arguments, and may return functions as results. The
derivative function d/dx f(x) = f(x) is a higher order function. It takes a function as
an argument and returns a function as a result. For example, the derivative of the
function Sin(x) is given by Cos(x). Higher order functions allow currying which is a
technique developed by Schonfinkel. It allows a function with several arguments to
be applied to each of its arguments one at a time, with each application returning a
new (higher order) function that accepts the next argument. This allows a function
of n-arguments to be treated as n applications of a function with 1-argument.

John McCarthy developed LISP at MIT in the late 1950s, and this language
includes many of the features found in modern functional programming lan-
guages.'> Scheme built upon the ideas in LISP. Kenneth Iverson developed APL'?
in the early 1960s, and this language influenced Backus’s FP programming lan-
guage. Robin Milner designed the ML programming language in the early 1970s.
David Turner developed Miranda in the mid-1980s. The Haskell programming
language was released in the late 1980s.

Miranda Functional Programming Language

Miranda was developed by David Turner at the University of Kent in the mid-1980s
[5]. It is a non-strict functional programming language: i.e. the arguments to a
function are not evaluated until they are actually required within the function being
called. This is also known as lazy evaluation, and one of its main advantages is that
it allows an infinite data structures to be passed as an argument to a function.
Miranda is a pure functional language in that there are no side effect features in the
language. The language has been used for

e Rapid prototyping
e Specification language
e Teaching Language

A Miranda program is a collection of equations that define various functions and
data structures. It is a strongly typed language with a terse notation.

1?Lisp is a multi-paradigm language rather than a functional programming language.

BIverson received the Turing Award in 1979 for his contributions to programming language and
mathematical notation. The title of his Turing award paper was ‘Notation as a tool of thought’.

48 2 Sets, Relations and Functions

z =sqrp/sqrq

sqrk =k xk
p=a+b
g=a-—>b
a=10
b=5

The scope of a formal parameter (e.g. the parameter k above in the function sqr)
is limited to the definition of the function in which it occurs.

One of the most common data structures used in Miranda is the list. The empty
list is denoted by [], and an example of a list of integers is given by [1, 3, 4, 8].
Lists may be appended to by using the ‘++’ operator. For example

[1,3,5]++[2, 4] =[1,3,5,2,4].
The length of a list is given by the ‘#’ operator
#[1,3] =2

The infix operator ‘:” is employed to prefix an element to the front of a list. For
example

5:[2,4,6]isequalto[5,2,4, 6]
The subscript operator ‘!’ is employed for subscripting: For example
Nums = [5,2,4, 6] then Nums!Ois5.

The elements of a list are required to be of the same type. A sequence of
elements that contains mixed types is called a tuple. A tuple is written as follows:

Employee = (‘‘Holmes’’, ‘222 Baker St. London’’, 50, ‘‘Detective’’)

A tuple is similar to a record in Pascal whereas lists are similar to arrays. Tuples
cannot be subscripted but their elements may be extracted by pattern matching.
Pattern matching is illustrated by the well-known example of the factorial function

facO =1
fac(n+1) = (n+1) * facn

The definition of the factorial function uses two equations, distinguished by the
use of different patterns in the formal parameters. Another example of pattern
matching is the reverse function on lists

2.5 Application of Functions 49

reverse [|=]

reverse (a : x) = reverse X ++ [a]

Miranda is a higher order language, and it allows functions to be passed as
parameters and returned as results. Currying is allowed and this allows a function of
n-arguments to be treated as n applications of a function with 1-argument. Function
application is left associative: i.e. f x y means (f x) y. That is, the result of applying
the function fto x is a function, and this function is then applied to y. Every function
with two or more arguments in Miranda is a higher order function.

2.6 Review Questions

What is a set? A relation? A function?

Explain the difference between a partial and a total function.

Explain the difference between a relation and a function.

Determine A x B where A = {a, b, ¢, d} and B = {1, 2, 3}

Determine the symmetric difference A A B where A = {a, b, ¢, d} and
B = {c, d, e}

What is the graph of the relation < on the set A = {2, 3, 4}.

