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Abstract. Linear superiorization (abbreviated: LinSup) considers lin-
ear programming (LP) problems wherein the constraints as well as the
objective function are linear. It allows to steer the iterates of a feasibility-
seeking iterative process toward feasible points that have lower (not
necessarily minimal) values of the objective function than points that
would have been reached by the same feasiblity-seeking iterative process
without superiorization. Using a feasibility-seeking iterative process that
converges even if the linear feasible set is empty, LinSup generates an
iterative sequence that converges to a point that minimizes a proximity
function which measures the linear constraints violation. In addition, due
to LinSup’s repeated objective function reduction steps such a point will
most probably have a reduced objective function value. We present an
exploratory experimental result that illustrates the behavior of LinSup
on an infeasible LP problem.
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1 Introduction: The General Concept of Superiorization

Given an algorithmic operator A : X → X on a Hilbert space X, consider the
iterative process

x0 ∈ X, xk+1 = A (
xk

)
, for all k � 0, (1)

and let SOL (P ) denote the solution set of some problem P of any kind. The
iterative process is said to solve P if, under some reasonable conditions, any
sequence

{
xk

}∞
k=0

generated by the process converges to some x∗ ∈ SOL (P ).
An iterative process (1) that solves P is called perturbation resilient if the process

y0 ∈ X, yk+1 = A (
yk + vk

)
, for all k � 0, (2)

also solves P , under some reasonable conditions on the sequence of perturbation
vectors

{
vk

}∞
k=0

⊆ X. The iterative processes of (1) and (2) are called “the basic
algorithm” and “the superiorized version of the basic algorithm”, respectively.
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Superiorization aims at identifying perturbation resilient iterative processes
that will allow to use the perturbations in order to steer the iterates of the supe-
riorized algorithm so that, while retaining the original property of converging
to a point in SOL (P ), they will also do something additional useful for the
original problem P , such as converging to a point with reduced values of some
given objective function. These concepts are rigorously defined in several recent
works in the field, we refer the reader to the recent reviews [5,13] and references
therein. More material about the current state of superiorization can be found
also in [6,14,19].

A special case of prime importance and significance of the above is when P is
a convex feasibility problem (CFP) of the form: Find a vector x∗ ∈ ∩I

i=1Ci where
Ci ⊆ RJ , the J-dimensional Euclidean space, are closed convex subsets, and the
perturbations in the superiorized version of the basic algorithm are designed to
reduce the value of a given objective function φ.

In this case the basic algorithm (1) can be any of the wide variety of
feasibility-seeking algorithms, see, e.g., [2,7,8], and the perturbations employ
nonascent directions of φ. Much work has been done on this as can be seen in
the Internet bibliography at [4].

The usefulness of this approach is twofold: First, feasibility-seeking is, on
a logical basis, a less-demanding task than seeking a constrained minimization
point in a feasible set. Therefore, letting efficient feasibility-seeking algorithms
“lead” the algorithmic effort and modifying them with inexpensive add-ons works
well in practice.

Second, in some real-world applications the choice of an objective function is
exogenous to the modeling and data acquisition which give rise to the constraints.
Thus, sometimes the limited confidence in the usefulness of a chosen objective
function leads to the recognition that, from the application-at-hand point of
view, there is no need, neither a justification, to search for an exact constrained
minimum. For obtaining “good results”, evaluated by how well they serve the
task of the application at hand, it is often enough to find a feasible point that
has reduced (not necessarily minimal) objective function value1.

2 Linear Superiorization

2.1 The Problem and the Algorithm

Let the feasible set M be

M := {x ∈ RJ | Ax ≤ b, x ≥ 0} (3)
1 Some support for this reasoning may be borrowed from the American scientist and

Noble-laureate Herbert Simon who was in favor of “satisficing” rather then “max-
imizing”. Satisficing is a decision-making strategy that aims for a satisfactory or
adequate result, rather than the optimal solution. This is because aiming for the opti-
mal solution may necessitate needless expenditure of time, energy and resources. The
term “satisfice” was coined by Herbert Simon in 1956 [20], see: https://en.wikipedia.
org/wiki/Satisficing.

https://en.wikipedia.org/wiki/Satisficing
https://en.wikipedia.org/wiki/Satisficing
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where the I × J real matrix A = (ai
j)

I,J
i=1,j=1 and the vector b = (bi)I

i=1 ∈ RI are
given.

