p-adic Measures for Hermitian Modular
Forms and the Rankin-Selberg Method

Thanasis Bouganis

Abstract In this work we construct p-adic measures associated to an ordinary
Hermitian modular form using the Rankin—Selberg method.
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1 Introduction

p-adic measures are known to play an important role in Iwasawa theory, since they
constitute the analytic part of the various Main Conjectures. In this paper we are
interested in p-adic measures attached to an ordinary Hermitian modular form f.
There has been work on the subject by Harris et al. [20, 21], where the first steps
towards the construction of p-adic measures associated to ordinary Hermitian mod-
ular forms were made. Actually in their work they construct a p-adic Eisenstein
measure (see also the works of Eischen [15, 16] on this), and provide a sketch of
the construction of a p-adic measure associated to an ordinary Hermitian modular
form. We also mention here our work [4], where we constructed p-adic measures
associated to Hermitian modular forms of definite unitary groups of one and two
variables. All these works impose the following assumption on the prime number p:
if we denote by K the CM field associated to the Hermitian modular form f and let
F be the maximal totally real subfield of K, then all the primes in F above p must
be split in K. One of the main motivation of this work is to consider the case where
p does not satisfy this condition.

Actually this work differs from the once mentioned above on the method used to
obtain the p-adic measures. Indeed the previous works utilize the doubling method
in order to construct the p-adic measures, where in this work we will use the
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Rankin—Selberg method. In the Rankin—Selberg method one obtains an integral rep-
resentation of the L-values as a Petersson inner product of f with a product of a theta
series and a Siegel-type Eisenstein series, where in the doubling method the L-values
can be represented as a Petersson inner product of f with another Hermitian form,
which is obtained by pulling back a Siegel-type Eisenstein series of a larger unitary
group. Of course one should remark right away that the use of the Rankin—Selberg
method puts some serious restrictions on the unitary groups which may be consid-
ered. In particular, the archimedean components of the unitary group must be of the
form U (n, n), where the doubling method allows situations of the form U (n, m) with
n # m. However, we believe that it reasonable to expect, with the current stage of
knowledge at least, to relax the splitting assumption only in the cases of U (n, n). The
reason being that in the cases of U (n, m) with n # m, in order to obtain the special
L-values, one needs to evaluate Siegel-type Eisenstein series on CM points, and in
the p-adic setting, one needs that this CM points correspond to abelian varieties with
complex multiplication, which are ordinary at p, and hence the need for the splitting
assumption. For example, even in the “simplest” case of the definite U (1) = U(1, 0),
which is nothing else than the case of p-adic measures for Hecke characters of a CM
field K considered by Katz in [24], even today, in this full generality, it is not known
how to remove the assumption on the primes above p in F being split in K. We
need to remark here that in some special cases (for example elliptic curves over Q
with CM by imaginary quadratic fields), there are results which provide some p-adic
distributions associated to Hecke characters of CM fields.

In this work we make some assumptions, which will simplify various technicali-
ties, and we postpone to a later work [7] for a full account. In particular, we fix an odd
prime p, and write °I3; for the prime ideals in F above p, which are inert in K. We
write p; for the prime ideal of K above ‘[3;, and denote by S the set of these primes.
We will assume that S # @. Then our aim is to construct p-measures for the Galois
group Gal(K ([, p7°)/K), where K ([, p7°) denotes the maximal abelian extension
of K unramified outside the prime ideals p;. As we said already our techniques can
also handle the situation of primes split in K, and this will be done in [7]. The other
simplifying assumptions which we impose in this work, which will be lifted in [7],
are

1. we assume that the class number of the CM field K is equal to the class number of
the underlying unitary group with repsect to the standard congruence subgroup.
This for example happens when the class number of F is taken equal to one,

2. we will investigate the interpolation properties of the p-adic measures only for
the special values for which the corresponding Eisenstein series in the Rankin—
Selberg method are holomorphic, and not just nearly-holomorphic.

We should also remark that this present work should be seen as the unitary analogue
of the work of Panchishkin [27], and Courtieu and Panchishkin [12] in the Siegel
modular form case. We should say here that the second assumption above can be
lifted by developing the techniques of Courtieu and Panchishkin on the holomorphic
projection in the unitary case. Actually the techniques of this present work grew out
of the efforts of the author to extend the work of Courtieu and Panchishkin in the
following directions, which is also one of the aims of [7],
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1. to consider the situation of totally real fields (they consider the case of QQ),

2. to obtain the interpolation properties also for Hecke characters which are not
totally ramified.

3. to construct the measures also for symplectic groups of odd genus. In their work
they consider the case of even genus, and hence no half-integral theta, and Eisen-
stein series appear in the construction. We remark here that, over Q, the work of
Bocherer and Schmidt [2], provides the existence of these p-adic measures, in
both odd and even genus. However their techniques seem to be hard to extend to
the totally real field situation.

Indeed in this paper we work completely adelically, which allow us to work over
any field. Moreover, we use a more precise form of the so-called Adrianov—Kalinin
identity, shown by Shimura, which allows us to obtain a better understanding of the
bad Euler factors above p. And finally, we work here the interpolation properties for
characters that may be unramified at some of the primes of the set S. Note that only
at these primes one sees the needed modification of the Euler factors above p at the
interpolation properties.

Notation: Since our main references for this work are the two books of Shimura
[29, 30] our notation is the one used by Shimura in his books.

2 Hermitian Modular Forms

In this section, which is similar to the corresponding section in [6], we introduce
the notion of a Hermitian modular form, both classically and adelically. We follow
closely the books of Shimura [29, 30], and we remark that we adopt the convention
done in the second book with respect to the weight of Hermitian modular forms (see
the discussion on p. 32, Sect. 5.4 in [30]).

Let K be an algebra equipped with an involution p. For a positive integer
n € N we define the matrix n := 17, := (1(31 _01”) € GL»,(K), and the group
G:=U(n,n) = {a € GLy(K)|a*na = n}, where a* := ‘a”. Moreover we define
&= (a*)"'and S := §" := {s € M,(K)|s* = s} for the set of Hermitian matrices
with entries in K. If we take K = C and let p to denote the complex conjuga-
tion then the group G(R) = {& € GL,,(C)|a*na = n} acts on the symmetric space
(Hermitian upper half space)

H, :={z € M,(O)]i(z" —2) > 0},
by linear fractional transformations,

ay by

o 7=(agz +by)(Coz +dy) ' €H,, a= (C g

) €G[R), zeH,

where the a,, by, ¢4, dy are taken in M, (C).
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Let now K be a CM field of degree 2d := [K : Q] and we write F for its maximal
totally real subfield. Moreover we write v for the ring of integers of K, g for that
of F, Dy and Dg for their discriminants and 0 for the different ideal of F. We
write a for the set of archimedean places of F. We now pick a CM type (K, {7,}yea)
of K, where 1, € Hom(K, C). For an element a € K we set a, := 1,(a) € C. We
will also regard a as the archimedean places of K corresponding to the embeddings
7, of the selected CM type. Finally we let b be the set of all complex embeddings
of K, and we note that b = {r,, 7,p0|v € a}, where p denotes complex conjugation
acting on the CM field K. By abusing the notation we may also write b = a [ ap.

We write G for the adelic group of G, and Gy, = H; G, (restricted product) for
its finite part, and G, = HU ca G for its archimedean part. Note that we understand
G as an algebraic group over F, and hence the finite places v above are finite places
of F, which will be denoted by h. For a description of G, at a finite place we refer to
[29, Chap.2]. Given two fractional ideals a and b of F' such that ab C g, we define
following Shimura the subgroup of G4,

Dla, b] := [(Zx ZX) € Gplay < gy, by <ay, ¢, <by,d; <gy,, Yvehi,
where we use the notation < in [30, p. 11], where x < b, means that the
v-component of the matrix x has are all its entries in b,. Again we take ay, b,, ¢y, d,
to be n by n matrices. For a finite adele ¢ € G, we define I'? =T'7(b, ¢) :=
GNgD[b~!, bclg~!, a congruence subgroup of G. Given a finite order Hecke
character ¥ of K of conductor dividing ¢ we define a character on D[b~!, bc] by
Y(x) = Hu‘ Wu(det (ay)y)~', where v, denotes the local component of i at the
finite place v, and a character v, on I'? by ¥, (y) = Vg yq).

We write Z2 := [],ca Z, Z* =[], Z and H := [],, H,. We embed Z — Z?
diagonally and for an m € Z we write ma € Z? for its image. We will simply write
a for 1a. We define an action of G, on H by g -7 := ga -z := (g * Zv)vea, With
g € Gyand z = (2,)yea € H. Forafunction f : H — C and an element k € ZP we
define

(flke)(@ = ju(@ " fl@-2), @ € G, z€H,

where,

Ja@ 7" = | et (ca,z0 + da,) Fdet (ch 2o +d)) ™, 2= (2))vea € H.

vea
For fixed b and ¢ as above, and g € Gy, and a Hecke character ¢ of K, we define,

Definition 2.1 [30, p. 31] A function f : H — C is called a Hermitian modular
form for the congruence subgroup I'? of weight k € ZP and nebentype v, if:

1. f is holomorphic,

2. fley = ¥q(y) fforally € 'Y,
3. f is holomorphic at cusps (see [30, p. 31] for this notion).
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The space of Hermitian modular forms of weight k for the congruences group I'?
and nebentype v, will be denoted by M, (I'?, v,). For any y € G we have a Fourier
expansion of the form (see [30, p. 33])

(fley)(@) = D els, v; Nealsa), e(s,y; f) €C, ()

seS

where G a latticein S, := {s € S| 5, > 0, Vv € a}, and

ea(x) :=exp(Rmi Ztr(xv)).

