Chapter 2
Workflow Scheduling Techniques
for Big Data Platforms

Mihaela-Catalina Nita, Mihaela Vasile, Florin Pop and Valentin Cristea

2.1 Introduction

Today, almost everyone is connected to the Internet and uses different Cloud solutions
to store, deliver, and process data. Cloud computing assembles large networks of
virtualized services, such as hardware and software resources [1]. The use of cloud
resources by end users is made in an asynchronous way and in many cases using
mobile devices over different types of networks. Interoperability for such type of
systems with the main aim to ensure dependability and resilience is one of the major
challenges for heterogeneous distributed systems.

While cloud computing optimizes the use of resources, it does not (yet) provide
an effective solution for processing complex applications described by workflows.
Some example of such applications is hosting multimedia content-driven, and process
tsunami (often in real-time) of content from heterogeneous sources, such as surveil-
lance cameras, medical imaging devices, etc. The current need is an optimal and
validated middleware framework and that can support end-to-end life-cycle oper-
ations of different multimedia content-driven applications on more standard cloud
infrastructures [2].

Many scientific applications are defined as a set of ordered tasks that are linked
by data dependencies. A workflow management system is used to define, manage,
and execute these workflow applications on cluster, grid, cloud environments. In
this context, a workflow scheduling strategy is used to map the task on the different
resources [3, 4].

We live in the data age, and a key metric of present times is the amount of data
that is generated anywhere around us. The largest scientific institution of present
times, CERN near Geneva, Switzerland, produces in the Large Hadron Collider
project over 30 PB of data per year (as of 2013) [5]. Thus the notion of Big Data,
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a commonplace in all business discussions involving technology. Yet, its definition
is not that clear. Big Data represents data sets of sizes larger than the common ability
of traditional technologies to process given a certain service level agreement. And
this last part brings us to a more meaningful definition: Big Data is the process of
delivering decision-making insights. But, rather than focusing on people, this process
uses a much more powerful and evolved technology, given the latest breakthroughs
in this field, to quickly analyze huge streams of data, from a variety of sources,
and to produce one single stream of human-level knowledge [6]. Nevertheless, in
2001, META Group (now Gartner), proposed a three-dimensional view regarding
data growth challenges and opportunities, taking into consideration the increasing
volume (the amount of data), the velocity (the speed of data in and out) and variety
(the range of data types and sources) [7]. In 2012, Gartner updated this report as
follows: Big Data is high volume, high velocity, and/or high variety information
assets that require new forms of processing to enable enhanced decision-making,
insight discovery and process optimization.! Lately, another key point—veracity is
added by some organizations to make a strong case for the high need of accuracy of
Big Data. We can extend this model to 8-V dimensions of Big Data: volume, velocity,
variety, veracity, variability, visualization, volatile, and value [8]. We consider Grids
and Clouds as suitable systems for Big Data platforms.

In this context, we face with the following assumptions for workflow schedul-
ing. The challenges came from dynamic systems affected by faults. In this context
of variety, the stimulating relationship between users, who require better comput-
ing services, and providers, who discover new ways to satisfy them, is the motiva-
tion to introduce future trends oriented on self-* capabilities [9]. For multimedia
applications, real-time scheduling and processing are done on reliable and unreli-
able resources (an example is based on mixed processing based on satellite images
[10, 11], live data streaming and sensor data for video surveillance). The main chal-
lenges are to ensure deadlines (very important in real-time interaction), budget (pay-
per-use Cloud model), energy consumption (battery saving for mobile devices), and
QoS (to guarantee SLA) for complex workflow applications.

When addressing the problem of adaptive workflow scheduling we first need
to investigate the current solutions for managing such workflow applications. With
specific focus on scientific workflows we can find some tools designed by the research
community to help the scientists address/investigate/simulate issues from every area
like: astronomy, bioinformatics, earth science, chemistry. It is important to have a
global picture of the current tools in order to properly choose the one that suits
perfectly in our research area [12, 13].

The chapter is organized as follow. First, we discuss the workflow scheduling
algorithms and techniques in grid and cloud. We present the strengths and weaknesses
of several existing scheduling strategies and we make a critical analysis of workflow
management systems.

Thttp://www.gartner.com/it- glossary/big-data/.
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2.2 Workflow Scheduling in Distributed Systems

We are facing with a strong development of various technologies leading to com-
plex applications, which are able to process Big Data sets and execute different
experiments/tasks on distributed systems. These applications are covering important
aspects of everyday life: health, education, astronomy, research engineering, etc. and
are described by a number of interdependent tasks called workflows. Scientific work-
flows represent the automation of a scientific process in which tasks are organized
based on their control and data dependency.

