
On the Expressiveness of Parametric
Timed Automata

Étienne André1,2(B), Didier Lime2, and Olivier H. Roux2

1 Université Paris 13, Sorbonne Paris Cité, LIPN CNRS,
UMR 7030, 93430 Villetaneuse, France
Etienne.Andre@univ-paris13.fr

2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France

Abstract. Parametric timed automata (PTAs) are a powerful formal-
ism to reason about, model and verify real-time systems in which some
constraints are unknown, or subject to uncertainty. In the literature,
PTAs come in several variants: in particular the domain of parameters
can be integers or rationals, and can be bounded or not. Also clocks
can either be compared only to a single parameter, or to more complex
linear expressions. Yet we do not know how these variants compare in
terms of expressiveness, and even the notion of expressiveness for para-
metric timed models does not exist in the literature. Furthermore, since
most interesting problems are undecidable for PTAs, subclasses, such
as L/U-PTAs, have been proposed for which some of those problems
are decidable. It is not clear however what can actually be modeled
with those restricted formalisms and their expressiveness is thus a cru-
cial issue. We therefore propose two definitions for the expressiveness
of parametric timed models: the first in terms of all the untimed words
that can be generated for all possible valuations of the parameters, the
second with the additional information of which parameter valuations
allow which word, thus more suitable for synthesis issues. We then use
these two definitions to propose a first comparison of the aforementioned
PTA variants.

Keywords: Parametric timed automata · L/U-PTAs · Hidden
parameters

1 Introduction

Designing real-time systems is a challenging issue and formal models and reason-
ing are key elements in attaining this objective. In this context, timed automata
(TAs) [1] are a powerful and popular modeling formalism. They extend finite
automata with timing constraints, in which clocks are compared to integer con-
stants that model timing features of the system. In the early design phases

This work is partially supported by the ANR national research program “PACS”
(ANR-14-CE28-0002).

c© Springer International Publishing Switzerland 2016
M. Fränzle and N. Markey (Eds.): FORMATS 2016, LNCS 9884, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-44878-7 2



20 É. André et al.

these features may not be known with precision and therefore parametric timed
automata (PTAs) [2] allow these constants to be replaced by unknown parame-
ters, the correct values of which will be synthesized as part of the verification
process. Unfortunately, most interesting problems are undecidable for PTAs,
including the basic question of the existence of values for the parameters such
that a given location is reachable [2] (sometimes called EF-emptiness problem).

Since the seminal definition, many variants of PTAs have been defined in
the literature, both as an effort to further increase the convenience of modeling
by allowing complex linear expressions on parameters in the timing constraints
(such as in [11,12]), or in order to better assess the frontier of decidability for
PTAs. In the latter objective, parameters have been considered to be integers
[2,5,6,8,9,12,13] or rationals [2,5,10–13], possibly bounded a priori [12], or even
restricted to be used as either always upper bounds or always lower bounds,
giving so-called L/U-PTAs [8,11].

In order to be able to compare these definitions, one must first agree on a
notion of expressiveness for timed parametric models, since none exists in the
literature. This is the main objective of this work.

Contribution. We propose the following two definitions of expressiveness: (1)
as the union over all parameter valuations of the accepting untimed words
(“untimed language”); (2) as the pairs of untimed words with the parameter
valuations that allow them (“constrained untimed language”).

We first prove that considering rational parameter valuations or unbounded
integer parameter valuations in PTAs and L/U-PTAs is actually equivalent with
respect to the untimed language.

We also prove that, whereas the untimed language recognized by a PTA
with a single clock and arbitrarily many parameters is regular, adding a single
non-parametric clock (i. e., a clock compared at least once to a parameter), even
with a single parameter, gives a language that is at least context-sensitive, hence
beyond the class of regular languages.

We then compare the expressiveness, w.r.t. untimed language and constrained
untimed language, of several known subclasses of PTAs with integer parameters,
in particular L/U-PTAs, and PTAs with bounded parameters. It turns out that,
when considering the expressiveness as the untimed language, most subclasses of
PTAs with integer parameters (including PTAs with bounded parameters, and
L/U-PTAs) are in fact not more expressive than TAs. However, classical PTAs
remain strictly more expressive than TAs. We also show that adding fully para-
metric constraints (i. e., comparison of parametric linear terms with 0, without any
clock) does not increase the expressiveness of PTAs seen as the untimed language.

We also propose and focus on a new class of PTAs in which some para-
meters are hidden, i. e., do not occur in the constrained untimed language.
While adding hidden parameters does not increase the expressiveness w.r.t. the
untimed language (since in that case all parameters can be considered as hid-
den), when considering the expressiveness as the constrained untimed language,
we show that hidden parameters strictly extend the expressiveness of PTAs.



On the Expressiveness of Parametric Timed Automata 21

And interestingly, for this second definition of expressiveness, L/U-PTAs with
bounded parameters turn out to be incomparable with classical L/U-PTAs.