An f is called a cusp form if c¢(s, y; f) = O for any y € G and s with det(s) = 0.
The space of cusp forms we will be denoted by S;(I'?, v,). When we do not wish
to determine the nebentype we will be writing f € M(I'?), and this should be
understood that there exists some 1, as above such that f € My (I'?, ).

We now turn to the adelic Hermitian modular forms. If we write D for a group of
the form D[b™!, bc], and ¥ a Hecke character of finite order then we define,

Definition 2.2 [30, p. 166] A function f : Gy — C is called an adelic Hermitian
modular form if

1. flaxw) = W(w)jl’f)(i)f(x) fora € G, w € D with w,(i) =1,
2. Forevery p € Gy thereexists f, € My(I'?, ), whereI'? := G N pCp~'such
that f(py) = (flxy) () forevery y € G,.

Here we writei := (il,,...,il,) € H. We denote this space by M (D, ), and the
space of cusp forms by Sy (D, ). As in the classical case above, we will write just
M, (D) if we do not wish to determine the nebentype. A simple computation shows,
if f € Mi(D, ) then the form f*(x) := f(xr/l:l) belongs to My (D', ¥~¢) where
D’ := D[bc, b~ '] and ¥ ~¢(x) := ¥ (x”)~ L.

By [29, Chap. 2] there exists a finite set B C Gy, such that G, = ]_[beB GbD and
an isomorphism My (D, ¥) = @peaMi(I'?, ¥,) (see [29, Chap. 2]). We note here
that for the congruence subgroups D[b~', bc] the cardinality of the set 8 does not

depend on the ideal ¢ and its elements can be selected to be of the form (g 2)
with g € GL,(K)y, and g, = 1 for v|c, (see for example [6, Lemma 2.6]). For a

q € GL,(K) and an s € Sy we have

£ ((g Sqq)) = et gen(ts).

Test

For the properties of cg(7, g) we refer to the [30, Proposition 20.2] and for the
definition of e, to [30, p. 127]. We also note that sometimes we may write c(t, g; f)
for c¢ (7, q).
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For a subfield L of C we will be writing M, (I'?, v, L) for the Hermitian modular
forms in My (I'?, ¥) whose Fourier expansion at infinity, that is y is the identity in
Eq. 1, has coefficients in L. For a fixed set 8 as above we will be writing M (D, ¥, L)
for the subspace of My (D, ) consisting of elements whose image under the above
isomorphism lies in BpesMi(T?, ¥, L). Finally we define the adelic cusp forms
Si(D, ¥) to be the subspace of My (D, ¥), which maps to @,csSi(I?, ¥3). As
above, when we do not wish to determine the nebentype we simply write My (I'?, L)
and My (D, L).

We fix an embedding Q <> C and write F¢ for the Galois closure of F over Q.
Then by [30, Chap. II, Sect. 10] we have a well-defined action of the absolute Galois
group Gal(Q/F<) on M(I'?, Q) given by an action on the Fourier-coefficients of
the expansion at infinity. This action will be denoted by f° for an f € M(I'?, Q)
and o € Gal(@/ Fy. A similar action can be defined on the space M (D, @) (see
[30, p. 193, Lemma 23.14]), and will be also denoted by £ for an f € M, (D, @).
In both cases (classical and adelic) the action of the absolute Galois group preserves
the space of cusp forms.

We close this section with a final remark concerning Hecke characters. Given an
(adelic) Hecke character y of K (or F), we will be abusing the notation and write x
also for the corresponding ideal character.

3 [Eisenstein and Theta Series

3.1 Eisenstein Series

In this section we collect some facts concerning Siegel-type Eisenstein series. We
closely follow [30, Chap. IV].

We consider a k € ZP, an integral ideal ¢ in F and a unitary Hecke character x of
K with infinity component of the form x,(x) = xﬁ|xa|’l, where £ = (k, — kyp)vea
and of conductor dividing c¢. For a fractional ideal b we write C for D[b~!, bc]. Then
for a pair (x, s) € G4 x C, we denote by E,(x, s) or E5(x, s; x, ¢) the Siegel type
Eisenstein series associated to the character x and the weight k. We recall here its
definition, taken from [30, p. 131],

Ex(es)= D pyoelyn)™, 9(s) >> 0,
y€eP\G

where P is the standard Siegel parabolic subgroup and the function u : Gy — Ciis
supported on PyC C G, defined by,

pn(x) = xn(det(d,) " xc(det (dy) ™" jo @) i @)™,
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where x = pw with p € Py and w € C, and m = (k, + k,,,),. Here we define
[/ := [1,ea lJx, @1)". The function € : Gy — C is defined as e(x) =
|det(d,,d;)|A where x = pw with p € P4 and w € D[b™!, b]. Here for an adele
xeF AX we write |x|, for the adele norm normalized as in [29, 30]. Moreover we
define the normalized Eisenstein series

n—1

Dy(x,5) = Ex(x,5) [ | Le@s — i, a6,
i=0

where 6 is the non-trivial character associated to K /F and x; is the restriction of
the Hecke character x to F,; . We note that since we consider unitary characters the

£,
infinity part of such a character is of the form (x1)a(x) =[], ., ( Lo ) , and it will

[y |
be often denoted by sgn(x,)‘. Moreover for a Hecke character ¢ of F, we write
L. (s, ¢) for the Dirichlet series associated to ¢ with the Euler factors at the primes
dividing ¢ removed.
For a g € GL,(K)y we define D,(z, s; k, x, ¢), a function on (z,s) € H x C,
associated to D4 (x, s) by the rule (see [30, p. 146]),

Dy(x -i, 53k, x, ¢) = j{()Da(diaglq. glx, s).

We now introduce yet another Eisenstein series for which we have explicit infor-
mation about their Fourier expansion. In particular we define the E}(x,s) :=
EA(xnljl, s)and Dj (x,s) = DA(xnljl, s), and as before we write D(’;(z, s;k, x,c¢)
for the series associated to Dj(x,s). We now write the Fourier expansion of

E3 (x,s) as,
E} (((q) Oéq) ,s) = Zc(h, q,s)ex(ho), @
heS

whereq € GL,(K)pando € Su. We now state aresult of Shimura on the coefficients
c(h, g, s). We first define an v-lattice in § := §”, by

T:=T"'":={xeS|tr(xy) Cg, VyeS)}

where S(t) := S N M, (v). T is usually called the dual lattice to S(r). For a finite
place v of F we write T, for T ®. t,.

Proposition 3.1 (Shimura, Proposition 18.14 and Proposition 19.2 in [29]). Suppose
that ¢ # g. Then c(h, q, s) # 0 only if (‘qhq), € @b~ 'c™1),T" for every v € h. In
this case

c(h.q.s) = C(S)x(det(—q)~"|det (qq*) " |det (qq*) 3N (b)) ™" x

ac(ew - 'ghq. 25, 1) [ [ 6(qua;. hoi s + (ky + kup) /2.5 — (ko + ki) /2)).

vea
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where N (-) denotes the norm from F to Q, |x|n := [[,cp [*vlv with | - |, the nor-
malized absolute value at the finite place v, w is a finite idele such that wt = b0,
and

C(S) = 2n(n—l)d|DF|—n/2|DK |—n(n—l)/4.

For the function &(gy, hy, s, 8") with0 < g, € S, h, € S,, 5,5 € C, v € awe refer
to [30, p. 134].

Moreover if we write r for the rank of h and let g € GL,(F) such that g~'hg =
diag[h',0] with h' € S". Then

ae( - 'ghq. 25, x1) = ()" () [ | frgw (X Go)lmol*) .

vee

where
n—1 n—r+1
Acs) =[] Le@s =i, 00D, An(s) = [] Le@s—n—i, 6",
i=0 i=0

Here f, 4., are polynomials with constant term 1 and coefficients in Z, they are
independent of x. The set ¢ is determined as follows: ¢ = @ if r = 0. If r > 0, then
take g, € GL,(v,) for each v { ¢ so that (wq*hq), = g'diag[&,, 0lg, with&, € T,.
Then c¢ consists of all the v prime to ¢ of the following two types: (i) v is ramified in
K and (ii) v is unramified in K and det (§,) ¢ g,

For a number field W, ak € ZP and r € Z* we follow [30] and write N (W) for the
space of W-rational nearly holomorphic modular forms of weight k (see [30, p. 103
and p. 110] for the definition). Regarding the near holomorphicity of the Eisenstein
series D, (z, s; x, ¢) we have the following theorem of Shimura,

Theorem 3.2 (Shimura, Theorem 17.12 in [30]) We set m := (k, + kyp)vea € Z2.
Let K’ be the reflex field of K with respect to the selected CM type and K, the
field generated over K’ by the values of x. Let ® be the Galois closure of K
over Q and w € Z with 2n —m, < u < m, and m, — u € 27 for every v € a.
Then Dy(z, u/2; k, x,¢) belongs to nﬁN,f(CDKXQab), except when 0 < | < n,
c=g, and x; = 0", where = (n/2)> .(my,+ pn) —dn(n —1)/2. Moreover
r=nm—-—pu+2)/2ifu=n+1, F=Q and x; = 6""'. In all other cases we
haver = (n/2)(m — |u — nla — na).