In this context, distributed systems are offering several advantages, such as: uti-
lizing geographically distributed resources, increasing throughput, reducing costs by
not investing in proprietary resources and using the shared ones, engaging various
scientific teams with different expertise.

A workflow is described by connecting multiple tasks according to their depen-
dency (execution dependency or data dependency). This pool of interconnected tasks
may take two shapes: that of a directed acyclic graph (DAG) or a non-DAG, the dif-
ference consisting in the existence of repeating tasks.

The DAG structure can be categorized as sequential, parallel and choice, while
the non-DAG structure is adding one more structure type: iteration. In a sequential
structure, the tasks are ordered in a serial manner and one task starts only after the
previous one ended. In a parallel structure, the tasks may be computed simultaneous
and in a choice structure, the decision of following a certain path in the graph is done
at runtime. In the iteration structure, several tasks of the workflow may be repeated. A
workflow may be described by all the presented structure types simultaneously [14].

2.2.1 Workflow Scheduling Algorithms and Techniques
in Grid

There are two main classes of workflow scheduling: best effort and QoS constraints-
based scheduling [15]. The best-method class wants to minimize the makespan and
ignores other constraints, like budget, energy, etc. On the other hand the QoS con-
strained class, as the name suggests, attempts to minimize cost/time under some QoS
metrics.

2.2.1.1 Best-Effort-Based Workflow Scheduling

Best-effort-based workflow scheduling algorithms are more specifics for community-
based environments, like grids. In this type of environments, there are factors like
elasticity or cost that does not count and the main focus is on the execution time.
This class of scheduling has as target to complete execution at the earliest time.
Best-effort-based scheduling algorithms have two different approaches: heuristics
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based or meta-heuristics based. The heuristic approach is to develop a scheduling
algorithm for a particular type of problem, while the meta-heuristic-based approach
is to develop an algorithm based on a meta-heuristic method which provides a general
solution for a specific class of problems.

Individual task scheduling method, as the name suggests it makes scheduling
choices based on a single task at a time. It is not aware of the general context. The
Myopic algorithm [16] implements this method and it schedules an unmapped ready
task to the resource that is expected to complete the task earliest, until all tasks have
been scheduled.

List scheduling prioritizes workflow tasks and schedules the tasks based on their
priorities. It includes two phases: task priority and resource allocation. The list
scheduling models can be categorized in three groups:batch mode scheduling, depen-
dency mode scheduling, and a hybrid version: Batch-Dependency Mode scheduling.

Batch mode scheduling algorithms intent to schedule parallel independent tasks
on a pool of resources. Since the number of resources is much less than the number
of tasks, the tasks need to be scheduled on the resources in a certain order [17]. This
priority is made through the following algorithms: Min-Min, Max-Min, and Suffer.

Min-Min heuristic schedules sets of independent tasks iteratively. In each iterative
step, it computes the ECT (Early Completion Time) of each task on its every available
resource and obtains the MCT (Minimum Estimated Completion Time). The task
with minimum MCT is chosen to be scheduled first. The task is assigned on the
resource which is expected to finish it at first.

Max-Min heuristic is similar to the Min-Min heuristic, but it sets high scheduling
priority to tasks which have long execution time.

Sufferage sets high scheduling priority to tasks whose completion time by the
second best resource is far from the first which can complete the task at earliest time.
This method may have optimal results in heterogeneous environments.

Dependency mode intends to provide strategies to map workflow tasks on het-
erogeneous resources based on analyzing the dependencies of the entire task DAG.
Unlike batch mode algorithms, it ranks the priorities of all tasks based on the whole
application context.

The Heterogeneous Earliest Finish Time (HEFT) algorithm proposed in [18] by
Topcuoglu et al. has been applied by the ASKALON project and it first calculates
average execution time for each task and average communication time between
resources of two dependent tasks. Then, each task receives a rank value which is
computed in a recursive manner based on the rank value of the following depen-
dent tasks. So, the exit task in the graph will have the smallest rank value, as being
the average execution time. The tasks previous the exit task will have their average
execution time + the maximum ([communication time from a resource to another
resource] + [the rank value of the successor]). The task with the highest priority will
be scheduled first.