Outline. We introduce the basic notions in Sect. 2. We propose our two defini-
tions of expressiveness in Sect. 3. We then show that rational-valued parameters
are not more expressive than integer-valued parameters for the untimed lan-
guage (Sect. 4). Focusing on integer-valued parameters, we then classify PTAs,
their subclasses, and their extensions with hidden parameters w.r.t. the untimed
language (Sect. 5) and the constrained untimed language (Sect. 6). We conclude
and outline perspectives in Sect. 7.

2 Preliminaries

2.1 Clocks, Parameters and Constraints

Let N, Z, and R+ denote the sets of non-negative integers, integers, and non-
negative real numbers respectively. Let I(N) denote the set of closed intervals
on N, i. e., the set of intervals [a, b] where a, b ∈ N and a ≤ b.

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e., real-
valued variables that evolve at the same rate. A clock valuation is a function
μ : X → R+. We write 0 for the clock valuation that assigns 0 to all clocks.
Given d ∈ R+, μ + d denotes the valuation such that (μ + d)(x) = μ(x) + d, for
all x ∈ X. Given R ⊆ X, we define the reset of a valuation μ, denoted by [μ]R,
as follows: [μ]R(x) = 0 if x ∈ R, and [μ]R(x) = μ(x) otherwise.

We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown integer-
valued constants (except in Sect. 4 where parameters can also be rational-
valued). A parameter valuation v is a function v : P → N.

In the following, we assume ≺ ∈ {<,≤} and ∼ ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +∑

1≤j≤M βjpj + d, with αi, βj , d ∈ Z. Similarly, plt denotes a parametric linear
term over P , that is a linear term without clocks (αi = 0 for all i). A con-
straint C (i. e., a convex polyhedron) over X ∪ P is a conjunction of inequalities
of the form lt ∼ 0. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation μ, μ(v(C)) denotes the Boolean value obtained by replacing
each clock x in v(C) with μ(x).

A guard g is a constraint over X ∪ P defined by inequalities of the form
x ∼ plt .

2.2 Parametric Timed Automata with Hidden Parameters

Parametric timed automata (PTAs) extend timed automata with parameters
within guards and invariants in place of integer constants [2].

We actually first define an extension of PTAs (namely hPTAs) that will allow
us to compare models with a different number of parameters, by considering that
some of them are hidden. We will define PTAs as a restriction of hPTAs.



22 É. André et al.

Definition 1 (PTA with hidden parameters). A parametric timed automa-
ton with hidden parameters (hereafter hPTA) A is a tuple (Σ,L, l0, F,X, P, I, E),
where: (i) Σ is a finite set of actions, (ii) L is a finite set of locations, (iii) l0 ∈ L
is the initial location, (iv) F ⊆ L is a set of accepting locations, (v) X is a finite
set of clocks, (vi) P = Pv 
 Pv is a finite set of parameters partitioned into hid-
den parameters Pv and visible parameters Pv, (vii) I is the invariant, assigning
to every l ∈ L a guard I(l), (viii) E is a finite set of edges e = (l, g, a,R, l′)
where l, l′ ∈ L are the source and target locations, a ∈ Σ ∪{ε} (ε being the silent
action), R ⊆ X is a set of clocks to be reset, and g is a guard.

We define a PTA as an hPTA in which P = Pv.
Observe that we allow ε-transitions (or silent transitions), i. e., transitions

not labeled with any action.
Given an hPTA A and a parameter valuation v, we denote by v(A) the non-

parametric timed automaton where all occurrences of a parameter pi have been
replaced by v(pi).

Definition 2 (Concrete semantics of a TA). Given an hPTA A = (Σ,L, l0,
F,X, P, I, E), and a parameter valuation v, the concrete semantics of v(A) is
given by the timed transition system (S, s0,→), with S = {(l, μ) ∈ L × R

H
+ |

μ(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and (continuous)
delay transition relations:

– discrete transitions: (l, μ) e→ (l′, μ′), if (l, μ), (l′, μ′) ∈ S, there exists e =
(l, g, a,R, l′) ∈ E, μ′ = [μ]R, and μ(v(g)) is true.

– delay transitions: (l, μ) d→ (l, μ+d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, μ+d′) ∈ S.

A (concrete) run is a sequence ρ = s1α1s2α2 · · · snαn · · · such that ∀i, (si,
αi, si+1) ∈ →. We consider as usual that concrete runs strictly alternate delays
di and discrete transitions ei and we thus write concrete runs in the form ρ =

s1
(d1,e1)→ s2

(d2,e2)→ · · · . We refer to a state of a run starting from the initial state
of a TA A as a concrete state (or just as a state) of A. Note that when a run is
finite, it must end with a state. The duration of a concrete run is the sum of all
the delays di appearing in this run.

An untimed run of v(A) is a sequence l1e1l2e2 · · · ln · · · such that for all i

there exist a clock valuation μi and di ≥ 0 such that (l1, μ1)
(d1,e1)→ (l2, μ2)

(d2,e2)→
· · · (ln, μn)

(dn,en)→ · · · is a run of v(A). Given a run ρ, we denote by Untime(ρ)
its corresponding untimed run.