We now work out the positivity of the Fourier expansion of some holomoprhic
Eisenstein series. In particular we assume that m = pa and we consider the series
D} (x,s) fors = 5 and fors =n — 5. Foran h € S, and c(h, g, 5) as in Eq.2, we
define c(h, s) = H;’;& L.(2s —i, x16")c(h, g, 5), that is the hth Fourier coefficient
of Dj (x, s). Then we have the following,

Proposition 3.3 (Shimura, Proposition 17.6 in [30]) Exclude the case where pu =
n+1, F=Qand x = 6""". Then we have that c(h, &) # 0 only in the following
situations
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1. h =0, and n = n,
2. h#0,u>nandh, >0 forallv € a,
3. h#0,u=nandh, >0 forallv € a.

Proof This follows directly from [30, Proposition 17.6], where the positivity of
c(h,q, %) is considered, after observing that A (u/2) = H?;ol Lo(w—i, x10") #0
for ;1 > n. For i = n we need to observe that L(s, x;6"~!) does not have a pole
at s = 1, since x;6" ' is not the trivial character, since (x;)a(x) = sgn(xy)", and
hence (16" ")a(x) = sgn(x,). hence not trivial. U

The other holomorphic Eisenstein series, i.e. s = n — 5, has a completely different
behaviour. Namely, independently of w, it may have non-trivial Fourier coefficients
even for i > 0 not of full rank, that is with det(h) = 0. Let us explain this. By
Proposition 3.1 we observe that c¢(/, s) is equal to a finite non-vanishing factor times

FOMG) & Qo hoss +1/2.5 = 1/2). v = qu4;,

vea

where f(s) := [T,ce frgw (X (@)I7,|%), and for the function & we have (see [30,
p. 140]) that

I'i@a+b—n)

(o, hvia, b) = "2
o anq(a)rnfp(b)

det (y,)"7"x

81 (hyyy) 128 _(hyy, ) PR w2 yy, hys a, b),

where p (resp. ¢) is the number of positive (resp. negative) eigenvalues of 4, and
t =n— p—q; §+(x) is the product of all positive eigenvalues of x and §_(x) =
8, (—x), and

n—1
T, (s) i= 7" 1/2 H (s —v).
=0

For the quantities 7, € and the function w(-) we refer to [30, p. 140], since they do
not play any role in the argument below. We are interested in the values

fn= /)My — 1/2) [ [ € Qoo huinon — ),

vea

with u > n.

Let us write  for the rank of &, then A, (s) = H;’:_Ol_r L.(2s —n—i, x,0M 1
and hence Aj,(n — u/2) = Hl'.';ol*r Le(n—p—i, x10"7~1). We now note that
(X1)a(x) = sgn(x,)"* and hence after setting ¥; := x10"+~! we obtain (1/;)a(x) =
sgn(xy) W +i=ba WWe now conclude that the quantity A, (n — /2) may not be
zero since by [30, Lemma 17.5] we have that L(n — u —i,¢;) =0ifn —pu —i =
w~+n-+i—1 mod 2(theso-called trivial zeros), which never holds. For the gamma
factors we have for h = 0,
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Cp(n— ) 1
= 0.
H C,(m)Cp(n — ) H I (n) *

vea vea

Suppose that i # 0 and let r = rank(h). Then

1—‘n—r(n - M) 1
| | = | | 0
LoDy (n — ) Lu(n) 7

vea vea

In particular we conclude that in the case of s = n — 4 we may have non-trivial

Fourier coefficients even if the matrix 4 is not positive definite.

3.2 Theta Series

We start by recalling some results of Shimura in (the appendices of ) [29, 30] regard-
ing Hermitian theta series. We set V := M,,(K) and we let S(V},) to denote the space
of Schwartz—Bruhat functions on V}, := H; cn Vv. We consider an element A € S(Vj,)
and an u € ZP such that Hyly, = 0 for all v € a and p,, > 0 for all v € b. For a
T € S N GL,(K) we then consider the theta series defined in [30, p. 277]),

0(z. ) == D A(E)det(5)"ej(E°18), z€eH,

EeV

where det () = (Hv b det (Sv)”'*)p. We fix a Hecke character ¢ of K with infinity
type ¢a(y) = y~?|y|* and such that ¢; = 6, where we recall that we write 6 for the
non-trivial character of K /F. Such a character ¢ always exists, [30, Lemma A5.1],
but may not be unique. We now let @ be a Hecke character of K and we write f for
its conductor and define h = § N g. Following Shimura we introduce the notation,

R* = {w € Mn(K)A|wU < tUaVU € h}7

and we fix an element r € GL,(K)p. Then we define the function A € S(V;) by

W) = o (det ()Y [ [ wuldet (rox, ),
ol

ifr~'x € R* and rv’lxv € GL,(v,) for all v|h, and we set A(x) = O otherwise.

As it is explained in Shimura [30, Theorem A5.4] there is an action of G5 on S(W,),
which will be denoted by “¢ for x € G and £ € S(V},). Then we define the adelic
theta function 64 on G4 by

Op(x, w) :==0x(x, ) := ji(i)@(x -1,), x € Gy,
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where | = y + na € ZP. Then Shimura shows that
Op(axw, A) = jLA)7'0x(x,"A), @ € G,w e Gy,and w-i=1. (3)

and,

Theorem 3.4 (Shimura, Sect. A5.5 in [30] and Proposition A7.16 in [29]) 64 (x, w)
is an element in M;(C, ') with C = D[b™!, bc] and o' = w¢p™", and | = . + na.
Moreover 0, (x, w) is a cusp form if i # 0. The ideals b and ¢ are given as follows.
We define a fractional ideals v and t in F such that g*tg € yand h*t~'h € t! for
all g e rg" and h € v". Then we can take

(b, be) = (0y, 0(tef’f N e N ),

where ¢ is the relative discriminant of K over F. For an element ¢ € GL,(K)p we
have that the qth component of the theta series is given by

0.0(2) = &' (det (q) ™" det (@)} x

D waldet(E)o(det (r Eq)v)det (€)' eq(E7TER).

EeVnrR*q~!

where £ € V N\ rR*q™! such that £*1& = o.

For our later applications we now work out the functional equation with respect to

the action of the element n = 5, = ( 10 _Ol " ) In particular we are interested in the
n

theta series 05 (x, w) := 0, (xn, I ). We note that by Eq.3 we have that
05 (x, @) = O4(xn, ', 2) =
Oa((=Dnxnn, 1) = 04 ((=Dnx, 1) = 0 (=1)0a(x, ),

and by [30, Theorem A5.4 (6)] we have that

n(x) = i”INF/@(det@T*l))I"/ r(en(=27" Tryp(tr(y*tx)))dy,

W

where p = n’[F : Q] and dy is the Haar measure on V;, such that the volume of
M, (v)y is | Dx|™""/*. We now compute the integral

I(x) ;:/ A(en(—27 ' Trgr(tr(y*Tx)))dy.
Va
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We have

10 =oda) ™ ([T[ a2 T @roinmndy |

oty reMu(x)

I1 / w(det(r, y,)) " en (=27 Trg,/r, (tr (yiTox0)))dy y
vl /v GLa()

We compute the local integrals separately. For a prime v t i we have

/ eu(—27 Tryp (tr (3 ox)))dyy =

ryM, (ty)

det ("), / eo(=27 Trim (tr (i r toxa)))dyy =
M, (t,)

idet ()], / eo(=27 Try (i (T2 roy))doy =
M, (t,)

0, ifxtir, ¢ T,
|d€l(r)|v|D1<U|ﬁ_/2, otherwise.

where T := {x € M, (K,)|tr(xy) € Dv’l, Vy € M, (r,))} and Dk, is the discrimi-
nant of K. For the other finite places, we obtain generalized Gauss sums. We have

/ w(det(r; ' y,)) ey (=27 Tri,/p, (tr (¥ Tox,)dyy =

ryGL,(t,)

ldet ()], / w(det (y,) " e, (=27 Trg, r, (tr (¥iriT,x,)))dyy =
GLVL(tU)

(det ()], / o (det (7)) eo (=27 Try, 5, (tr (T Py ))dy .
GL,(xy)

By a standard argument (see for example [22, pp. 259-260]), this integral is zero,
if x¥tiryr, # (fDK)’lTUX, where T :=T, N GL,(v,). If x}tfr,v, = (fDK)’lTvX,
then after the change of variable y, +— (x,’jr:rv)*lyuwe have that the integral
is equal to

Idet(r)|U|det(x:jt:rv)|_1 X

/ wo(det ((x}t)ry) " v,) ey (=27 Tri,/p, (tr (y))dyy =
§10% GL,(xy)
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|det (X))o (det (t)r,x0)) x
/ o () ey (=27 Trg, r, (tr (3,))dyy
§10 ' GLu(xy)

We then have that |det (x; 1,'lj‘)|’1 = |det(r,)|, N (f0)™" and hence we can rewrite the
above expression as

det (r,) |, N (f0) "o (det (fd)" T} r,x5))w(fd) ™" x
/ w(yy) e, (=27 Try, /r, (tr (y,)))dyy
§10E GL, (ty)

for some elements f, d such that (f) = f, and (d) = 0,. By a standard argument
(see for example [22, p. 259]), we obtain

N@) "o(fd)™ / 0 (yy) ey (=27 Tri,/p, (tr (y))dyy =
10 GLu(x,)

D ouder(y) ey (—tr(y).