Sakellariou and Zhao [19] proposed a hybrid heuristic for scheduling DAGs on
heterogeneous systems. The heuristic combines dependency mode and batch mode.
It first computes rank values of each task and ranks all tasks in the decreasing order
of their rank values. Then it creates groups of independent tasks. Each group will
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have a group number based on the rank values of the group tasks. Then it schedules
tasks group by group and uses a batch mode algorithm to reprioritize the tasks in the
group.

Cluster-based scheduling and duplication-based scheduling aim to avoid the com-
munication time of the data for interdependent tasks, such that it is able to reduce
the overall execution time. The cluster-based scheduling clusters tasks and assign
tasks of the same cluster to the same resource. The duplication-based scheduling
use the idling time of a resource to duplicate some parent tasks and it schedules
them on other resources. Bajai and Agrawal [20] proposed a task duplication-based
scheduling algorithm for network of heterogeneous systems (TANH). This algo-
rithm combines both cluster-based scheduling and duplication-based scheduling. It
first traverses the DAG to compute parameters of each node including earliest start
and completion time, latest start and completion time, critical immediate parent task,
best resource, and the level of the task. Afterwards, it clusters tasks based on these
parameters and it scales down the number of clusters until it is less or equal than
the number of resources. In case of number of clusters being less than the number
of resources, it utilizes the idle times of resources to duplicate tasks and rearrange
tasks in order to decrease the overall execution time.

Genetic Algorithms (GAs) [21] provide robust search techniques that allow an
optimal solution to be derived from a large search space by applying the principle
of evolution. It first creates an initial population consisting of randomly generated
solutions and then it applies genetic operators (selection, crossover and mutation).
Then the individuals are selected based on their fitness values and included in the
next selection steps. These steps are repeated until an optimal solution is found. The
art of scheduling consists in finding the proper fitness function. As an example of
such function designed for scheduling [22] is f(x) = Cpar — FT (1), where Cyqy
is the maximum completion time observed so far and F T (1) is the completion time
of the individual I. While trying to minimize the completion time, the individuals
with a larger fitness value will be selected for the next steps.

Simulated Annealing (SA) [23] is inspired by the Monte Carlo method for sta-
tistically searching the global optimal between several local optimal. The concept
is taken from the annealing process, which repeats the heating and slowly cooling
of a structure. The input of the algorithm is an initial solution which is constructed
by assigning a resource to each task randomly. Then, based on an acceptance rate,
the solutions are selected for the next step. At each iterative step the acceptance is
decreased.

2.2.1.2 QoS-Constraint-Based Workflow Scheduling

When talking about QoS Constraints algorithms, in general, we are talking about
two different perspectives: user perspective and scheduler perspective. If the user
perspective refers to QoS of the entire workflow, the scheduler perspective refers to
the QoS of the task. The scheduler may assure a QoS for the entire workflow only if
the QoS of each individual task is assured.
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Many workflow applications have a tight deadline so the deadline constrained
scheduling algorithms are designed mainly for these types of applications. However
being in pay-per-use environment such as cloud, it is also important to minimize
the cost. In this context, this class of scheduling classes pays attention to the time
framework but without ignoring the cost.

The backtracking heuristic developed by Menasce and Casalicchio [24] assigns
available tasks to least expensive computing resources (in case of many available
tasks, it assigns the most CPU intensive task to the fastest resource). The procedure
is repeated until all tasks are mapped. After each iterative step, the execution time of
current assignment is computed and in case of the execution time exceeding the time
constraint, the heuristic backtracks the previous step and remove the least expensive
resource from its resource list and reassigns tasks with the reduced resource set.

Another deadline constraint heuristic is the deadline distribution [25] heuristic
which partitions a workflow and distributes the overall deadline into each task based
on their workload and dependencies. After deadline distribution, the entire workflow
scheduling problem has been divided into several subtask scheduling problems. A
sub-deadline can be also assigned to each task based on the deadline of its task
partition.

The Budget Constrained scheduling puts accent on the cost constraints while
minimizing the execution time. LOSS and GAIN scheduling approach [26] adjusts
a schedule which is generated by a time optimized heuristic and a cost optimized
heuristic to respect budget constraints. There are two situations:

1. Total execution cost generated by time optimized schedule is grater than the
budget; the LOSS approach is applied: gain a minimum loss in execution time
for the maximum money savings by amending the schedule to satisfy the budget.

2. Total execution cost generated by a cost optimized scheduler is less than the
budget, the GAIN approach is applied in order to use the surplus for decreasing
the execution time: gain the maximum benefit in execution time for the minimum
monetary cost, while amending the schedule.