For a basic algorithm we pick a feasibility-seeking projection method. Here
projection methods refer to iterative algorithms that use projections onto sets
while relying on the general principle that when a family of, usually closed and
convex, sets is present, then projections onto the individual sets are easier to
perform than projections onto other sets (intersections, image sets under some
transformation, etc.) that are derived from the individual sets.

Projection methods may have different algorithmic structures, such as block-
iterative projections (BIP) or string-averaging projections (SAP) (see, e.g., the
review paper [9] and references therein) of which some are particularly suitable
for parallel computing, and they demonstrate nice convergence properties and/or
good initial behavior patterns.

This class of algorithms has witnessed great progress in recent years and
its member algorithms have been applied with success to many scientific, tech-
nological and mathematical problems. See, e.g., the 1996 review [2], the recent
annotated bibliography of books and reviews [7] and its references, the excellent
book [3], or [8].

An important comment is in place here. A CFP can be translated into an
unconstrained minimization of some proximity function that measures the fea-
sibility violation of points. For example, using a weighted sum of squares of the
Euclidean distances to the sets of the CFP as a proximity function and applying
steepest descent to it results in a simultaneous projections method for the CFP
of the Cimmino type. However, there is no proximity function that would yield
the sequential projections method of the Kaczmarz type, for CFPs, see [1].

Therefore, the study of feasibility-seeking algorithms for the CFP has devel-
oped independently of minimization methods and it still vigorously does, see
the references mentioned above. Over the years researchers have tried to harness
projection methods for the convex feasibility problem to LP in more than one
way, see, e.g., Chinneck’s book [11].

The mini-review of relations between linear programming and feasibility-
seeking algorithms in [17, Sect. 1] sheds more light on this. Our work in [6]
and here leads us to study whether LinSup can be useful for either feasible or
infeasible LP problems.

The objective function for linear superiorization will be

φ(x) := 〈c, x〉 (4)

where 〈c, x〉 is the inner product of x and a given c ∈ RJ .
In the footsteps of the general principles of the superiorization methodology,

as presented for general objective functions φ in previous publications, we use
the following linear superiorization (LinSup) algorithm. The algorithm and its
implementation details follow closely those of [6] wherein only feasible constraints
were discussed.

The input to the algorithm consists of the problem data A, b, and c of (3) and
(4), respectively, a user-chosen initialization point ȳ and a user-chosen parameter
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(called here kernel) 0 < α < 1 with which the algorithm generates the step-
sizes βk,n by the powers of the kernel η� = α�, as well as an integer N that
determines the quantity of objective function reduction perturbation steps done
per each feasibility-seeking iterative sweep through all linear constraints. The
perturbation direction − c

‖c‖2 used in step 10 of Algorithm 1 is a nonascend

direction of the linear objective function, as required by the general principles
of the superiorization methodology, see, e.g., [14, Subsect. II.D].

Algorithm 1. The Linear Superiorization (LinSup) Algorithm
1. set k = 0
2. set yk = ȳ
3. set �−1 = 0
4. while stopping rule not met do
5. set n = 0
6. set � = rand(k, �k−1)
7. set yk,n = yk

8. while n<N do
9. set βk,n = η�

10. set z = yk,n − βk,n
c

‖c‖2
11. set n ← n + 1
12. set yk,n = z
13. set � ← � + 1
14. end while
15. set �k = �
16. set yk+1 = A (yk,N

)

17. set k ← k + 1
18. end while

All quantities in this algorithm are detailed and explained below, except for
the choice of the basic algorithm for the feasibility-seeking operator represented
by A in step 16 of Algorithm 1 which appear in the next subsection.

Step-sizes of the Perturbations. The step sizes βk,n in Algorithm 1 must be
such that 0 < βk,n ≤ 1 in a way that guarantees that they form a summable
sequence

∑∞
k=0

∑N−1
n=0 βk,n < ∞, see, e.g., [10]. To this end Algorithm 1 assumes

that we have available a summable sequence {η�}∞
�=0 of positive real numbers

generated by η� = α�, where 0 < α < 1. Simultaneously with generating the
iterative sequence {yk}∞

k=0, a subsequence of {η�}∞
�=0 is used to generate the

step sizes βk,n in step 9 of Algorithm 1. The number α is called the kernel of the
sequence {η�}∞

�=0.