The trace of an untimed run l1e1l2e2 · · · ln · · · is the sequence e1e2 · · · en · · · .
The (untimed) trace of a concrete run ρ is the trace of Untime(ρ).
A run ρ is accepted by v(A) if it is finite and the location of its last state

belongs to F . An untimed run is accepted by v(A) if it is finite and its last
location belongs to F .

The (untimed) language of v(A) is the set of the traces of runs accepted
by v(A).



On the Expressiveness of Parametric Timed Automata 23

2.3 Subclasses of Parametric Timed Automata

L/U-PTAs have been introduced as a subclass of PTAs for which the
EF-emptiness problem (i. e., the existence of values for the parameters such that
a given location is reachable) is decidable [11]:

Definition 3 (hL/U-PTA). An hL/U-PTA is an hPTA where the set of para-
meters is partitioned into a set of lower-bound parameters P− and a set of upper-
bound parameters P+. A parameter p belongs to P+ (resp. P−), if it appears in
constraints x ≤ plt or x < plt always with a non-negative (resp. non-positive)
coefficient, and in constraints x ≥ plt or x > plt always with a non-positive
(resp. non-negative) coefficient.

Just as for PTAs, we define an L/U-PTA as an hL/U-PTA in which P = Pv.
Decidability comes from the fact that in L/U-PTAs increasing the value of an

upper bound parameter or decreasing that of a lower bound parameter always
only increase the possible behavior:

Lemma 1 (monotonicity of hL/U-PTAs [11]). Let A be an hL/U-PTA
and v be a parameter valuation. Let v′ be a valuation such that for each upper-
bound parameter p+, v′(p+) ≥ v(p+) and for each lower-bound parameter p−,
v′(p−) ≤ v(p−). Then any run of v(A) is a run of v′(A).

Given an hL/U-PTA, we denote by v0/∞ the special parameter valuation
(mentioned in, e. g., [11]) assigning 0 to all lower-bound parameters and ∞ to
all upper-bound parameters.1

Let us now define a bounded PTA as a PTA where the domain of each
parameter is bounded, i. e., ranges between two integer-valued constants.

Definition 4 (bounded hPTA). A bounded hPTA is A|bounds , where A is
an hPTA, and bounds : P → I(N) assigns to each parameter p an interval
[min,max], with min,max ∈ N.

3 Defining the Expressiveness of PTAs

In the following, we denote by V(P ), V(Pv), and V(Pv) the sets of valuations of
respectively all the parameters, the visible parameters, and the hidden parame-
ters of an hPTA.

Definition 5 (untimed language of an hPTA). Given an hPTA A, the
untimed language of A, denoted by UL(A) is the union over all parameter valu-
ations v of the sets of untimed words accepted by v(A), i. e.,

⋃

v∈V(P )

{
w | w is an untimed word accepted by v(A)

}

1 Technically, v0/∞ is not a parameter valuation, as the definition of valuation does
not allow ∞. However, we will use it only to valuate an L/U-PTA (or an hL/U-PTA)
with it; observe that valuating an L/U-PTA with v0/∞ still gives a valid TA.



24 É. André et al.

TA is a subclass of PTA, hence, given a TA A, we also denote UL(A) its
untimed language.

We propose below another definition of language for hPTAs, in which we
consider not only the accepting untimed words, but also the parameter valua-
tions associated with these words; this definition is more suited to compare the
possibilities offered by parameter synthesis. Note that we only expose the visible
parameter valuations.

Definition 6 (constrained untimed language of an hPTA). Given an
hPTA A, the constrained untimed language of A, denoted by CUL(A) is

⋃

v∈V(Pv)

{
(w, v) | ∃v′ ∈ V(Pv) s.t.w is an untimed word accepted by v(v′(A))

}

Note that since Pv and Pv are disjoint, we can write indifferently v(v′(A))
and v′(v(A)).

We use the word “constrained” because another way to represent the con-
strained language of an hPTA is in the form of a set of elements (w,K), where
w is an untimed word, and K is a parametric constraint such that for all v in K,
then w is an untimed word accepted by v(v′(A)) for some v′ ∈ V(Pv).

Example 1. Let us consider the hPTA A of Fig. 1a, where Pv = {p1} and Pv =
{p2}.

– Its untimed language is UL(A) = {a} ∪ {ban | n ∈ N} that we note with the
rational expression UL(A) = a + ba∗.

– Its constrained untimed language is CUL(A) =
{

(a, p1 = i) | 0 ≤ i ≤
1
} ⋃ {

(ban, p1 = i) | i ∈ N, n ∈ N

}
that we can also note CUL(A) =

{
(a, p1 ≤

1), (ba∗, p1 ≥ 0)
}

, with p1 ∈ N. Note that both the parameter p2 and the fact
that p2 must be at least 1 to go to l2 are hidden.

Definition 7 (regular constrained language). The constrained untimed lan-
guage of an hPTA A is regular if for all visible parameter valuations v ∈ V(Pv),
the language {w | (w, v) ∈ CUL(A)} is regular.