In [27] a scheduling data-intensive workflows onto storage-constrained distrib-
uted method is proposed. Important improvement in storage use for workflow data
is to add a cleanup job algorithm to erase data files when they are not longer in use
or required by current task or any other task in the workflow process. If the compute
tasks are mapped to many resources then the data file is also replicated on all resources
thus the cleanup jobs/tasks are added per resource basis. In some situations the data
file required by a task comes from another resource and must not be deleted by the
algorithm at the source before its transferred to the child resource or task. Cleaning
up files on the workflow when having multiple file dependencies is challenging as the
algorithm inserts cleanup jobs along the executable workflow and cleans up along
the executions. This can generate for complex workflows greater number of cleanup
jobs than the compute tasks itself. More efficient is to have an algorithm for storage
aware when workflow is mapped considering the overall storage requirements, min-
imizing also the requirements. Thinking at an efficient execution of the tasks, these
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must be mapped around the workflow taking in consideration the execution time and
using a resource with ample disk space. Main idea is to consider space requirement
and then performance of the resource when allocating the tasks. The algorithm can
be split in a 3-phase algorithm:

1. identification of the resources capable to accommodate the data files;
2. task allocation based on the shortest run time for that task; and
3. cleanup any unnecessary files indicated by the cleanup jobs.

In [28] the problem of scheduling multiple workflows is addressed: how to better
plan multiple workflows instead of merging them as previous solutions proposed.
The proposed solution has three components:

(a) DAG Planner: assigns each job local priority (HEFT-based priority), manages
the job interdependence and submits the jobs to the Job Pool;

(b) Job Pool an unsorted list with all jobs waiting to be scheduled;

(c) Executor reprioritizes the job into the Job Pool.

Each workflow has its own DAG Planner. Each DAG planner sends only indepen-
dent jobs at a time. Once it has finished the execution, the DAG planner is notified
and it will send the successor of that job. At the Executor level there are two types
of priority for two different cases:

(a) Ifjobs are from the same DAG planner, the Highest Rank first rule will be applied
(HEFT);

(b) If jobs are from the different DAG planers, the Lowest Rank first rule will be
applied in order to avoid the starvation of the exit jobs of some DAG planner.

2.2.2 Workflow Scheduling Algorithms and Techniques
in Cloud

One of the main advantages of moving to the cloud is application scalability,
which allows real-time provisioning of resources to respect service level agree-
ments (SLAs)/application requirements. This enables workflow management sys-
tems (WMS) to support real-time provisioning instead of advanced reservations. In
this context, workflow scheduling algorithms will need to adapt and assure the agreed
level of QoS.

As concluded in [29] the main requirements for Cloud workflow scheduling are:
satisfaction of QoS requirements for individual workflow instances, minimization of
the running cost, ability of assigning fine-grained QoS to facilitate SLA management
and good scalability. These conclusions lead to a two level workflow scheduling:
service-level scheduling and task-level scheduling. The service level is responsible
for the first and third objective while the task-level is responsible for the task VM opti-
mization process (second and forth objective). The service level is a global scheduler
that identifies the resources needs, makes provisioning and the task-level is a local
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scheduler which implements the optimal scheduling plan for the given workflow on
the resources obtained.

In [30] Meng Xu et al. propose a multiple QoS constrained scheduling strategy of
multiple workflows for cloud computing (MQMW) which has a similar architecture
with the one proposed in [28], but different names: Preprocessor, Scheduler and
Executor.

The Preprocessor will computed the following attributes for the received tasks:

the available service number;

the covariance for time and cost;

the time quota: the time limit when the task is executed;

the cost quota: the cost limit when the task is executed;

the time surplus of the workflow: the difference between the time attribute of QoS
and the finish time of the workflow if all the resources are available;

e the cost surplus of the workflow: the difference between the cost attribute of QoS
and the cost of the workflow if all the resources are available.

Afterwards, the Preprocessor inserts the ready tasks into the queue and for the
first time only entry tasks will be submitted. After the notification given by the
Executor that a certain job has finished, the dependent tasks will be also submitted.
The Scheduler will reorder the jobs in the list and it will allocate a job to the optimal
resource. When a task will be finished the Executor will notify the Preprocessor
about the task completion status.

The Scheduling Strategy is the following:

1. the task with minimum available service number should be scheduled first (that
the task would have not available services, if other tasks are scheduled first);

2. the tasks which belong to the workflow with minimum time surplus and cost
surplus should be scheduled first;

3. the tasks with minimum covariance should be scheduled first. The covariance
describes the strength of the correlation between time and cost. The minimum
covariance means when the time decreasing a definite value, the cost will increase
mostly. So the task should be scheduled first. Otherwise, we should pay more or
the time would increase more.