YEM, (vy)/ My (DFy)

We set 7,(w™!) = Z)’G(Mn(tu)/Mn(Df“) wu(det(y))’lev(—tr(y)), and we note that
in the case that w is primitive we have that the last integral can be related to one-
dimensional standard Gauss sums (see for example [2, p. 1410]). In particular in
such a case we have 1,(w™') = N(D)nm{l) T(w™")" where t(w™!) the standard one
dimensional Gauss sum, associated to the character w~!. We summarize the above

calculations in the following Proposition.

Proposition 3.5 Let w be a primitive character of conductor §. For the theta series
0 (x, w) € Mi(C', @) with C' := D[bc, b~'] we have

05 (x, w) = i”z[F:Q]|N(2det(r)_1)|”a)’c(—1)|det(r)|hN(f)_”N(0)(_7n)><

[TN@) T )'u(x, 25,
v|f

where 1*(x) = wi((fd)"det(t,ryx})) for x € T and x;t;r, € ]‘D_ITUX for all vlf,
and zero otherwise.

We close this section by making a remark on the support of the g-expansion of 6*.
We first set,



46 Th. Bouganis

—n n2
Cw) ="M N Qdet (1) )", (~Dldet (RN H'N@)F [[N@,)*.
vlf
“4)
and take some ¢ € GL,(K)y. Then, the gth component of 6* is given by

6:(2) = i"|det (@)1 P (det ()" > 1(Eq)det (€)" e TE2)

EeV

If det(§) #0, then 1(£q) # 0 only when (t¥rg*&*), € (fa)_]TuX for all v|fo.
That is,

;@) =C@r@™) D of((fd)' T rg s ) det (§) ea( TE2).

SGfADR;DI*]?q*‘ﬂV

In particular we have that (£*t&), € (f0)~!gr~! fTerTvxr"fq_lfﬁ for all v|f.

4 The L-function Attached to a Hermitian Modular Form

4.1 The Standard L-function

We fix a fractional ideal b and an integral ideal ¢ of F'. We set C = D[b~!, bc]. For
the fixed group C and for an integral ideal a of K we write 7' (a) for the Hecke
operator associated to it as it is defined for example in [30, p. 162].

We consider a non-zero adelic Hermitian modular formf € M, (C, ) and assume
that we have f|7T (a) = A(a)f with A(a) € C for all integral ideals a. If x denotes a
Hecke character of K of conductor §, for s € C with 9i(s) >> 0 we consider the
Dirichlet series

i=1

2n
Z(s, £, x) = (H Le(2s —i+1, Xlel‘l)) x D M@x@N@™, ()

where the sum runs over all integral ideals of K. It is shown in [30, p. 171] that
this series has an Euler product representation, which we write as Z(s,f, x) =
Hq Z, (X (9N (q)’s), where the product is over all prime ideals of K. Here we
remind the reader (see introduction) that we abuse the notation and write x also for
the ideal character associated to the Hecke character x. For the description of the
Euler factors Z, at the prime ideal q of K we have (see [30, p. 171]),

-1
1. ZgX) =T, ((1 — N(@)" g X) (1 — N(q)nt;}X)) Lif g’ =qandq?ec,
2.
qu(Xl)Zqz(XZ) -
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2n 1
[T( = Nan™n, X0 = N@) ™ tg0iX2)
i=1

ifq; # do, qf =qaand q; fcfori = 1,2,
3. Zg(X) =1, (1 N(q)"_lfq,iX))_l, if g° = q and qc,
4.
Zq,(X1)Zq,(X2) =

2n

n— n— -1
[T =N@)" 1,0, X0 (1 = N (@) tg,q0041X2)
i=1

if g1 # q2, 9] = qz and g;|c fori = 1,2,

where the f,; above for ? = q, q,q, are the Satake parameters associated to the
eigenform f. We also introduce the L-function,

Lis, £, 0 = [ Ze (x@@/YO@)N@ ), %i(s) >>0 6)
q

where 7 a uniformizer of K. We note here that we may obtain the Dirichelt series
in Eq. 5 from the one in Eq. 6, up to a finite number of Euler factors, by setting y !
for x. Moreover if ¥ is trivial then the two series coincide.

4.2 The Rankin—Selberg Integral Representation

We recall that in Sect.3.2 we have fixed a Hecke character ¢ of K of infinity part
¢a(y) = y; *|val* and the restriction of ¢ to F, is the non-trivial Hecke character 6
corresponding to the extension K /F. Keeping the notations from above we define
t € Z* to be the infinity type of x, that is x,(x) = x,"|xa|’. We then define 1 € Zb
by

Wy =1, — kvp + ky, and Hyp = 0if #, > kUP —ky,

and
My =0, and p,, ==k, —k, — 1, if t, <k,, —k,.

We moreover set! := w +na, ' = x ‘¢ "and h := 1/2(k, + ko + 1y + Lyp)vea.
Given u, ¢, T and x as above we write 6, (x) := 04 (x, A) € M;(C’, ') for the theta
series that we can associate to (i, ¢, T, x ') by taking w := x ! in Theorem 3.4.
We write ¢’ for the integral ideal defined by C' = D[b' ™", b'¢/].

We now fix a decomposition GL,(K) = quQ GL,(K)qEGL,(K),, where
E = [],cn GL,(xy). In particular the size of the set Q is nothing else than the class
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number of K. Given an element f € Si(I'?, v,), and a function g on H such that
glxy = ¥, (y) f forall y € I'? we define the Petersson inner product

< fig>=< [, g >ru= f(2)g(2)8(z)"dz,
Da\H

where §(z) := det (% (z* — z)) and dz ameasure on I'? \ ‘H defined as in [30, Lemma
34 ]and m = (my)yea With my, =k, + k.

The following theorem (see also [25, Theorem 7.8]) is obtained by combining
results of Shimura [30] and Klosin [25]. For details we refer to [6, Sect. 4].

Theorem 4.1 (Shimura, Klosin) Let 0 # £ € My (C, ¥)) such that £f|T (a) = A(a)f
for every a, and assume that k, + k,, > n for some v € a, then there exists T €
Sy NGL,(K)andr € GL,(K)y such that

L) Ye(det(r))ee(T, r)L(s +3n/2, £, x) =

Acls +3n/2,0(¥ ) - (1'[ gu(X (ﬂp)N(p)253”))det(r)sa+h|det(r)| P x

veb

Co D ldet(qq)|5" < f1(2). 044 D Eg(z. 5+ nik =L (W /)", ") >raen,
q€Q

where

I'((s)) := H(47t)_"(°'+h”)r‘,,(s +hy), and Cy:= [F‘)(cﬁ#

vea

where ¢ any non-trivial integral ideal of F such that cc'|¢”, T9(") := G N
gDle, eblg™!, withe = b+ b  and h = ¢~ (bc” N b'¢"). Moreover g,(-) are Siegel-
series related to the polynomials f; ,,(x) mentioned in Proposition 3.1 above, and
we refer to [30, Theorem 20.4] for the precise definition. Finally X denotes the set
of Hecke characters of infinity type t and conductor dividing f,, I' is a congruence
subgroup of SU (n, n) which appears in the [30, p. 179], and A some fixed rational
number times some powers of 7, and is independent of .

We will make the following assumption (see also the introduction):

Assumption. We assume that the class number of K is equal to the class number
of U(n, n)/F with respect to the full congruence subgroup D[b~!, b]. For example
this holds when the class number of F is taken equal to one [29, p. 66].

From the above assumption it follows that

Z ldet (qq™) " < f4(2),04.x (@ Eq(z,5 +nsk =1, (¥ /), ") >paen=
qeQ
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< B0, 00 VEL(x, 5+ 3k =1, (' /), ¢ >,

where Ex(x,5+n;k —1, (W' /¥)¢, ¢”) is the adelic Eisenstein series with
g-component |det(qq*)|"Eq(z,5 +n;k —1, (W' /)¢, ¢"), and < -, - > is the
adelic Petersson inner product associated to the group D[e, eh] as defined for exam-
ple in [29, Eq. 10.9.6], but not normalized, and hence depends on the level. Moreover
we define,

Da(x,5+nk—1,0,¢"):=A(s +3n/2, 0 x)DEs(x,5+n:k —1,¥, "),
(7
where W := (y'/y)°.

5 Algebraicity of Special L-Values

In this section we present some algebraicity results on the special values of the
L-function introduced above, which were obtained in [6]. Results of this kind have
been obtained by Shimura [30], but over the algebraic closure of Q, and in [6] we
worked out the precise field of definition, as well as, the reciprocity properties. There
is also work by Harris [18, 19] and we refer to [6] for a discussion of how the results
there compare with the ones presented here.

We consider a cuspidal Hecke eigenform 0 # f € Si(C, ¢; Q) with C := D
[6~', be] for some fractional ideal b and integral ideal ¢ of F. We start by intro-
ducing some periods associated to f. These periods are the analogue in the unitary
case of periods introduced by Sturm in [31], and generalized in [3, 5], in the sym-
plectic case (i.e. Siegel modular forms). In the following theorem we write < -, - >
for the adelic inner product associated to the group C.

Theorem 5.1 Letf € Sy (D, v, @) be an eigenform, and define m,, = ky + k,, for
all v € a. Let ® be the Galois closure of K over Q and write W for the exten-
sion of ® generated by the Fourier coefficients of £ and their complex conjugation.
Assume mq := min,(m,) > 3n + 2. Then there exists a period Q¢ € C* and a finite
extension W of ® such that for any g € Sy (Q) we have

(< f,g>)‘7 B <f7,g" >

)

Q Qe

for all o € Gal(Q/ W), with ¢’ := pop. Here Qo is the period attached to the
eigenform £7. Moreover Q¢ depends only on the eigenvalues of £ and we have
% € (WW)*. In particular we have j%i € (WW)(g, g°), where (WW)(g, g°)
denotes the extension of W\ obtained by adjoining the values of the Fourier coeffi-

cients of g and g°.
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We note that the extension W does not depend on f, but only on K and n. We refer
to [6] for more details on this. The following two theorems were obtained in [6].