Remark 1. Since valuating a PTA with any rational parameter valuation gives
a TA, the constrained untimed language of any PTA is regular in the sense of
Definition 7.

Note that the idea of combining the untimed language with the parameter
valuations leading to it is close to the idea of the behavioral cartography of
parametric timed automata [4], that consists in computing parameter constraints
together with a “trace set”, i. e., the untimed language (that also includes in [4]
the locations).

In the following, a class refers to an element in the set of TAs, bounded
L/U-PTAs, L/U-PTAs, bounded PTAs and PTAs, and their counterparts with
hidden parameters. An instance of a class is a model of that class.



On the Expressiveness of Parametric Timed Automata 25

l1
x ≤ 1

l2

l3
x = 1
a

x := 0

x = 1
∧ x ≤ p2

b
x := 0

x = p1

a

(a) A PTA

l′0

x = 1
ε

x := 0

x = 0 ∧ y = p
ε

y := 0

(b) Gadget enforcing a non-negative integer
value for p

Fig. 1. An example of PTA, and a PTA gadget

A first class is strictly more expressive than a second one w.r.t. the untimed
language if (i) for any instance of the second one, their exists an instance of the
first one that has the same untimed language, and (ii) there exists an instance
of the first one for which no instance of the second one has the same untimed
language. Two classes are equally expressive w.r.t. the untimed language if for
any instance of either class, their exists an instance of the other class that has
the same untimed language. The comparison of the expressiveness w.r.t. the con-
strained untimed language can be defined similarly, with the additional require-
ment that the two instances must contain the same visible parameters (possibly
after some renaming).

4 An Equivalence Between Integer and Rational
Parameters

In the literature, some works focus on integer parameters [6,8,9], some others
on rational parameters [10,11], and also some propose constructions working in
both settings [2,5,12,13].

In this section, we prove that considering rational parameter valuations or
unbounded integer parameter valuations in PTAs and L/U-PTAs is actually
equivalent with respect to untimed languages.2

First, remark that any PTA with rational parameter valuations can be con-
strained to accept only non-negative integer parameter valuations. We just need
to insert a copy of the gadget in Fig. 1b for each parameter p before the initial
location. We connect them to each other in sequence, in any order, and x and y
can be clocks from the original PTA. In that gadget x is zero only when y is a
non-negative integer and therefore p must be a non-negative integer to permit
the exit from l′0. Clearly, when considering only non-negative integer parameter
valuations, both PTAs have the same untimed language.

With the above construction, we can filter out non-integer valuations.
We can actually go a bit further and establish the following result:

2 Comparing constrained languages would make no sense since obviously the parame-
ter valuations cannot match in general in the rational and integer settings.



26 É. André et al.

Lemma 2. For each PTA A, there exists a PTA A′ such that:

1. for all rational parameter valuations v of A there exists an integer parameter
valuation v′ of A′ such that v(A) and v′(A′) have the same untimed language.

2. for all integer parameter valuations v′ of A′ there exists a rational parameter
valuation v of A such that v(A) and v′(A′) have the same untimed language.

Proof. The idea of the proof is to scale all the expressions to which clocks are
constrained so that they are integers. However, since we do not know in advance
by how much we have to scale, we use an additional parameter to account for
this scaling factor.

Let A be a PTA. Let p be a fresh parameter and let A′′ be the PTA obtained
from A by replacing every inhomogeneous (i. e., constant) term c in the linear
expressions of guards and invariants by c ∗ p. For instance, the constraint x ≤
3p1 + 2p2 + 7 becomes x ≤ 3p1 + 2p2 + 7p.

We now build A′ as follows: we add a new location (which will be the initial
location of A′), from which two transitions, labeled ε and resetting all clocks,
exit. The first one has guard x �= 0 ∧ x = p and goes to the initial location
of A′′. The second has guard x = 0 ∧ x = p and goes to the initial location of
an exact copy of A. By construction the first one can be taken only if p �= 0 and
the second one only if p = 0.

1. Let v be a rational parameter valuation of A. Let m be the least common
multiple (LCM) of the denominators of the values assigned to parameters
by v. Let v′ be defined as: ∀pi �= p, v′(pi) = m ∗ v(pi) and v′(p) = m. Then,
by construction, v′ is an integer valuation of A′, v′(p) �= 0 and v′(A′′) is a
TA that is scaled by m from the TA v(A). Then by [1, Lemma 4.1], v(A) and
v′(A′′) have the same untimed runs up to renaming. And finally, v(A) and
v′(A′) have the same untimed language.

