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Abstract. Synaptic plasticity is known to depend on the timing of
pre and postsynaptic spikes, a.k.a. spike-timing-dependent plasticity
(STDP). This implies that outcomes brought about by STDP should be
sensitive to the dynamic properties of pre and postsynaptic neuron activ-
ity. Furthermore, because the classical model of STDP does not consider
the effect of various pre and postsynaptic spike patterns on the outcome,
it fails to reproduce the dependence of the synaptic plasticity polarity,
namely the long-term potentiation or depression, on firing rates. In this
study, we investigated the interplay between realistic pre and postsy-
naptic dynamic property models and a modified STDP model, repro-
ducing the firing rate dependency. Our results showed that strengthened
synapses depend on a combination of pre and postsynaptic properties
as well as input firing rates, suggesting that a postsynaptic neuron may
favor specific spike statistics and input firing rates may facilitate this
tendency.
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1 Introduction

Neurons in the brain connect with each other through a vast number of synapses
responsible for neural information transfer. It is known that a synapse undergoes
change in strength depending on the pre and postsynaptic neural activities,
which is called Hebbian synaptic plasticity. In addition, it is supposed that this
type of synaptic plasticity should be a neural substrate of higher-order functions,
such as learning and memory.

The amount of change in synaptic strengths is determined by the timing of
pre and postsynaptic spikes as well as their firing rates [1-3]. This suggests that
the strengths should be sensitive to dynamic characteristics of pre and post-
synaptic neurons. Indeed, a variety of spike statistic classes have been found,
depending on the cortical regions and layers [4]. In most computational studies,
however, theoretically-tractable assumptions have been imposed on such charac-
teristics; presynaptic spike trains are characterized by a Poisson process whereas
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postsynaptic spiking activity can be reproduced using the leaky integrate-and-
fire (LIF) neuron model. A previous study introduced more realistic character-
istics by using Gamma spike trains and the multi-timescale adaptive threshold
(MAT) model [5,6]. The results of the study showed that the outcomes of synap-
tic competition through spike-timing-dependent plasticity (STDP) depend on
combinations of pre and postsynaptic characteristics [5]. However, the depen-
dence of the outcomes on firing rates was inconsistent with known experimen-
tal evidence that high frequency inputs induce long-term potentiation (LTP),
whereas low frequency inputs induce long-term depression (LTD). This result
was due to the nature of the STDP model [7] used. Therefore, the outcome of
the interplay between the characteristics of pre and postsynaptic activity, and
the more realistic STDP rule, on reproducing the firing rate dependence is still
unclear.

In our research, we addressed this issue by incorporating the STDP rule pro-
posed by Pfister and Gerstner (2006) into the previous study [9]. The STDP
rule takes into consideration additional synaptic spikes, not solely a pair of a pre
and a postsynaptic spikes. This successfully reproduces the firing rate depen-
dence. We investigated the type of features that are preferred and strengthened
by pre and postsynaptic spikes through synaptic competition under the STDP
rule defined by the time between spikes, which we term spike patterns.

2 Methods

2.1 Postsynaptic Neuron Model

The dynamics of the postsynaptic neuron can be represented by the MAT model,
which reproduces cortical spike patterns more accurately than any other neuron
model, such as LIF model [6]. The membrane potential V' of the MAT model
obeys the following linear differential equation

av 1000 200
T = Viest =V + ZZ: G () (Eex — V) + Xi:g;n (t) (B — V), (1)

where T, Viests Fex, and Ej, are the membrane time constant, the resting mem-
brane potential, and the reversal potential of excitatory and inhibitory synapses,
respectively. g¢*(t) and g™ (¢) are the conductance of the ith excitatory synapse
and the ith inhibitory synapse, respectively. In addition, when the membrane
potential V reaches the time-varying threshold 6(t), the neuron generates a
neural spike without resetting the membrane potential. (t) is described in time
as follows:

0(t) =w+ Z(ale*(t*tl)/ﬁ 4 Oézef(t*tl)/ﬁ)7 (2)
l

where «; and 7; are the amount and the decay time constants of the thresh-
old increase, respectively. w is the time-invariant threshold. Each time-varying
component of 0(t) increases simultaneously at spike time ¢; by a1, s and then
exponentially decays.
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2.2 Synapse Model
The dynamics of the synaptic conductance is modeled by

dgi*
dt

X
:—% +9 3 6t —t) (X = ex,in), (3)
l

where 7x, 9;¥, and §(-) are the time constant, the peak synaptic conductance, and
the Dirac’s delta function, respectively. While the peak conductance of inhibitory
synapses was constant, the excitatory synapses changed according to the follow-
ing description:

giex - g;sx + GmaxW; (t) ) (4)

where gmax is the maximal synaptic conductance and w(t) defines an amount of
synaptic plasticity. To implement the STDP rule in our study, a triplet-based
model with all-to-all interactions was used [9], in which the variable w(t) changed
as described below. The presynaptic spike, generated at time %p.., triggers a
change depending on the postsynaptic variable o; and the second presynaptic
variable ro as follows:

w(t) — w(t) — o1 (t)[A; + Azra(t — €)]. (5)

Similarly, the postsynaptic spike, generated at time f,os, triggers a change
depending on the presynaptic variable r; and the second postsynaptic variable
09 as follows:

w(t) = w(t) + ri(t)[AT + Afos(t — €)]. (6)

A5 and AJ are the weight change amplitudes whenever there is a post-pre
pair and pre-post pair, respectively. Similarly, A3 and A7 are the triplet term
amplitudes for depression and potentiation, respectively. If a presynaptic spike
is generated, the presynaptic detectors r1 and ro are updated by r1 = r1 + 1
and 7y = 79 + 1. Otherwise, the presynaptic detectors r; and ro decay in the
following manner:

d’f‘l (t) 1 (t)

dt - T+ ’ (7)
dra(t)  ra(t)
(2it - 2Tx ' (8)

Similarly, if a postsynaptic spike is generated, the postsynaptic detectors
01 and og are updated by 01 = 01+1, and 02 = 02+1. Otherwise, the postsynaptic
detectors 01 and 09 decay exponentially.

d01 (t) - 01 (t)

a )
d02 (t) - 02 (t)

an (10)

T4, Tx, T—, and 7y, are the time constants of the corresponding variables.
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2.3 Presynaptic Spike Trains

Inter-spike intervals (ISIs) of a presynaptic spike train obey a gamma distribu-
tion. An ISI 7} = ¢; — t;_1 was drawn from a gamma distribution;

/\k;kalef)\T

(11)
k is the shape parameter, X is the rate parameter, and I'(k) is the gamma func-
tion. The mean ISIs, T, is T = % The shape parameter k defines the shape of the
distribution. If £ = 1, the distribution is an exponential distribution generating
a Poisson spike train. The presynaptic spike train shows nearly periodic firing
for larger k, whereas it shows burst firing for a smaller k(<1).

2.4 Numerical Simulations

In order to examine how synaptic competition is affected by interplay between
presynaptic inputs and postsynaptic dynamics, we compared different combi-
nations of pre and postsynaptic characteristics. Input spikes were generated
by the gamma distribution with various values for the shape parameter. The
LIF and MAT models were implemented to represent the postsynaptic neuron
(results shown below are obtained using the MAT model). In our final investi-
gation, 1,000 excitatory synapses were divided into 4 subgroups (250 synapses
per a subgroup). Synapses in each subgroup delivered spike trains generated by
gamma distributions with an identical shape parameter; the parameter for the
i-th group was set to k = 2071,

The parameters of the MAT model were the same as those used in a previous
study [5]. Other model parameters were taken from another previous study [9].

3 Results

For various input firing rates, we conducted numerical simulations using our
computational model until the distribution of synaptic strengths reached a sta-
tionary state. We focused on the stationary distribution of synaptic strengths
and postsynaptic firing characteristics, firing rate, and coefficients of variation
(Cv) of the postsynaptic neuron ISIs, as a function of the presynaptic spike
trains.

3.1 Inputs with an Identical Value of k

We first examined synaptic competition in the case where input spike trains
were generated by a gamma distribution with identical shape parameter values
(k = 1) for all excitatory synapses. Figurel shows the stationary distribution
of synaptic strengths for various input firing rates and the spike statistics of
the postsynaptic neurons in the stationary state. Figures la—d show that all
distributions exhibited bimodal shapes, in which there existed two populations
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Fig. 1. Synaptic competition and activity regulation when the MAT model received