Theorem 5.2 Let f € Si(C, v; Q) be an eigenform for all Hecke operators, and
assume that mg = 3n + 2. Let x be a character of K such that x,(x) = x}|xal™
witht € 72, and define i € ZP by p, = —t, — kyp + ky and ., = 0ifky, — ky +
ty < 0,and p, = 0and ., = kypy — ky + 1y, ifky, — ky +t, > 0. Assume moreover
that either

1. there exists v, v’ € a such that m, # m,, or
2. my = my forall vand my > 4n — 2, or

3. u#0.
Then let o¢ € %Z such that

4n_mv+|kv_kvp_tv| < 209 gmv_|kv_kvp_tv|v

and,
200 — t, € 27, Yv € a.

We exclude the following cases: For n < 20¢ < 2n, if we write { for the conductor
of the character x,, then there is no choice of the integral ideal ¢’ as in Theorem 4.1
such that for any prime ideal q of F, q|¢"c™" implies either q|f or q ramifies in K.

We let W be a number field such that £, £° € Sy (W) and VO C W, where ® is
the Galois closure of K in Q, and W as in the Theorem 5.1 then

L(oo, £, x)

e W :=W(y),
TP T (XY O™) i e < £ f = (x)

where 8 =n(Q>, m,)+d(2noy — 2n% +n), W(x) obtained from W by adjoin-
ing the values of x on finite adeles, and p € Z* is defined for v € a as p, =

my—|ky—ky,—t,| =200 . my—|ky—ky,—t,|—4n+20y .
————F———ifoy = n, and p, = ————"5~ ifog < n.

Theorem 5.3 Let f € Si(C, yr; Q) be an eigenform for all Hecke operators. With
notation as before we take mo > 3n + 2. Let x be a Hecke character of K such
that xa(x) = xl|xa|™" witht € Z*. Define u € ZP as in the previous theorem. With
the same assumptions as in the previous theorem and with Q¢ € C* as defined in
Theorem 5.1 we have for all o € Gal(Q/ W) that

( L(oo.f. %) ) - L(0o. £, x%)
TP YTOm) i Q) AP (0T )i S P Qe

where Wy = V ifog € Z and it is the algebraic extension of V obtained by adjoining
|det (qq*)|lll/2f0r allqg € Q, ifoy € %Z, where the set Q is defined in Sect. 4.
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6 The Euler Factors Above p and the Trace Operator

We now fix an odd prime p and write S for the set of prime ideals in K above p such
that they are inert with respect to the totally real subfield F. We assume of course
that S # . A typical element in this set will be denoted by p.

For a fractional ideal b and an integral ideal ¢ of F, which are taken prime to
the ideals in the set S, we define C := D[b~!, bc]. We consider a non-zero f €
Sk (C, ¥), which we take to be an eigenform for all Hecke operators with respect to
C.Furthermore we let x be a Hecke character of K of conductor f, (or simply fif there
isno danger of confusion), supported in the set S. As we mentioned in the introduction
our aim is to obtain measures that interpolate special values of L(s, f, x) such that
the Eisenstein series involved in the Theorem 4.1 are holomorphic. In particular if we
write ¢ € Z? for the infinite type of the character x and define u € ZP as in Sect. 4,
then we will assume that

(kv_Mv_n)+(kvp_Mvp)=ra Yv € a,

for some r > n, where we exclude the case of r = n+ 1, F = Qand x; = 6. For a
fixed character y we define

1. ©, := O :=0,(x, x~"), where we put some special condition on the element
r € GL,(K)y inthe definition of the theta series. Namely we pick the elementr €
GL,(K)psuchthatr, = m,r, withr, € GL,(t,) for v not dividing the conductor
and v e S, and r, € GL,(v,) for v € § and dividing the conductor. For t we
assume that 7, € GL,(t,).

@j‘( = 0% =0 (x, x 1), with similar conditions on r and T as above.
E,i=Ey:=Du(x, 5k =1, W,

E;  =E} := Qg(x, k=19, "),

E, =E =Dy(x,n—5k—1,W¥1"),
Ef_=E*:=Dj(x,n—5ik—1Wc,

NN

where W := (x ~'¢ "¢ ~1)¢, ¢ is as in Theorem 4.1 and the Eisenstein series Dy
was introduced in Eq. 7.

We now recall some facts about Hecke operators taken from [29, 30]. The action
of the Hecke operator T¢(§) := T (&) := C&C for some & € Gy, such that CEC =
|_|\,ey Cy for a finite set Y, is defined by,

F|CEC)(x) := D Yedet(ay) 'Flxy™").

yeY

Following Shimura, we introduce the notation E := [],_, GL,(t,) and B := {x €

GL,(K)n|x < t}. We have,

veh
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Lemma 6.1 (Shimura, Lemma 19.2 in [30]) Let 0 = diaglq, q] € G, withq € B,
and v|c. Then
d db
cvocv_|ﬁ|cu(0 p )

withd € Ey\ EyqE,andb € S(b™"),/d*S(b™"),d, where S(b™") := SN M, (b~ ").

We now introduce the following notation. Let v € h be a finite place of F which
correspond to a prime ideal of F, that is inert in K. We write p for the ideal in K
corresponding to the place in K above v, and 7, (or 7 when there is no fear of
confusion) for a uniformizer of p. Since the choice of v determines uniquely a place
of K (since we deal with the inert situation) we will often abuse the notation and
write v also for this place of K.

For an integral ideal ¢ such that v|c we write U(7;), forani =1, ..., n, for the
operator C&C defined by taking &, = 15, for v/ not equal to v and &, = diag[q, q]
with g = diag[m,...,m, 1,..., 1] where there are i-many 7 ’s. Sometimes, we will

also write U (;r) or U (p) for U (7).

6.1 The Unramified Part of the Character

We now describe how we can choose the elements d in Lemma 6.1 for the operators
U (r;). We have,

Lemma 6.2 Let g =diagln,m,...w, 1,..., 1] with m many r’s. Then we have
that in the decomposition

Equv = I_l Evdy
d

the representatives d = (d;;); ;s are all the lower triangular matrices such that,

1. there exist n — m many 1 on the diagonal and the rest elements of the diagonal
are equal to . Write S for the subset of {1, ..., n} such thati € S if and only if
d,‘i =Tr.

2. Foranyi > j, we have

0 ifj¢ Sandi e S
d,'j: OtfjeSandteS,
a ifjeSandi ¢S

where a € v, runs over some fixed representatives of v, /p,, where p,, the maximal
ideal of ¢,,.

Proof See [8, pp. 55-56] O
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We now let ; be the eigenvalues of f with respect to the operators U (ir;). For the
fixed prime ideal p as above we write #; for the Satake parameters ¢, ; associated to
f as introduced in Sect. 4.

Lemma 6.3 We have the identity

2! (Z(—l)"N (p)i(izl)+’1"+"("2”'\ixi) B

i=0

n

(_l)nN(p)n(Zn—l)Xn H(l _ tile(p)l—nX—l).

i=I

Proof We first note that,

S =DINE T X =T - Ny aX). ()
i=0

i=1

This follows from [30, Lemma 19.13] and the fact that (see [30, p. 163])

n
> wo(Eyd)lder(@d)]," XD =TT = N '6Xx)7",
deE,\B, i=1

where vy, (+) is the discrete valuation corresponding to the prime p, | - |, the absolute
value at v normalized as ||, = N (p) . For the definition of wo(E,d), we first find
an upper triangular matrix g so that E,d = E,g and then we define w(E,d) :=
I, (N(p)’Ziti)ei, where the e; € Z are so that g;; = 7% for g = (g;;).

We can rewrite the right hand side of Eq. 8 as

n

[Ta-Ne"ux) =

i=1

NE) " D=0t )X ] = N X,
i=I

n(n+1)

Moreover we have by Eq.8 that A, = N(p)~ 2 #if5...1,. So we conclude that

At (Z(—l)ﬁv(p)“’é "*'l"xixf) =

i=0

("N T = N ) X,

i=1
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or,

r! (Z(—l)’N (" X i) B

i=0

(_l)nN(p)n(Zn—l)Xn H(l _ li_lN(p)l_nX_l).

i=1

O
In particular if x is a Hecke character of K which is taken unramified at p and we
set X := x(p)N(p)*+ with s, := —"3L for some r € Z we obtain,
! (Z<—1)’N(p> R <p>i) B
i=0

(—1)" N (p)" D5 y () H(l—x(p) SN

i=1

or
(Z( DN T )’ ) = ©)
=0
(=" N @)D GO TTa - x )
i=1
and if we set X := x (p)N (p)*~ withs_ := — 3”2 " we obtain,

hy! (Z(—l)"N(p)““"%”‘ "z’*zxix(p)"") = (10)

i=0

(—1)" N (p)" @D ’>]'[(1—x<p)

i=1

We also make a general remark about the adjoint operator of the Hecke operators
introduced in Lemma 6.1. First we note that,

(50) (£0) ()= (57



p-adic Measures for Hermitian Modular Forms and the Rankin—Selberg Method 55
In particular we have
ny 'DI6™", belny = Dlbe, b7'].
Now if we write W for the operator (f|W)(x) :=f(xn, 1) we have,
Lemma 6.4 Forf,g e M;(C, V) we have
<f|CoC,g>=<f,gWCG6CW ! >,

where C := D[be, b1, and 6 := diag[c?‘, q*lifo =diaglq, ql.