2. The opposite direction works similarly: let v′ be an integer parameter valuation
of A′. If v′(p) = 0, then in A′′ we can only go to the copy of A. We can therefore
choose v(pi) = v′(pi) and obtain the same untimed language. If v′(p) �= 0, we
define v by v(pi) = v′(pi)

v′(p) . Then v is a rational parameter valuation of A and
v(A) is a scaled down version of v′(A′′), which therefore has the same untimed
runs. And again, v(A) and v′(A′) have the same untimed language. ��
First remark that, in order to show the equivalence between integer- and

rational-valued parameters, we provided a construction that added one addi-
tional parameter, and possibly some parametric clocks. This is consistent with
the fact that PTAs with integer parameters typically have decidability results
for slightly more parametric clocks and parameters than with rational parame-
ters. For instance, the existence of a rational parameter valuation such that a
given location is reachable is undecidable for PTAs with 1 parametric clock (a
clock compared to parameters) and 3 normal clocks [13], while the existence of
an integer parameter valuation is decidable in that setting [6].

Second, in the construction, we need the integer parameters to be unbounded
because the LCM can be arbitrarily big.



On the Expressiveness of Parametric Timed Automata 27

Finally, this result is not directly applicable to L/U-PTAs as we cannot ensure
that the parameterized scaling factor would be the same for upper bound inho-
mogeneous terms as for lower bound ones. However, for L/U-PTAs, we can derive
the same result from the monotonicity property:

Lemma 3. For an L/U-PTA A, the set of untimed runs produced with only
integer parameter valuations or with all rational parameter valuations is the
same.

Proof. Clearly the set of untimed runs produced by considering only integer
parameter valuations is included in the one obtained by considering all rational
parameter valuations.

In the other direction: let v be a rational parameter valuation of A and let v′

be the integer parameter valuation obtained from v by rounding up the values
for upper bound parameters, and rounding down for lower bound parameters.
Then, by Lemma 1, v′(A) contains all the untimed runs of v(A). ��

Here also we need integer parameters to be unbounded because the rational
parameter valuations can themselves be arbitrarily big and we get accordingly
big integers when rounding up.

We can now conclude the following:

Proposition 1. PTAs (resp. L/U-PTAs) with rational parameters and PTAs
(resp. L/U-PTAs) with unbounded integer parameters are equivalent with respect
to the untimed language.

When the parameters are bounded, we will see in Proposition 2 that the integer
setting leads to regular languages. So, when bounded, PTAs with rational parame-
ters are obviously strictly more expressive than their integer parameter counter-
part. For L/U-PTAs, using again the monotonicity property, we trivially see that
the valuation setting all upper-bound parameters to the maximal value allowed by
the bounded domain, and lower-bound parameters to the minimal value gives all
the untimed runs that are possible with other valuations. That “extremal” valua-
tion is an integer valuation by definition. So, even when bounded, L/U-PTAs are
still equally expressive in the rational and integer settings.

5 Expressiveness as the Untimed Language

5.1 PTAs in the Hierarchy of Chomsky

Let us show that (without surprise) Turing-recognizable languages (type-0 in
Chomsky’s hierarchy) can be recognized by PTAs (with enough clocks and
parameters).

Lemma 4. Turing-recognizable languages are also recognizable by PTAs.



28 É. André et al.

Proof. Consider a Turing-machine: it can be simulated by a 2-counter machine
(with labelled instructions), which can in turn be simulated by a PTA. The tran-
sitions of the encoding PTA can be easily labeled accordingly (using also ε transi-
tions). Assume that a word is accepted by the machine when it halts (i. e., it reaches
lhalt). If the machine does not halt, lhalt is reachable for no parameter valuation,
hence the language of the machine is empty and that of the encoding PTA also. If
the machine halts, lhalt is reachable for parameter valuations correctly encoding
the machine (i. e., depending on the proof, large enough or small enough to cor-
rectly encode the maximum value of the two counters). Hence, by taking the union
over all parameter valuations of all untimed words accepted by the encoding PTA,
one obtains exactly the language recognized by the machine. ��

Lemma 4 only holds with enough clocks and parameters, typically 3 paramet-
ric clocks and 1 integer-valued or rational-valued parameter [6], or 1 parametric
clock, 3 non-parametric clocks and 1 rational-valued parameter [13].

For lower numbers, either decidability of the EF-emptiness problem is
ensured (in which case the language cannot be type-0), or this problem remains
open.

Let us point out a direct consequence of a result of [5] on PTAs with a single
(necessarily parametric) clock.

Lemma 5. The untimed language recognized by a PTA with a single clock and
arbitrarily many parameters is regular.

Proof. In [5, Theorem 20], we proved that the parametric zone graph (an exten-
sion of the zone graph for PTAs, following e. g., [12]) of a PTA with a single
(necessarily parametric) clock and arbitrarily many parameters is finite. This
gives that the language recognized by a PTA with a single clock is regular. ��

We now show that adding to the setting of Lemma 5 a single non-parametric
clock, even with a single parameter, may give a language that is at least context-
sensitive, hence beyond the class of regular languages.