This algorithm was evaluated in parallel with the one described in [28] and the
results shows that the previous one improves the execution time of the workflow no
matter of the costs. However MQMW respects all the QoS constraints.

In [31] amulti-objective heterogeneous earliest finish time algorithm. The method
called MOHEFT is an extension of the Heterogeneous Earliest Finish Time (HEFT)
algorithm and intents to provide an optimal solution to the problem of makespan
and energy reduction. In this context, it is not always possible to find a solution that
minimizes both makespan and energy consumption so they introduced the concept
of dominance. A solution x 1 dominates a solution x2 if the makespan and energy
consumption of x 1 are smaller than those of x2.

In this context, two solutions are said to be nondominated whenever none of
them dominates the other (i.e.one is better in makespan and the other in energy
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Scheduling Method Algorithm
Heuristics Based Approach
Individual Task Scheduling | Myopic
List Scheduling
4. Batch Mode Min-Min
Max-Min
Sufferage
4. Dependency Mode HEFT
4. Batch — Dependency Mode Hybrid
Cluster Based Scheduling |
Duplication Based Scheduling THAN

Meta-Heuristics Approach
Genetic Algorithms
Simulated Annealing

Fig. 2.1 Overview of the best-effort workflow scheduling models

consumption). The set of optimal nondetermined solutions are called Pareto Front.
Similar to HEFT, MOHEFT ranks first the tasks and then instead of creating an
empty solution as HEFT does, it creates a set S of K empty solutions. Afterwards,
the mapping phase begins in which MOHEFT iterates first over the list of ranked
tasks. The idea is to extend every solution by mapping the tasks onto all possible
resources. This strategy results in an exhaustive search if there is any restriction
taken into consideration. Only the best K trade-off solutions from the temporary set
are kept. A solution belongs to the best trade-off if it is not dominated by any other
solution and if it contributes to the diversity of the set. The diversity of the set is
described as the highest crowding distance (the area surrounding a solution where
no other trade-off solution is placed nearby).

An overview of the best-effort workflow scheduling models is presented in
Fig.2.1.

2.2.3 Scheduling Methods

In the following table, we present a critical analysis of existing methods for workflow
scheduling, by highlighting the strengths and weaknesses and a short description for
each presented method.
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A Planner-Guided Scheduling Strategy for Multiple Workflow Applications and
Dynamic scheduling multiple DAGs [28]

Description

Dynamic scheduling multiple DAGs; Poisson distribution of the
arrival jobs; Custom ranking system (DAG path for example); Highest
rank first between jobs from the same DAG; Lowest rank first between
jobs from different DAGs, resulting that, applications that are closing
to finish are not starving for resources (the last jobs will have lower
priorities)

Strengths

Multiple DAGs scheduling; hybrid priority (improvement of highest
rank first in case of multiple DAGs)

Weaknesses

If lower rank workflows are coming continuously, the higher rank task
scheduling will be postponed; not focused on deadline and budget
constraints; not SLA awareness at the Executor level

Immediate Mode: Individual Task Scheduling [16]

Description Myopic algorithm; The best-effort scheduling strategy (more suitable
for grids); Individual task scheduling; Scheduling decision is made
only for one task at a moment; Task is mapped at the resource that is
expected to finish the task first

Strengths Works fine for short tasks and a small number of requests/second

Weaknesses Not suitable for cloud environments; It does not apply any logic in

tasks priority (FIFO rule); which will generate starvation in case of
longer tasks

Batch Mode Scheduling : Min-Min, Max-Min, and Sufferage strategies [17]

Description

Batch mode scheduling strategy (best effort/list scheduling); Provides
a strategy to map a number of tasks (7)) on a number of resources R,
where T >> R; MIN-MIN a task having a min MECT (Minimum
Estimated Completion Time) will be scheduled first; MAX-MIN task
with max MECT will be executed first; SUFFERAGE priority based
on the suffrage value (the difference between 1st ECT (earliest
completion time) and 2nd ECT

Strengths

Experimental results shows that generally MIN-MIN outperforms
MAX-MIN; MAX-MIN may be better in cases of having much more
short tasks than longer tasks (it will not generate starvation for longer
tasks); Suffrage performs better in heterogeneity environments where
there is a remarkable difference between resources performance