Proof By Proposition 11.7 in [29] we have that < f|CoC, g >=<f, g|Co~!C >.
Of course we have ! = di aglq™, q’l]. Moreover we have that

Co 'lc=wwlcwwls'ww-lcww!

and we have that Wo ='W~ = diaglq™", ¢*] = diaglq*, ¢*]. Moreover the group
wW-lcw = Dlbe, b’j if C = D[b:l, bc]. Moreover we note that we may write
D[bc, 6711 = D[b7!, bc] by taking b = bl 1. O

For the fixed ideal p, and an s € C, we define the operator J (p, s) on M (C, )
as

J(p.s) = D (=1 N(p) T 0 G0 )y U ().

i=0
We now note by Lemma 6.3 we have that for the eigenform f
f1J(p,5) = (D" NE)" > ONE)" [J = N@' ™" x )" Np)™f
i=1

We will need to consider the adjoint operator of J (p, s) with respect to the Peters-
son inner product. In particular if we write

<f1J(p,5), g >=< £, gWI(p, )W >,

then by Lemma 6.4 we have that

n
nn

J(pos) = D (=D N(p) Ty @y =iy (),

i=0

where we keep writing U (r;) for the Hecke operator

Dlbc, b "diagm, 7, ..., 7, 1...,1]1D[bc, b~'].
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We note here that
Dlbe, b "diagn, 7w, ..., 7, 1...,11D[bc, b7 '] =

D[be, b "diag[x”, n”, ..., 7", 1...,1]D[bc, b™"]

Of particular interest for us are the operators J(p, s+) where we recall we have
defined sy := —% and s_ := ”’T_’ We set my := cpp”. We note that @*E} €
D[bamg, b~!'] for some ideals a, b prime to g. This is clear for the Eisenstein
series by its definition, and for the theta series we need to observe that since
we are taking an r € GL,(K)y of the form wx?r" for some r' € GL,(K)p with
ry € GL,(t,) we have that the ideals t and v are equal to qq”. Hence we have that6 €
Mi(D[(0q9”)~", dqqeff*]). Hecne 0*€ M, (D[dqq eff”, (099°)~']) € M;(D[dqq”
eff?, 071 € Mi(D[dcqq”eff?, 07 ']). We then take b = 0~ ! and a = ¢ff”.

Before we go further, we collect some facts which will be needed in the proof of the
following Theorem. We start by recalling the so-called generalized M&bius function
as for example defined by Shimura in [30, pp. 163—164]. We restrict ourselves to the
local version of it, since this will be enough for our purposes. We have fixed a finite
place v of the filed K (recall here our abusing of notation explained above), and write
K, for the completion at v and v, for its ring of integers. We continue writing p for
the prime ideal of t corresponding to the finite place v, and p, for the maximal ideal
of t,. Finally we write 7 for a fixed uniformizer of t,.

The generalized Mobius function will be denoted by w, and it is defined on the set
of v,-submodules of a torsion t,-module. In particular we cite the following lemma
[30, Lemma 19.10].

Lemma 6.5 7o every finitely generated torsion v,-module A we can uniquely assign
an integer (A) so that

1 ifA=1{0)
B) = .
e [0 if A # (0)

We also recall two properties (see [30] for a proof) of this generalized Mobius
function, which will play an important role later. We have

Lo p((v/pn)) = (=)' N@p) " D2if 0 < r € Z.
2. u(A) # 0if and only if A is annihilated by a square free integral ideal of K.

Let us now denote by L := L, the set of v,-lattices in Kf Givenany € GL,(K,)
and an L € £ we define a new lattice by yL := {yx|x € L} € L. Conversely it is
clear that given two lattices M, L € Lthereexistsay € GLy(K,)suchthat M = yL.
We also note thatif L, M € L and M C L then we can write u(L/M). Let us now
take L := tﬁ C Kf Then by [30, Lemma 19.13] we have
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4
D wL/Mx e = [Ta = Np)'™'X), (11)

LoMeL i=1

where the sum runs over all lattices M € £ contained in L, and y is defined so that
M = yL. Here we write v, (-) for the normalized discrete valuation of K.

We will now use the above equality to obtain a relation between the number of left
cosets in the decomposition of Lemma 6.2. We set E; := G Ly(t,) and foranm < ¢
we set 7' :=diag[n, 7, ..., 7, 1,...,1] € GLy(K,) with m-many 7’s. As we
have seen in Lemma 6.2 we have a decomposition

EmYE, = |_| Ed?,
dy’

for some d' € GL(K,) N M(r,). We write ©'®) for the number of the cosets in
the above decomposmon. Then we have,

Lemma 6.6 With notation as above,

Z( DN T =

i=0

Proof We first note that by taking the transpose of the decomposition above we may
also work with right cosets, that is E¢\Y Eq = |_|,0 ‘d\ E;. We now let L := 1y,
and we see that to every coset ’d,(,f) E, for 0 < m < £ we can associate a lattice
M e Lby M :="dPL. Since 'd" are integral we have M C L. Moreover in the
sum >, - w(L/M)X vp(det) because of property (ii) of the Mobius function,
we have that the y’s have square free elementary divisors. Indeed it is enough to
notice (see for example [9, Theorem 1.4.1]) that for the lattice M = yL we have that
L /M is isomorphic to @og;<,(ty/Py)® where e; are the (powers) of the elementary
divisors of y, and r its rank. In particular we can conclude that each y in the sum
> omer W(L/M)XV[@r0) belongs to some ‘dY) E, for m equal to vy (det(y)).
That is, we may write

)4

ST u@/Mxe =3 -

LoMeL i=0

1 .
WX

where we have used property (i) of the Mobius function. We now set X = 1 and use
Eq. 11 to conclude the lemma. O

We are now ready to prove the following theorem.

Theorem 6.7 Let p € S and write v for the finite place of F corresponding to p as
above. Consider a Hecke character x of K unramified at the prime p. Let Fy :=
O*E% and write
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g =Fi|J(p,s1).

Then, for g € GL(K)n, with g, € GL,(ty), we have

g ((g A )) = C(p.ss) D c(r.q: g2)€, (1)

Test

with C(p, 52) i= (—1)" N ()"~ D052 ()" and

c(t,qig) = D, c(t,qm, O)ec(n, g, EL),

=t

where (11), € (nvn]f’)_lTvX, where T =T, N GL,(x,) and we recall that
T ={x € S|tr(S(v)x) C g},

where S(t) = SN M,(x),and T, .= T Q, t,.

Proof We will show the Theorem when F := F, = ©*E, and a similar proof shows
also the case of F_ = ©®*E* . We set g := g, and we note that the Nebentype of

O*E] is ¥ ~¢. We then have,
g9\ _
((57))-

o) i~ _p.a!
s g (1) (5 20)

where here we write d; and b; for the d’s and b’s corresponding to the Hecke operator
U (mr;) as described in Lemma 6.1, and in order to m;ake the formulas a bit shorter
we have introduced the notation B; := (—1)' N(p) "z + 5y (p)i =" In particular

we have that )
»x(n I) q sq
N K =
o e((57))

qc?[ ! —qbidi_l +sr}dl-_1
ZB Zwv(det(d )" IZF(( 0 oy )) =

1 qd; (—qbiq” +s)qd; Y _
ZB Zl/fv(det(d)) ZF(( = ))_

q4a;
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n

ZB Zwv<det(d NI D elr qdf Fyel (t(—gbig” + ) =

i= b; teS;

D B Y yndetd)™ D c(r.qd} F) Ze( Tqbiq®) | i (ts)

i=0 d; Tes,

Since b; € S(bc),, we have by [30, Lemma 19.6] that

> eh(—tqbig*) = |det(d)],"

b

if (¢*tq), € 7'~ 1¢7!T, for all v € h and zero otherwise. We now write

c(r.qdsF) = D c(t1,qd; O%)c(ty, qd; s EY),

T1+1T=T1

and from above we have that (¢*tq), € 0~ 'p=1¢!T, for all veE h. Moreover we
have that ¢(ty, gd'; ©*) # Oonlyif (g*119), € 0~ 1b ! ’1d T,d; forall v € hand
c(t2, qdf; EX) # 0,0nlyif (¢*12g), € 0~ Ip~! ’ld T,d; forallv € h. In the above
sum we run over all possible pairs of positive semi- deﬁmte hermitian matrices ty, 7,
with ) + 7, = 7, and set ¢(ty, gd; OF) = c(12, qd]; E}) = 0 if 71, 7, are not in
the set described above.