Theorem 1. PTAs with 1 parametric clock, 1 non-parametric clock and 1 para-
meter can recognize languages that are context-sensitive.

l1

x1 ≤ 1
∧ x2 ≤ p

l2

x1 ≤ 1
∧ x2 ≤ p

l3

x1 ≤ 1
∧ x2 ≤ p

l4

x1 = 1
a

x1 := 0

x1 = 1
∧ x2 = p

a
x1, x2 := 0

x1 = 1
b

x1 := 0

x1 = 1
∧ x2 = p

b
x1, x2 := 0

x1 = 1
c

x1 := 0

x1 = 1
∧ x2 = p

c

Fig. 2. A PTA with untimed language anbncn



On the Expressiveness of Parametric Timed Automata 29

Proof. Consider the PTA A in Fig. 2. Consider an integer parameter valuation v
such that v(p) = i, with i ∈ N. The idea is that we use the parameter to first
count the number of as, and then ensure that we perform an identical number
of bs and cs; such counting feature is not possible in TAs (at least not for any
value of i as is the case here). Clearly, due to the invariant x1 ≤ 1 in l1, one
must take the self-loop on l1 every 1 time unit; then, one can take the transition
to l2 only after i such loops. The same reasoning applies to locations l2 and l3.
Hence, the language accepted by the TA v(A) is ai+1bi+1ci+1.

Hence the union over all parameter valuations of the words accepted by A is
{anbncn | n ≥ 1}. This language is known to be in the class of context-sensitive
languages (type-1 in Chomsky’s hierarchy), hence beyond the class of regular
languages (type-3). ��

This result is interesting for several reasons. First, it shows that adding a
single clock, even non-parametric, to a PTA with a single clock immediately
increases its expressiveness. Second, it falls into the interesting class of PTAs
with 2 clocks, for which many problems remain open: the PTA exhibited in
the proof of Theorem1 (1 parametric clock and 1 non-parametric) falls into the
class of 1 parametric clock, arbitrarily many non-parametric clocks and arbi-
trarily many integer-valued parameters, for which the EF-emptiness is known
to be decidable [6]. When replacing the integer-valued with a rational-valued
parameter (which does not fundamentally change our example), it also falls into
the class of 1 parametric clock, 1 non-parametric clock and 1 rational-valued
parameter, for which the EF-emptiness is known to be open [3]. In both cases,
it gives a lower bound on the class of languages recognized by such a PTA.

5.2 Comparison of Expressiveness

In this section, we compare the expressiveness of PTAs w.r.t. their untimed
language UL.

First, we show in the following lemma that the untimed language of an L/U-
PTA is equal to that of the same L/U-PTA valuated with v0/∞.

Lemma 6. Let A be an L/U-PTA. Then: UL(A) = UL(v0/∞(A)).

Proof. ⊆ Let us first show that any accepting run of A for some parameter
valuation is also an accepting run of v0/∞(A), in the spirit of [11]. Let v be
a parameter valuation. Let ρ be an accepting run of v(A). Observe that, by
definition, the guards and invariants of v0/∞(A) are more relaxed than that
of v(A). Hence, any transition of ρ is also enabled in v0/∞(A). Hence, ρ is also
an accepting run of v0/∞(A).

⊇ Conversely, let us show that, for any accepting run of v0/∞(A), there exists
a parameter valuation v such that this run is also an accepting run of v(A).
It suffices to show that, for a given run, there exists one parameter valuation
accepting this run, as we define UL as the union over all parameter valuations.

Let ρ : s0
(e0,d0)→ s1

(e1,d1)→ · · · (em−1,dm−1)→ sm be an accepting run of v0/∞(A).



30 É. André et al.

Let d be the duration of this run. Let k = �d� + 1. Let v0/k be the parameter
valuation assigning 0 to all lower-bound parameters, and k to all upper-bound
parameters. Now, observe that v0/∞(A) and v0/k(A) are identical TAs, with
the exception that some guards and invariants in v0/k(A) may include addi-
tional constraints of the form x ≤ i × k or x < i × k (for some clock x and
some i > 0, i ∈ N). Since the duration of ρ is strictly less than k, then no
clock will reach value k and therefore this run cannot be impacted by these
additional constraints; hence, ρ is an accepting run of v0/k(A) too. ��

Proposition 2. TAs, L/U-PTAs and bounded PTAs are equally expressive
w.r.t. the union of untimed languages.

Proof. L/U-PTAs = TAs Direct from Lemma 6, and the fact that any TA is
an L/U-PTA with no parameter.

bounded PTAs = TAs The untimed language of a PTA is the union of the
untimed language of the TAs over all possible parameter valuations. As we
consider integer-valued parameters, there is a finite number of valuations in a
bounded PTA. Since the language recognized by a TA is a regular language,
and the class of regular languages is closed under finite union, then bounded
PTAs also recognize regular languages, and are therefore equally expressive
with TAs. ��

Proposition 3. L/U-PTAs and hL/U-PTAs are equally expressive w.r.t. the
union of untimed languages.

Proof. Consider an L/U-PTA A. Let Ah be the hL/U-PTA that is identical
to A and contains no hidden parameters (i. e., Pv = P and Pv = ∅). Then
UL(Ah) = UL(A).