Weaknesses

Application type-dependent strategy; best effort; suitable only for grid

Dependency Mode Scheduling HEFT [18]

Description Graph dependency is analyzed before scheduling; It ranks the
priorities of all tasks at a time 2 metrics: average execution time and
average communication time; All the tasks are ordered based on a rank
(computed recursively based on previous ranks)

Strengths Based on heterogeneous resources

Weaknesses Mean value is the only best practice; Best effort; Suitable only for grid

Batch-Dependency Mode [19]

Description Hybrid method between batch and dependency methods; Independent
tasks are added into separate groups; Group rank ordering

Strengths Parallel execution of multiple different jobs

Weaknesses Not SLA aware; Suitable for grid environments
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Cluster-based scheduling [20]

Description Avoid transfer communication cost; tasks are
grouped in clusters; one cluster is scheduled on
the same resource

Strengths Avoids data transfer cost

Weaknesses Difficult to respect deadline constraints

Duplication-based scheduling [20]

Description

Avoid transfer communication cost; Use the
idle time of an resource to schedule parent
tasks (task duplication)

Strengths Good in a heterogeneous environment where
the machine performance is unknown
Weaknesses Parallel job scheduling.

Hybrid method of cluster and duplication scheduling [20]

Description

Cluster tasks based on earliest start and
completion time, latest start and completion
time, critical parent task and best resource; If
the number of clusters <R (resources):
duplication; If nr. of clusters > R, scaling down
by merging some clusters

Strengths

Avoids data transfer cost; Good in a
heterogeneous environment where the machine
performance is unknown

Weaknesses

Difficult to respect deadline constraints;
Merging metrics

Genetic Algorithms meta-heuristics [21]

Description

Generates new solutions by modifying
currently known good solutions

Strengths

Optimized solution

Weaknesses

Its limitations depends on the fitness valuation
function

Simulated Annealing SA meta-heuristics [23]

Description

Generates new solutions by modifying
currently known good solutions

Strengths

Optimizes the solution

Weaknesses

Its limitation depends on the acceptance
function reduction value

Backtracking [24]

Description

Assign available tasks to least expensive
resources; Largest computational demand to
fastest resource; After each step, the execution
time of the current assignment is computed; if
its exceed the time constraint, the task will be
reassigned

Strengths

Deadline assurance

Weaknesses

SLA awareness; Multiple constraints; Dynamic
environments
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Deadline distributions [25]

Description Synchronization task (multiple parents) versus simple task; Grouped
in sub-workflows with different deadlines; Distributed deadline

Strengths Assures the deadline commitment at a granular level (the smallest unit
task)

Weaknesses SLA awareness; Multiple constraints; Dynamic environments

LOSS and Gain [26]

Description Gain a minimum loss in the execution time while maximizing the cost
savings; First is applied a time optimization heuristics

Strengths Budget constraint; assurance

Weaknesses SLA awareness; Multiple constraints; Dynamic environments

MQMW [30]

Description Scheduling based on the following metrics: service available number,
time surplus, workflow surplus, the covariance for time and cost

Strengths Multiple workflow; Multiple QoS successfully respected

Weaknesses It is not very clear what is the algorithm behavior in case of having a
number of tasks respecting the conditions for prioritization greater
than the number of available resources; Speed; Scalability

MOHEFT—Multi-objective energy-efficient workflow scheduling using list-based

heuristics [31]

Description Extends HEFT by finding the optimal solution and respecting multiple
objectives

Strengths Multiple objectives: energy and time; Interesting to scale for multiple
objectives: cost, energy and time

Weaknesses Multiple workflows problem

2.3 Workflow Modeling and Existing Platforms

This section presents a detailed picture of the major tools used for workflow man-
agement.

Pegasus [29] is a Workflow system that can take a workflow description, transform
it in an executable sequence of jobs and map it on a local machine, cluster, Condor
Pool, or a cloud (Amazon EC2, Google Cloud Storage). It is developed since 2001
and the last release was in May 2015. Pegasus has been used in several scientific
areas including bioinformatics (DNA sequencing, Epigenomics, etc.), astronomy
(Galactic Plane—NASA Collaboration; Montage—Caltech, etc.), earthquake science,
gravitational wave physics, and ocean science. Pegasus major components (Fig.2.2):

1. Mapper—transforms the abstract workflow definition into an executable set of
dependent jobs. The final will find the appropriate software, data, and computa-
tional resources required for workflow execution.