7. What is the composition of S and R (i.e. S o R), where R is a relation
between A and B, and S is a relation between B and C. The sets A, B, C
are defined as A = {a, b, c,d}, B = {e,f, g},C = {h,i,j, k} and R = {(a,
e), (b, e), (b, 8), (c, e), (d, H} with S = {(e, h), (e, k), (f:)), (. k), (g,)}

8. What is the domain and range of the relation R where R = {(a, p), (a, 1),
(b,)}

9. Determine the inverse relation R™! where R = {(a, 2), (a, 5), (b, 3), (b, 4),
(e, D}.

10. Determine the inverse of the function £ R x R — R defined by

g B =

o

f =22

(x#3) andf(3) =1

11. Give examples of injective, surjective and bijective functions.

50 2 Sets, Relations and Functions

12. Letn > 2 be a fixed integer. Consider the relation = defined by{(p, q):
p.qg€Zn|(g-p)

a. Show = is an equivalence relation.
b. What are the equivalence classes of this relation?

13. Describe the differences between imperative programming languages and
functional programming languages.

2.7 Summary

This chapter provided an introduction to set theory, relations and functions. Sets are
collections of well-defined objects; a relation between A and B indicates relation-
ships between members of the sets A and B; and functions are a special type of
relation where there is at most one relationship for each element @ € A with an
element in B.

A set is a collection of well-defined objects that contain no duplicates. There are
many examples of sets such as the set of natural numbers N, the integer numbers Z
and so on.

The Cartesian product allows a new set to be created from existing sets.
The Cartesian product of two sets S and T (denoted S x T) is the set of ordered pairs
{(s,0)|s€S,teT).

A binary relation R (A, B) is a subset of the Cartesian product (A x B) of A and
B where A and B are sets. The domain of the relation is A and the codomain of the
relation is B. The notation aRb signifies that there is a relation between a and b and
that (a, b) € R. An n-ary relation R (A1, A,, ... A,) isasubset of (A; X Ay X ... X A)).

A total function fi A — B is a special relation such that for each element
a € A there is exactly one element b € B. This is written as fla) = b. A function is a
relation but not every relation is a function.

The domain of the function (denoted by dom f) is the set of values in A for which
the function is defined. The domain of the function is A provided that fis a total
function. The codomain of the function is B.

Functional programming is quite distinct from imperative programming in that
there is no change of state, and the value of the variable x remains the same during
program execution. This makes functional programs easier to reason about than
imperative programs.

References 51

References

1. Software Fundamentals. Collected Papers by David L. Parnas. Edited by Daniel Hoffman and
David Weiss. Addison Wesley. 2001.

2. A Relational Model of Data for Large Shared Data Banks. E.F. Codd. Communications of the
ACM 13 (6): 377-387. 1970.

3. An Introduction to Database Systems. 3rd Edition. C.J. Date. The Systems Programming Series.
1981.

4. Introduction to the History of Computing. Gerard O’Regan. Springer Verlag. 2016.

5. Miranda. David Turner. Proceedings IFIP Conference, Nancy France, Springer LNCS (201).
September 1985.

2 Springer
http://www.springer.com/978-3-319-44560-1

Guide to Discrete Mathematics

An Accessible Introduction to the History, Theory, Logic
and Applications

O'Regan, G,

2016, XXl, 368 p. 117 illus., Hardcover

ISEN: 978-3-319-44560-1

	2 Sets, Relations and Functions
	2.1 Introduction
	2.2 Set Theory
	2.2.1 Set Theoretical Operations
	2.2.2 Properties of Set Theoretical Operations
	2.2.3 Russell’s Paradox
	2.2.4 Computer Representation of Sets

	2.3 Relations
	2.3.1 Reflexive, Symmetric and Transitive Relations
	2.3.2 Composition of Relations
	2.3.3 Binary Relations
	2.3.4 Applications of Relations

	2.4 Functions
	2.5 Application of Functions
	2.6 Review Questions
	2.7 Summary
	References