Conversely, consider an hL/U-PTA Ah with visible parameters Pv and hidden
parameters Pv. Let A be the L/U-PTA such that P = Pv ∪ Pv. Then UL(A) =
UL(Ah). ��
Proposition 4. PTAs are strictly more expressive than TAs w.r.t. the union of
untimed languages.

Proof. Since the untimed words recognized by TA form a regular language [1],
then the PTA exhibited in Theorem1 recognizes a language not recognized by
any TA. Conversely, any TA is a PTA (with no parameter) which gives that the
expressiveness of PTAs is strictly larger than that of TAs. ��

In the following, we show that neither hidden parameters nor fully parametric
linear constraints increase the expressive power of PTAs w.r.t. the union of
untimed languages.

Proposition 5. PTAs and hPTAs are equally expressive w.r.t. the union of
untimed languages.

Proof. Following the same reasoning as in Proposition 3. ��



On the Expressiveness of Parametric Timed Automata 31

Impact of the Syntax of the Guards. Recall that our guards and invariants
are of the form x ∼ plt , with plt a parametric linear term. Several alternative
definitions exist in the literature. In addition to the PTAs defined in Defini-
tion 1, we consider here two other definitions, one that can be seen as the most
restrictive (and used in e. g., [2]), and one that is very permissive, with even
constraints involving no clocks. We denote by a simple guard a constraint over
X ∪ P defined by inequalities of the form x ∼ z, where z is either a parame-
ter or a constant in Z. We define an AHV93-PTA as a PTA the guards and
invariants of which are all conjunctions of simple guards. We define a PTA with
fully parametric constraints (fpc-PTA) as a PTA the guards and invariants of
which are conjunctions of inequalities either of the form x ∼ plt (“guards”), or
plt ∼ 0 (“fully parametric guards”). Let us show that all three definitions are
equivalently expressive w.r.t. the untimed language.

Proposition 6. PTAs and AVH93-PTAs are equally expressive w.r.t. the union
of untimed languages.

This result extends in a straightforward manner to fpc-PTAs.

Proposition 7. PTAs and fpc-PTAs are equally expressive w.r.t. the union of
untimed languages.

6 Expressiveness as the Constrained Untimed Language

In this section, we compare the expressiveness of PTAs w.r.t. their visible con-
strained untimed language.

Proposition 8. Bounded PTAs are strictly less expressive than PTAs w.r.t. the
constrained untimed language.

Proof. Bounded PTAs can easily be simulated using a non-bounded PTA, by
bounding the parameters using one clock and appropriate extra locations and
transitions prior to the original initial location of the PTA. For example, if x is
reset when entering l′1, the gadget in Fig. 3a ensures that p ∈ [min,max]. All such
gadgets (one per parameter) must be added in a sequential manner, resetting x
prior to each gadget, and resetting all clocks when entering the original initial
location after the last gadget.

Now, it is easy to find a PTA that has a larger constrained untimed language
than any bounded PTA. This is the case of any PTA for which a word is accepting
for parameter valuations arbitrarily large (e. g., Fig. 3b). ��

We now show that, interestingly, this result does not extend to L/U-PTAs,
i. e., bounded L/U-PTAs are not strictly less expressive than but incomparable
with L/U-PTAs.

Proposition 9. Bounded L/U-PTAs are incomparable with L/U-PTAs w.r.t.
the constrained untimed language.



32 É. André et al.

l′1 l′2 l′3

x = min
∧ x ≤ p

ε

x = max
∧ p ≤ x

ε

(a) Bounding a PTA

l0 l1

x = 0
∧ x ≤ p

a

(b) PTA accepting a for any valuation

Fig. 3. A PTA gadget and a PTA

Proof. – Let us show that the constrained untimed language of a given bounded
L/U-PTA cannot be obtained for any L/U-PTA. Consider a bounded U-PTA
with a single parameter p+ with bounds such that p+ ∈ [0, 1], and accepting
a for any valuation of p+ ∈ [0, 1]. From Lemma 1, if this run is accepted in
an L/U-PTA A′, then this run is also accepted for any valuation v′ such that
v′(p+) ≥ 0, including for instance v′(p+) > 1. Hence accepting a only for
valuations of p+ ∈ [0, 1] cannot be obtained in an L/U-PTA, and therefore
no L/U-PTA yields this constrained untimed language.

– This converse is immediate: assume an L/U-PTA with a single parameter p+,
accepting a for any valuation of p+ ∈ [0,∞). From the definition of bounded
(L/U-)PTAs, all parameters must be bounded, and therefore there exists no
bounded L/U-PTA that can accept a run for p+ ∈ [0,∞). Hence no bounded
L/U-PTA yields this constrained untimed language. ��
We now show that hidden parameters do not extend the expressiveness of

L/U-PTAs.

Proposition 10. hL/U-PTAs are equally expressive with L/U-PTAs w.r.t. the
constrained untimed language.

Hidden parameters however strictly extend the expressiveness of PTAs.

Lemma 7. There exists an hPTA A such that CUL(A) is not regular.