2. Execution Engine—executes in the specific order the tasks defined in the work-
flow. This component relies on the compute, storage, and network resources
defined in the executable workflow to perform the necessary activities.
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Fig. 2.2 Pegasus components

3. Task Manager—manages single workflow tasks, by supervising their execution
on local or remote resources.

Workflows successfully execution is based on the information gathered from the
following components:

1. Replica Catalog: looks for input and output data locations;
2. Transformation Catalog: looks for executables locations: binary files;
3. Site Catalog: looks for the environment infrastructure.

Pegasus is also able to make decisions in order to improve the overall performance:
cluster small jobs together, data reuse (identical jobs, different workflows). Regarding
the subject that is treated in this report, the scheduling problem, Pegasus by default
implements the following policies:

1. Random—the sites are randomly chosen; default option.

2. Round Robin—jobs will be assigned in a round robin manner amongst the sites
that can execute them. A site cannot execute all types of jobs so the round robin
scheduling will be applied on a sorted list of sites. The sorting is done based on
the number of jobs a particular site has been assigned in that job class so far. If a
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job cannot be run on the first site in the queue (due to no matching entry in the
transformation catalog), it goes to the next one and so on.

3. Group—ijobs are grouped and a specific group will be assigned to the site that
can execute them. A job will be put into a specific group based on a profile key
group from the DAG. The jobs that do not have the profile key associated with
them, will be put in the default group. The jobs in the default group are handed
over to the “Random” Site Selector for scheduling.

4. HEFT—HEFT processor scheduling algorithm is used to schedule jobs in the
workflow to multiple grid sites. The implementation assumes default data com-
munication costs when jobs are not scheduled on to the same site. The runtime
for the jobs is specified in the transformation catalog by associating the Pegasus
profile key runtime with the entries. The number of processors in a site is picked
up from the attribute idle-nodes associated with the job manager of the site in the
site catalog.

5. NonJavaCallout—it will call out to an external site selector. A temporary file is
prepared containing the job information that is passed to the site selector as an
argument while invoking it. The path to the site selector is specified by setting
the property pegasus.site.selector.path. The environment variables
that need to be set to run the site selector can be specified using the properties
with a pegasus.site.selector.env.prefix. The target sites used in
planning are specified on the command line using the sites option to pegasus-plan.
If not specified, then it will pick up all the sites in the Site Catalog as candidate
sites and it will map a job on a specific site only if it finds an installed executable
on that site.

Taverna [32] is an open-source Java-based workflow management system devel-
oped at the University of Manchester with the main target in supporting the life
sciences community (biology, chemistry, and medicine) to design and execute sci-
entific workflows and support research experiments. However, it can be applied to a
wide range of fields since it can invoke any web service by simply providing the URL
of its WSDL document. In addition to web services, Taverna supports the invocation
of local Java services (Beanshell scripts), local Java API (API Consumer), R scripts
on an R server (Rshell scripts), and imports data from a CVS or Excel spreadsheet.
Taverna main components are:

e Taverna Engine—enacting workflows.

e Taverna Workbench—client application; users graphically create, edit, and run
workflows on a desktop computer.

e Taverna Server—users set up a dedicated server for executing workflows remotely.

e A Command Line Tool—quick execution of workflows from a command prompt.

Triana [33] is a Java-based scientific workflow system, developed at the Cardiff
University, which combines a visual interface with data analysis tools. It can con-
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nect heterogeneous tools (e.g., web services, Java units, and JXTA services) in one
workflow. Triana uses its own custom workflow language, although it can use other
external workflow language representations, such as Business Process Execution
Language (BPEL), available through pluggable language readers and writers.

One of the most powerful aspects of Triana on the other hand is its graphical
user interface. It has evolved in its Java form for over 10 years and contains a num-
ber of powerful editing capabilities, wizards for on-the-fly creation of tools and
GUI builders for creating user interfaces. Trianas editing capabilities include: mul-
tilevel grouping for simplifying workflows, cut/copy/paste/undo, the ability to edit
input/output nodes (to make copies of data and add parameter dependencies, remote
controls or plug-ins), zoom functions, various cabling types, optional inputs, type
checking, and so on. Triana may generate Pegasus input files.

Kepler [34] is a Java-based open-source software framework providing a graphi-
cal user interface and a run-time engine that can execute workflows either from within
the graphical interface or from a command line. It is developed and maintained by
a team consisting of several key institutions at the University of California and has
been used to design and execute various workflows in biology, ecology, geology,
chemistry, and astrophysics.