Controlling the Decrease of the Step-sizes of Objective Function
Reduction. If during the application of Algorithm 1 the step sizes βk,n decrease
too fast then too little leverage is allocated to the objective function reduction
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activity that is interlaced into the feasibility-seeking activity of the basic algo-
rithm. This delicate balance can be controlled by the choice of the index � updates
and separately by the value of α whose powers α� determine the step sizes βk,n

in step 9. In our work we adopt a strategy for updating the index � that was pro-
posed and implemented for total variation (TV) image reconstruction from pro-
jections by Prommegger and by Langthaler in [18, p. 38 and Table 7.1 on p. 49]
and in [15], respectively. This strategy advocates to set � at the beginning of
every new iteration sweep (steps 5 and 6) to a random number between the
current iteration index k and the value of � from the last iteration sweep, i.e.,
�k = rand(k, �k−1).

The Proximity Function. To measure the feasibility-violation (or level of
disagreement) of a point with respect to the target set M we used the following
proximity function

Pr(x) :=
1
2I

I∑

i=1

((〈
ai, x

〉 − bi

)
+

)2

J∑

j=1

(
ai

j

)2
+

1
2J

J∑

j=1

(
(−xj)+

)2

(5)

where the plus notation means, for any real number d, that d+ := max(d, 0).

The Number N of Perturbation Steps. This number N of perturbation
steps that are performed prior to each application of the feasibility-seeking oper-
ator A (in step 16) affects the performance of the LinSup algorithm. It influences
the balance between the amounts of computations allocated to feasibility-seeking
and those allocated to objective function reduction steps. A too large N will make
Algorithm 1 spend too much resources on the perturbations that yield objective
function reduction.

Handling the Nonnegativity Constraints. The nonnegativity constraints
in (3) are handled by projections onto the nonnegative orthant, i.e., by taking
the iteration vector in hand after each iteration of Cimmino’s feasibility-seeking
algorithm applied to all I row-inequalities of (3) and setting its negative com-
ponents to zero while keeping the others unchanged.

2.2 Cimmino’s Feasibility-Seeking Algorithm as the Basic
Algorithm

We use the simultaneous projections method of Cimmino for linear inequalities,
see, e.g. [12], as the basic algorithm for the feasibility-seeking operator repre-
sented byA in step 16 of Algorithm 1. Denoting the half-spaces represented by
individual rows of (3) by Hi,

Hi := {x ∈ RJ | 〈
ai, x

〉 ≤ bi}, (6)
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where ai ∈ RJ is the i-th row of A and bi ∈ R is the i-th component of b in
(3), he orthogonal projection of an arbitrary point z ∈ RJ onto Hi, has the
closed-form

PHi
(z) =

⎧
⎨

⎩
z −

〈
ai, z

〉 − bi

‖ai‖2 ai, if
〈
ai, z

〉
> bi,

z, if
〈
ai, z

〉 ≤ bi.

(7)

Algorithm 2. The Simultaneous Feasibility-Seeking Projection Method of Cim-
mino
Initialization: x0 ∈ RJ is arbitrary.
Iterative step: Given the current iteration vector xk the next iterate is calculated by

xk+1 = xk + λk

(
I∑

i=1

wi

(
PHi(x

k) − xk
))

(8)

with weights wi ≥ 0 for all i ∈ I, and
∑I

i=1 wi = 1.
Relaxation parameters: The parameters λk are such that ε1 ≤ λk ≤ 2 − ε2, for all
k ≥ 0, with some, arbitrarily small, fixed, ε1, ε2 > 0.

This Cimmino simultaneous feasibility-seeking projection algorithm is known
to generate convergent iterative sequences even if the intersection ∩I

i=1Hi is
empty, as the following, slightly paraphrased, theorem tells.

Theorem 1. [12, Theorem 3] For any starting point x0 ∈ RJ , any sequence
{xk}∞

k=0, generated by the simultaneous feasibility-seeking projection method of
Cimmino (Algorithm 2) converges. If the underlying system of linear inequalities
is consistent, the limit point is a feasible point for it. Otherwise, the limit point
minimizes f(x) :=

∑I
i=1 wi ‖ P (x)−x ‖2, i.e., it is a weighted (with the weights

wi) least squares solution of the system.