Proof. Assume a PTA with no parameter. Its constrained untimed language is a
set of pairs (w, v), where v is a degenerate parameter valuation (i. e., a valuation
v : ∅ → N as this PTA contains no parameter). The projection of this set of pairs
onto the words (i. e., {w | (w, v) ∈ CUL(A)}) yields a regular language, as a PTA
without parameters is a TA, the class of language recognized by which is that
of regular languages. Now consider an hPTA where all parameters are hidden.
This time, from Theorem 1 the projection of its constrained untimed language
onto the words yields a language that goes beyond the class of regular languages.
Hence there exists an hPTA for which the constrained untimed language is not
regular. ��
Remark 2. The idea used in the proof of Lemma7 uses a PTA with no (visible)
parameter. But such a result can be generalized to a PTA with an arbitrary
number of visible parameters: assume such a PTA, and assume one of its para-
meter valuations v. We can extend this PTA into a PTA A′ with a single hidden



On the Expressiveness of Parametric Timed Automata 33

parameter such that, for the valuation v (of the visible parameters), the PTA
will produce anbncn using the construction in Theorem 1. Hence, the constrained
untimed language of A′ is not regular.

Proposition 11. hPTAs are strictly more expressive than PTAs w.r.t. the con-
strained untimed language.

Proof. From Remark 1 and Lemma 7. ��
Let us finally show that PTAs and fpc-PTAs (involving additionally plt ∼ 0)

are not more expressive than AHV93-PTAs with hidden parameters.

Proposition 12. PTAs and fpc-PTAs are not more expressive than AHV93-
PTAs with hidden parameters w.r.t. the constrained untimed language.

Proof. In Propositions 6 and 7, we used a construction to show the equivalent
expressiveness of the untimed language of PTAs, fpc-PTAs and AHV93-PTAs.
This construction transforms a PTA or an fpc-PTA into an AHV93-PTAs. Since
we use extra parameters in this construction, it suffices to hide these extra para-
meters, and we therefore obtain an AHV93-PTA with the same CUL as the
original (fpc-)PTA. ��

7 Conclusion and Perspectives

In this paper, we proposed a first attempt at defining the expressiveness of
parametric timed automata, also introducing the notion of hidden parameters
to compare models with different numbers of parameters. When considering the
union over all parameter valuations of the untimed language, it turns out that
all subclasses of PTAs with integer parameters are not more expressive than
TAs. However, PTAs are strictly more expressive than TAs (from 1 parametric
clock and 1 non-parametric clock); extending PTAs with hidden parameters or
fully parametric constraints does not increase their expressiveness. In addition,
integer-valued or rational-valued parameters turn out to be equivalent.

When considering the set of accepting untimed words together with their
associated parameter valuations, then subclasses of PTAs with integer para-
meters have a varying expressiveness. An interesting result is that bounded
L/U-PTAs turn out to be incomparable with L/U-PTAs. In addition, hidden
parameters strictly extend the expressiveness of PTAs.

Future Works. We compared so far general formalisms; it now remains to be
studied what consequences on decidability the forms of guards and invariants
together with a fixed number of clocks and parameters may have: a ultimate
goal would be to unify the wealth of (un)decidability results from the literature
with all different syntactic contexts.

We showed that rational-valued parameters are not more expressive than
integer-valued parameters; our construction makes use of an extra parameter.
It remains to be shown whether this construction is optimal or not.



34 É. André et al.

Finally, forbidding ε-transitions may also change our comparison of for-
malisms, as such silent transitions have an impact on the expressiveness of TAs
(see [7]).

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
et al. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-29510-7 3

4. André, É., Fribourg, L.: Behavioral cartography of timed automata. In: Kučera,
A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 76–90. Springer, Heidelberg
(2010)

5. André, É., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Heidelberg (2015)

6. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015)

7. Bérard, B., Petit, A., Diekert, V., Gastin, P.: Characterization of the expressive
power of silent transitions in timed automata. Fundamenta Informaticae 36(2–3),
145–182 (1998)

8. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric
timed automata. Formal Meth. Syst. Des. 35(2), 121–151 (2009)

9. Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS,
vol. 8634, pp. 123–134. Springer, Heidelberg (2014)

10. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102(5), 208–213 (2007)

11. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002)

12. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. Trans. Softw. Eng. 41(5), 445–461 (2015)

13. Miller, J.S.: Decidability and complexity results for timed automata and semi-
linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

http://dx.doi.org/10.1007/978-3-319-29510-7_3


http://www.springer.com/978-3-319-44877-0


	On the Expressiveness of Parametric Timed Automata
	1 Introduction
	2 Preliminaries
	2.1 Clocks, Parameters and Constraints
	2.2 Parametric Timed Automata with Hidden Parameters
	2.3 Subclasses of Parametric Timed Automata

	3 Defining the Expressiveness of PTAs
	4 An Equivalence Between Integer and Rational Parameters
	5 Expressiveness as the Untimed Language
	5.1 PTAs in the Hierarchy of Chomsky
	5.2 Comparison of Expressiveness

	6 Expressiveness as the Constrained Untimed Language
	7 Conclusion and Perspectives
	References