From now on we will be writing v for the finite place of F' corresponding to the
prime ideal p. We introduce the notation

={seS:g*sqed o 'dTd;, ord, (dbev(s)) = 2i},

where v(s) is the so-called denominator ideal associated to a matrix s, as for example
defined in [29, Chap. I, Sect. 3]. That is, the valuation at p of the denominator-ideal of
the symmetric matrix g*sq is exactly i, after clearing powers of p coming from dcb.
We note that since T € Sy we have that 7y € S; ifandonly if 1, € S; if 11 + 1o = 7.
We now rewrite the Fourier expansion of g as

-

>IN @ Z( DIN ()= 00 3 (0) Dy (det (d) ™'

Tes, i=0 d;

Z c(t1, qd'; ©)c(ta, qd;'s EX)|det (dy)|," el (1A "gTq)el (vs),

TI+1T=T
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where we have used the fact that |det (d;)|s = |det(d;)], since (d;)y = 1,, for any
finite place v’ not equal to v. We now work the inner sum for any fixed . That is,
- i W=D (s i —
DUDINE) T OO x (0D D W (det (di) !

i=0 d;

D> c(n, qd}; O)c(na, qdfs BY)det (d)], ", (12)

T1+17=T
or

ST D DN T N Ty (p) x

T1+0=1 i=0

> Wudet(d)) ' c(t1, qd}'; ©%)c(ta, qd;'s BY)|det (di)]," (13)
d;

i

We claim that this sum is equal to

N T O ) @ Y @) Y e gm0 g B, (14)

T1+1T=T1

where (¢*719)y, (¢*12q)y € 7207107 1c7I1 T = S,. Note that this is enough in
order to establish the claim of the Theorem.

To show this, we consider the nth term of the Eq. 12, that is the summand withi = n
and we recall that the d,,’s run over the single element 7 I,,. That is, the nth term is
equal to

N(p) T 0 1) )"y )Y e g, ©9)e(n, g B, (15)

T1+T=T

where (¢*119)v, (¢*129)y € 0"[1“c_'d,levc/Z\n =o"'p e ln 2T,

Note that the difference of the expression in Eq. 15, and the claimed sum in Eq. 14
is the difference of the support of the Fourier coefficients. Indeed note that in Eq. 15
(or better say in the line right after) we write 7, where in Eq. 14 we write T,
and of course T, C T,. Hence our aim is to prove that for every pair (71, 72) with
71+ 1, =1and i; € §; with j < n that contributes a non-trivial term in Eq. 15, its
contribution will be cancelled out by the lower terms (i.e.i < n) that appear in Eq. 13.
So the only terms that “survive” the cancellation will be the ones with 71, 7, € §,,.
Moreover all lower terms will be cancelled out.

We note that if we considera 7y € S; (hence 7, € §;) with j < n, then we observe
that given such a 7; and 12, we have that c(t1, gd;,; ©*)c(12, qd,;,; E7) # 0 implies
thatm > j.Indeedsincety, 1, € S; wehaveforanym < jthat(g*t1q),, (¢*12q)y ¢
oo d T T d,.
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Soin what follows we fix a pair 7 and 7, in S for some j > 0 with j < n. By [29,
Lemma 13.3] since we are interested in the question whether 7, 7, belong to a partic-
ular lattice, we may assume without loss of generality that our 7}, 7, locally at v, are
oftheformdiag[sy, ..., s,]fors; € K,. After reordering the s;’s we may assume that
Sj+1s---,8, are integral, while the rest have non-trivial denominators. That means,
that the d,’s for j < m < n with (11, gd;,; ©*)c(12, qd,y,; E}) # 0 can be taken of
a very particular form, namely we can take them to be lower triangular matrices (by
Lemma 6.2) with the diagonal of the form diag(m, ..., 7, w%+, ..., 7], where
€jti,...,ep €{0,1}and ej | + ...+ e, =m — j. Indeed the first j many 7’s on
the diagonal are imposed to us in order d;T1d7, d;>d; to have integral coefficients
along the diagonal. Given such a pair of indices m and j, with m > j we will write
)»,(n’ ) for the number of left cosets E vdy, with diagonal of d,, as just described. From
now on when we write a d,, or d; it will be always one of this particular form (i.e.
lower diagonal and with the above mentioned description of the diagonal).

We now claim that we may write

c(t1,qd;, ) = a, jc(ty, qd;‘, ),

and
c(r2,qd;, E}) = By jc(r2, qd, EY),

for some a,,,; and B, ;, and any d;. The terms c(z1, gd?, ©%), c¢(12, qd7, E7} ) are not
trivially zero since (djq*t,-d;-‘)v € boc ' T,. Actually for any m withn > m > j, and
for any d,, and d; of the form mentioned in the previous paragraph regarding their
diagonal we may write

c(ty, qd’

m’

OF) = ap,jc(ty, qd;‘, %),

and
C(r27 qd;;v Ei) == ,Bm,jC(TZ, qd*5 Ej.)v

for 7(, 7, € §;. We now compute the o, ;, B, j. We have by the explicit description
of the Fourier coefficients in Proposition 3.1 that,

c(v2, qdy, EL) = (Y x)(det (dpd;))p (det (dd; )" x
\det (dndf)d;'d; 37" c(r2, qd} EY).
Now we consider the theta series. We first notice that in order to compute the coef-
ficients c(t1, gd;"; ©7) for any i with 0 < i < n itis enough to compute the Fourier
coefficients of 6, (xw) with w = diag|d} di_l]h. We now note that by [30, Eq.
(A5.7)] we have that

0, (xw) = |det (d) |2 *pn(det (d)" x5, (det (d;))0y (x),
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where we have used [30, Theorem A5.4] and the definition of the theta series. In
particular we conclude that

c(t1, qdy,, ©%) = |det (dp)det (d; ")} pn(det (df))det (d; ")) c(t1, qd}, OF).

where we have used the fact that the character x is unramified at p, and hence x;,
can be ignored.
We now note that det(d,,) = n™ and det(d;) = 7/ In particular we have

Buj = )G )"y I [,

and
U = |ﬂm*1|g/2¢(n(m*j)t))n

In particular we observe that the «,, ; and B, ; do not depend on the specific class
of Ed,, and Ed;.

Now we remark that the coefficients c(ty, qd}*, ®*) and c(1, qd*, E?) depend
only on the determinant of d;, and not on the particular choice of the d;, as it follows
from the explicit description of the Fourier coefficients of the Eisenstein series in
Propositions 3.1 and of the theta series in 3.5. Especially for the theta series we remark
that it is important here that the character x is unramified at p. Hence going back
to the Eq. 13, we observe that we can factor the term c(7y, gd}, ©®*)c(1,, qd}‘, E})
since it does not depend on a particular choice of d;. Here we remind the reader the
convention done above, that the d;’s are taken of a particular form, i.e. lower diagonal
and a condition on the diagonal are described above. So for the fixed choice of the
pair t; and 1, we see that in order to establish the cancellation of the contribution
of the fixed pair (71, 72) in the sum, we need to show, that

- m mn=1) 400 n(n—1) n—m —na (i
DU )N () OOy (0)' ", B ldet (dy) [0S = 0.

m=j

(We remark one more time here that the outer summation runs from j to n, since
for the fixed choice of 7| and 7> we have that c(zy, gd;"; ®)c(z2, gd}; E}) = 0 for
i<j.)

Using the fact that ¢ (7)™ ~/)" is equal to ¢ ()™ ~)" and the restriction
¢1 = 6, a quadratic character, we obtain ¢ (7)™ ~/)" = 1. Hence we may rewrite
the above sum as

n
(Xn_jw_j)(P) Z(—l)mN(p) 20D 4 (nes )+ 0D |7Tm—j |Z—r/2|nm—j |:l)/2 %

m=j

det (d,)|;" A = 0.
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Of course ||, = N(p)~! and hence we have

n
Z(_ l)m N(p) m(mz_l) +m(n+s+)+"(”T_])+(j—m)(n—r/2)+(j—m)n/2+mn )‘fr{) —

m=j

n

Z(_l)mN(p) mm=l) +m<n+s+>+w+(j—m)<n—r/2>+<j—m>n/z+mnkg) -

m=j

m(m—1) n(n—1)

2(‘2*+m(n+s+)+*2—)+mr—nm ( )
2 A

N (p)/ =1 2H0 2% (—1)" N (p)

m=j

That is, we need to establish that

n 2(Wer(nﬁ».u,H»wH»mlfmn )
m
E (=D"N() 2 M =0,

m=j

which is equivalent to

Z(_ l)mN(p) m(m—]+r;+2$++r) )\'1(7{) _ 0’

m=j
and since s = —”LT” we get that we need to show that,
DEDNETE A =0, (16)
m=j

We now recall that we are considering d,,,’s of very particular form, namely lower
diagonal matrices where the diagonal is of the form diag[m, ..., m, w%+, ... w%],
where ej,...,e, €{0,1} and e; ;1 + ...+ e, =m — j. We wrote Aﬁ,{) for the
number of them. Recalling now the notation introduced in Lemma 6.6, we claim that

W = il < N () (17)
We first recall that by Lemma 6.2 we may pick the d,,’s in the decomposition
E,mnE, = ,,, Evdn such that, if we write d,, = (a;) we have that a; = 0 for
i <k (i.e. lower triangular), and for i > k we have that a;; could be any representa-
tive in v, of v, /p, for k € S and i ¢ S and zero otherwise, where S is the subset of
{1,..., n} of cardinality m indicating the indices of the 7’s in the diagonal of d,,.

Since we consider d,,’s with 7 in the first j entries of the diagonal we have that
aix =0 for 1 <k <i < j. Moreover the number of choices for the lower right
n — j xn— jpartofd, isequal to /;Lf,?:j) since we are putting m — j many 7 on a
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diagonal of length n — j. We can conclude the claimed equality after observing that
we are free to pick for the entry a;; withi > kand j+ 1 <i<n,and 1 <k < j
(i.e. the lower left (n — j) x j part) any representative of v, /p, as long as a;; = 1.
That is we have N (p)"*~"/ many choices, since we place n — m many ones in the
n — j many lower entries of the diagonal of d,,.