Askalon [35] is an application development and runtime environment, devel-
oped at the University of Innsbruck, which allows the execution of distributed work-
flow applications in service-oriented Grids. Its SOA-based runtime environment uses
Globus Toolkit as Grid middleware. Workflow applications in Askalon are described
at a high level of abstraction using a custom XML-based language called abstract
grid workflow anguage (AGWL).

The Askalon architecture includes the following components:

e Resource broker—responsible of the resources negotiation and reservation in Grid.

e Resource monitoring—rule-based monitoring; monitors Grid resources.

e Information service—discovery, organization, and maintenance of resources and
data.

e Workflow executor—dynamic deployment and fault-tolerant execution of activities

in the Grid nodes.

Metascheduler—workflow applications mapping in the Grid.

e Performance prediction—estimates execution time of atomic activities and data
transfers; Grid resource availability.

e Performance analysis—unifies the performance monitoring, instrumentation, and
analysis for Grid applications; supports the interpretation of performance bottle-
necks.

o Askalon Scheduler.

One of the Askalon architecture components that represents interest for us is
the MetaScheduler and its architecture described in Fig.2.3. The Scheduler con-
sists of two major components: Workflow Converter and Scheduling Engine. Event
Generator is a future extension for increasing dynamicity in workflow processing.
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Fig. 2.3 Askalon components

The Workflow Converter is responsible for transforming all the sophisticated work-
flow graphs to simple DAGs. The Scheduling Engine for scheduling workflows into
specific resources. It is based on a plug-in architecture, where different scheduling
algorithms can be implemented. By default the HEFT algorithm is chosen as the
primary scheduling algorithm for Askalon.

Karajan [36] is a JAVA written system that allows users to compose workflows
through an XML scripting language and a custom language, called K, which is more
user friendly. Both languages support hierarchical workflow descriptions based on
DAGs and have the ability to use instructions such as if/while order to easily express
concurrency. Also, it can be based on Grid tools such as Globus GRAM for dis-
tributed/parallel execution of workflows. The architecture of the Karajan framework
contains the following components:

e Workflow engine—interacts with high-level components (GUI module for describ-
ing the workflows) and monitors the execution.

e Checkpointing subsystem—checkpoints the current state of the workflow.

o Workflow service—allows the execution of workflows; specific libraries enables
the workflow engine to access specific functionalities.

2.4 Analysis of Workflow Management Systems

In the following table, we present a critical analysis of existing workflow management
systems, by highlighting the strengths and weaknesses and a short description for
each presented method.
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WMS Short description Strengths Weaknesses
Taverna DAG based; Graphical User-friendly interface Relies on the user to
specification for workflow description; | make the choices of
easy to use by resources for mapping; It
nontechnical scientists in | doesn’t offer integration
their simulations with public cloud
environments; Adaptive
workflows
Triana Non-DAG based; Graphical User Interface; | Job submission made
Graphical specification Pegasus interoperability; | through GridLab GAT,
Tool for editing/creating | which can make use of
workflows; Workflow GRMS, GRAM or
rewriting: creating Condor for the actual job
sub-workflows that submission; Passive
execute and feed back approach in case of a
into the main workflow failure (it informs the
users)
Pegasus DAG based; Language Focus on the mapping It does not offer support
specification and execution capabilities | for adaptive workflows
and leave the higher level
composition tasks to
other tools; Amazon
EC2/Google Cloud
Support; Support for
optimization decisions
Kepler Non-DAG based; Graphical workflow Relies on the user to make
Graphical specification specification; Both the choices of resources
workflow specification for mapping; Adaptive
support and execution Workflows; It doesnt offer
engine; Local/Web/Grid | integration with public
services; Fault cloud environments
tolerance—smart rerun;
Adaptive
workflows—workflows
can modify themselves
during execution
Askalon DAG; Language and Graphical User Interface; | Custom description
graphical specification Support for optimization | language (AGWL);
decisions; Complex Fault | Common Public Cloud
tolerance mechanism integration; Adaptive
(checkpointing, task-level | Workflows
recovery)
Karajan DAG:; Language and Graphical User Interface; | Low support for

graphical specification

Support hierarchical
workflows; Checkpoint
and rollback assurance

interoperability between
workflow management
system (only XML and
custom workflow
specification); Cloud
integration; Adaptive
Workflows
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2.5 Conclusions

In this chapter, we investigate the current solutions for managing workflow applica-
tions in grids and clouds, offering a critical analysis on existing scheduling algorithms
and management systems. We presented an overview of the best-effort workflow
scheduling models.
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