Poisson spike trains (k = 1). a. Stationary distributions of synaptic strengths for

an input firing rate of 10 spikes/s. The abscissa indicates the normalized synaptic

conductance. b, ¢, and d are similar to a, but for 20 spikes/s, 30 spikes/s, and 40

spikes/s, respectively. e. Dependencies of postsynaptic firing rates and coefficients of
variation (Cv) of postsynaptic ISIs on the input firing rates.

of strengthened synapses (around 1) and weakened synapses (around 0). As
the input firing rate was increased, the population of strengthened synapses
became smaller, and the population of weakened ones became larger. However,
the change in the fraction of the two populations could be seen with an increase
in the input firing rate of up to 30 spikes/s. Figure le shows the postsynaptic
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firing rate and coefficients of variation (Cv) of the postsynaptic ISIs. The firing
rate of postsynaptic neurons increased moderately, suggesting that the activity
regulation by the STDP was successful, but weak. The Cv of postsynaptic ISIs
were kept low due to the dynamic nature of the MAT model.

Figures 2a—d show the mean synaptic conductances as a function of the input
firing rate for various values of the shape parameter (k = 0.5, 1, 4, and 8). When
k = 0.5 and 1, averaged synaptic strengths monotonically decreased with an
increase in input firing rates. In contrast, for £k = 4 and 8, they differently
depended on the input firing rates, suggesting that the interplay between the
postsynaptic dynamics and the input spike patterns modulated the process of
synaptic competition.
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Fig. 2. Averaged synaptic strengths when the MAT model received Gamma spike
trains. a. The averaged synaptic strengths if input spikes were generated by the Gamma,
distribution with & = 0.5 and various input firing rates. The abscissa axis indicates the
input firing rate. b, ¢, and d are similar to a, but for £ = 1, £k = 4, and k = 8,
respectively.

3.2 Inputs with Different Values of k

Next, in order to see if synapses delivering a specific spike train were selectively
potentiated, we examined synaptic competition in the case where input spikes
were generated by a mixture of spike trains with different regularity (see Meth-
ods). While synapses in the subgroup 1 provided spike trains with k=1, namely
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Poisson spike trains, those in subgroup 4 did so with more regular spike trains.
Figure 3a shows averaged synapse strengths within a subgroup for different input
firing rates. For the lower input firing rates (le 20 spikes/), the averaged synaptic
strengths for the subgroup with a smaller k£ seemed more increased. In contrast,
for increased input firing rates (>30 spikes/s), synapses in the subgroup with a
larger k was likely to be more potentiated. In Fig. 3b, the postsynaptic firing rate
and coeflicients of variation (Cv) of postsynaptic ISIs are shown as a function of
the input firing rate. The change in the postsynaptic firing rate was similar to
that in Fig. 1, and activity regulation worked moderately for this condition as
well. However, the ISI Cvs decreased with an increase in the input firing rate.
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Fig. 3. Synaptic strengths and postsynaptic spike statistics when the MAT model
received a mixture of Gamma spike trains with different regularity (k = 1, 2, 4, and 8).
a. The averages of synaptic strengths within a subpopulation for various input firing
rates. The abscissa indicates the values of the shape parameter k. b. Dependencies of
postsynaptic firing rates and coefficients of variation (Cv) of postsynaptic ISIs on the
input firing rates.

4 Discussion

If the shape parameter k is identical for all input spike trains, we obtain results
similar to those in the previous study. Both methodologies give the distribution
of synaptic strengths, the shift between strengthened and weakened populations
with an increase in input firing rates, and a moderate increase in the postsynaptic
firing rate [7]. Thus, employing the STDP rule did not cause differences under
this condition.

However, in the case of mixture spike trains with different spike patterns (k),
the STDP rule could strengthen the synapses delivering spike trains with larger &,
that is, more periodic spike trains with an increase in the input firing rate. If the
dynamics of the postsynaptic neuron was modeled by the LIF neuron, such a prefer-
ence was not seen for any input firing rates (data not shown). These results suggest
that the determination of which synapses are potentiated is determined by a com-
bination of the presynaptic spike train structure (k) and the dynamic property of
the postsynaptic neuron (This is found using either the LIF or MAT models).
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Thus, we conclude (i) the dynamic feature of postsynaptic neurons could
favor a specific spike pattern through synaptic competition brought about by
STDP and (ii) such a preference depends on input firing rates. Although the for-
mer conclusion was already obtained by the previous study applying the classical
STDP rule [5,7], the latter was achieved only through our use of the employed
STDP rule.
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