3 An Empirical Result

Employing MATLAB 2014b [16], we created five test problems each with 2500
linear inequalities in RJ , J = 2000. The entries in 1250 rows of the matrix A
in (3) were uniformly distributed random numbers from the interval (−1, 1).
The remaining 1250 rows were defined as the negatives of the first 1250 rows,
i.e., a1250+t

j = −at
j for all t = 1, 2, . . . , 1250 and all j = 1, 2, . . . , 2000. This

guarantees that the two sets of rows represent parallel half-spaces with opposing
normals. For the right-hand side vectors, the components of b associated with
the first set of 1250 rows in (3) were uniformly distributed random numbers from
the interval (0, 100). The remaining 1250 components of each b were chosen as
follows: b1250+t = −bt −rand(100, 200) for all t = 1, 2, . . . , 1250. This guarantees
that the distance between opposing parallel half-spaces is large making them
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inconsistent, i.e., having no point in common, and that the whole system is
infeasible.

For the linear objective function, the components of c were uniformly distrib-
uted random numbers from the interval (−2, 1). All runs of Algorithms 1 and 2
were initialized at ȳ = 10 · 1 and x0 = 10 · 1, respectively, where 1 is the vector
of all 1’s.

We ran Algorithm 1 on each problem until it ceased to make progress, by
using the stopping rule ∥

∥yk − yk−1
∥
∥

‖yk‖ ≤ 10−4. (9)

The same stopping rule was used for runs of Algorithm 2. The relaxation para-
meters in Cimmino’s feasibility-seeking basic algorithm in step 16 of Algorithm 1
were fixed with λk = 1.99 for all k � 0. Based on our work in [6] we used N = 20
and α = 0.99 in steps 8 and 9 of Algorithm 1, respectively, where η� = α�.

The three figures, presented below, show results for the five different (but
similarly generated) families of inconsistent linear inequalities along with non-
negativity constraints. Figures 1 and 2, in particular, show that the perturbation
steps 5–15 of the LinSup Algorithm 1 initially work and reduce the objective
function value powerfully during the first ca. 500 iterative sweeps (an iterative
sweep consists of one pass through steps 5–17 in Algorithm 1 or one pass through
all linear inequalities and the nonnegativity constraints in Algorithm 2). As iter-
ative sweeps proceed the perturbations in Algorithm 1 loose steam because of
the decreasing values of the βk,ns and later the algorithm proceeds toward fea-
sibility at the expense of some increase of objective function values. However,
even at those later sweeps the objective function values of LinSup remain well

Fig. 1. Linear objective function values plotted against iteration sweeps. LinSup has
reduced objective function values although the effect of objective function reducing
perturbations diminishes as iterations proceed.



22 Y. Censor and Y. Zur

Fig. 2. Proximity function values plotted against iteration sweeps. The unsuperior-
ized feasibility-seeking only algorithm does a better job than LinSup here which is
understandable. LinSup’s strive for feasibility comes at the expense of some increase
in objective function values, as seen in Fig. 1.

Fig. 3. The fact that objective function values increase to some extent by the unsu-
periorized feasibility-seeking only algorithm observed in Fig. 1 is due to the relative
situation of the linear objective function’s level sets with respect to where in space is
the set of proximity minimizers of the infeasible target set.

below those of the unsuperiorized application of the Cimmino feasibility-seeking
algorithm (Algorithm 2).

The slow increase of objective function values observed for the unsuperi-
orized application of the Cimmino feasibility-seeking algorithm seems intrigu-
ing because the feasibility-seeking algorithm is completely unaware of the given
objective function φ(x) := 〈c, x〉 . But this is understood from the fact that the
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unsuperiorized algorithm has an orbit of iterates in RJ which, by proceeding in
space toward proximity minimizers, crosses the linear objective function’s level
sets in a direction that either increases or decreases objective function values. It
would keep them constant only if the orbit was confined to a single level set of
φ which is not a probable thing to happen. To clarify this we recorded in Fig. 3
the values of 〈c, x〉 and 〈−c, x〉 at the iterates xk produced by the Cimmino
feasibility-seeking algorithm (Algorithm 2).

Concluding Comments

We proposed a new approach to handle infeasible linear programs (LPs) via the
linear superiorization (LinSup) method. To this end we applied the feasibility-
seeking projection method of Cimmino to the original linear infeasible constraints
(without using additional variables). This Cimmino method is guaranteed to
converge to one of the points that minimize a proximity function that mea-
sures the violation of all constraints. We used the given linear objective function
to superiorize Cimmino’s method to steer its iterates to proximity minimizers
with reduced objective function values. Further computational research is needed
to evaluate and compare the results of this new approach to existing solution
approaches to infeasible LPs.
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