By Lemma 6.6 we have,

n—j

SU-DINE T " =0,

i=0

and using Eq. 17 we obtain

Z( DIN(p)“T N(p) ==+ =,

or,
n
. (m—j)m—j-1) _
SN D — o,
m=j
or,
" m(m—1)
D (=D"N@
m=j
which establishes Equality (16), and hence concludes the proof. (]

6.2 The Ramified Part of the Character

We now fix two integral ideals ¢; and ¢, of F with ¢;|c;. We write C; := D[b~!, be;],
fori = 1, 2 and define the trace operator Trfi M (Ca, ) = Mi(Cy, ) by

£ Tre @) = D Y, (det (@) fxr),

rer

where R is a set of left coset representatives of D[67", be]\ Db, bey]. We note
that for a Hermitian cusp form g € S;(Cy, ¥) we have the well known identity

<gf>,=<g, T":i ) >, (18)
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where < -,- > denotes the adelic inner product with respect to the group
D[b~!, be;]. We now give an explicit description of the trace operator Trg? in the
case of supp(c;) = supp(c,), where by supp(m) of an ideal m is defined to be the
set of prime ideals q of F' with qlm. We note that this is similar to the description
given in [27, p. 91, p. 136]. We write cgcfl = ¢ for some integral ideal ¢ and we fix
elements ¢, ¢;, c; € F, such that cog = ¢ as well as b € F,* such that bg = b. We
first show the following lemma.

Lemma 6.8 Let a be an integral ideal prime to ¢,. Then we have the decomposition

D[b7!, bac;] = |_| D[b~", bac,]r,

reR
where

baciu 1

R={( ! O)meS(g)h mod ¢,

witha € F; such that ag = a.

Proof Clearly without loss of generality we can set a = g. Moreover it is clear that
the right hand side of the claimed decomposition is included into the left. To prove

the other inclusion we consider an element (é f)) € D[b™!, bc;] and show that

A B

there exists an » € R such that ( CD

) r~1 e D[b™', bey] or otherwise there exists

u € S(g)n mod c such that

AB 1 0 _1
(65) (o t) & 2107 06

That is, we need to prove that there exists such au as above so that C + bcy Du < be,.
Since C < bejv we can write it as C = bc1Cy with Cy < ¢, and hence we need to
show that bc (Cy + Du) < beyr. By our assumption that supp(c;) = supp(c) we
have that DA* = 1,, mod (l_[c”c
eq for the largest power of it that divides ¢ and we define e := max(eq). Then we
have that (DA* — 1,)¢ < ct. That means that there exists an element D < t such
that DD =1 mod ¢t and ﬁCo € S(g)n. Indeed we have that

q) t. For a prime ideal g that divides ¢ we write

(DA* —1,)* = DA*DA*--- DA* + ...(—1)°I, < cr,
or equivalently

D (A*DA*---DA* + .-+ A*) = (=1)'I, mod cr.
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So we need only to check that the matrix
(A*DA* < DA*+ .-+ A*) Co=A*DA*---DA*Cy + ... + A*Cy

is hermitian. But we know that A*C is hermitian and since bc; € F, we have that
also A*Cy is hermitian. The same reasoning holds for the product DC. In particular
we have

(A*DA*---DA*Cyp)* = C;AD*A---D*A = A*"CoD*A--- DA* =
A*DCjA---DA* =
= A*DA*...CoA = A*DA* ... DA*C,.
This establishes the claim. Then we can take u = (—1)¢ DCy to conclude the proof. [

Let us now assume that the deal ¢ = coc;' above is the norm of an integral
ideal ¢o of K, that is ¢ = Ng/r(co). We also pick an element cq € Kg such that
cot = ¢g. We consider now the Hecke operator Tc(c) =T(c) := Hvlc T (o,) for
o, = dlag[covln, covl ], where we take C = D[bc;, b~'¢]. Note that this group is
of the form D[b ! bc] with b = (bep)"land T = ce; = ¢p. By Lemma 6.1 we have

that
Copln Copb
COUC—||C( Covl)’

where b € S(bcy),/cS(bey),. We now observe the identity

0 —1,\ (cily —cg'b\ (l, O 0 1, (1,0
1, O 0 ¢ '1, 0 col, -1, 0)  \»b1,)
We now write V(cg) : Mi(D[bca, b7']) — My (D[bcy, c¢b™!]) for the operator
cl, 0
defined by f(x) — f (x ( 0 cl,

lation that the trace operator can be decomposed as

. We can conclude from the above calcu-

Trii=WoV(w) oT() oW,

where the operators are operating from the right. We note that in general the
image of the right hand side is in M (D[b~ "¢, bc;]) which contains of course
M (D[b™ !, be;]), where the image of the trace operator lies. We summarize the
above calculations to the following lemma.
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Lemma 6.9 With notation as above, and assuming that there exists a ¢y such that
¢ = Ng/r(co) we have

Tre=Wo V() oT(c)o W

The effect of 7 (c) on the g-expansion. We now study the effect of the operator
T (¢) and of V(co) on the g-expansion of an automorphic form F which we take in
M ([D[bey, b c]l, ¥ ~¢). We write

F ((g séq)) = Z c(t, q; Fej (rs).

TS

Setting G := F|T (¢) we have,

1 q5q co*l, —co'bYY) _
¥ (det (co)” ZF(( ; )( 0 il )) =
where b runs over the set S(bc;),/cS(bc;). In particular
g9\ _
“((67)) -
—1 g
I/I(det(co)) IZF((qCO qCO P-_’_lsqco )) —
qcy
ZF((qCO( qbq* +s)qco))
qcp

Y(det(co)™' D D c(r, gy Pl (t(—qbg™ +5)) =

b tESH

y(det(co)™ D (Z e&(rqbq*))c(r, qcl: F)el(ts) =
b

TeS,

V¥ (det(co)™ D (Zeh<rqbq ))c(r qcy; F)ej (vs).

Test b
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Note that the inner sum is well-defined since by [30, Proposition 20.2] we have that
c(t,gci; £) = Ounless e (g*cotgcys) = 1forevery s € S(bc)n. Moreover (see for
example [30, Lemma 19.6]) we have that

—n?
> en(tgbg) = leoly" .
b

if t € A :=¢qT(bcy)g*, and zero otherwise. Here T (bc;) denotes the dual lattice of
S(bcy) := SN M(bey)). That is,

G ((g S;)) = |CO|1_<"21//(d€f(Co))_1 Zc(‘r, gcy; F)el (ts). (19)

TEA

The effect of V (¢y) on the g-expansion. Now we turn to the operator V (¢p). With
F we now consider G = F|V (¢g). Then for the g-expansion of G we have,

q Sé _ q qu a)lll 0 _ é\()q Saco _
o((57)) = ((07) (%) =+ ((T5) -
Z c(z, coq; F)el} (vs).

Test

We now take F of a particular dorm, namely we take F = ®*Ex, and assume
that the conductor §, of the character x has the property that f, |cy. We have that

c(r.q%. O'E}) = > c(n1.9G. O%)c(n2. 6. EY)

T1+1T=T
We now note that
(1, gco, O) = |cflx” dnlc)" x5, (co)"c(T, g, ©),

and
c(r2, qco, EY) = W X)(co) "p(co) ™ leol P e(a, q, E).

‘We then conclude that,

2—n(n—r/2)

c(t, g, ©'E}) = ¥(co) "lcol g’ c(r,q, O"E}). (20)

In particular we have that ¢(t, o, ©*E%) # 0 only if
(co gty @ € (5,1, 0T

for all v|p.
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r r

Similarly we have for ®*E* but we need to replace 5 with n — 5 in the above
equations. That is

n(r/2)

c(t,qc0, OE*) = ¥ (co) "lcol g c(t, q, ©°E¥). 21

6.3 Rewriting the Rankin—Selberg Integral

We now use the above identities to rewrite the Rankin—Selberg integrals. We consider
ap e Sand we let fy € Sy (C, ¥) be an eigenform for the Hecke operator U (p), of
eigenvalue «o(p). We take C := D[b~!, bmy] where mg := ¢’pp” for some ¢’ prime
to p. We now consider a Hecke character x of K, of some conductor f,, and write
m, for the ideal ¢'p"?p”»# where p”» is the smallest power-p ideal contained in the
conductor f,. Moreover we take ¢’ small enough so that it includes the prime to p
level of ®. Note that by Theorem 3.4 the level of ® supported at p is exactly p"» p»”.
‘We then show,

Proposition 6.10 Consider any c, € N with ¢, > ny, > 1. Then we have
a(p) ™! <fy, OEL > =
ap)™ 7 < fo|W, O EL[V(p)"* T o U)® ™ >u, .

Proof
< fo, ®E:l: >mx:

< fo, OFL|Tro) >my=< fo, OEL|W o V(p)* Lo U@ oW > =
a(p)™ = < flUP)> ", OEL W o V()" o Up)™ oW ! >, =

< £, OE:|[Wo V(p)» "o U@ "o W o WoU@™» ™ oW !>y
a(p)—n,j-&-cp

a(p)™ ™ <, OEL|Wo V()™ toUm> oW > =
a(p) = < W, O EL V)" o UM» ™ >, .
Hence
<f5, OEs > = a(p)"* ™ < fo|W, O EL|[V(p)" o UP® " >n,,

or
a(p) ™" < £y, OFL >m, = a(p) P <fo|W.O*ELIV(p)"™ o UmP ! > .
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7 The p-stabilization

Let us consider C := D[b~!, bc], where we take the integral ideal ¢ prime to the
ideals in the fixed set S. We consider a Hermitian cusp form f in S;(C, 1) which
we take to be an eigenform for all the “good” Hecke operators in [, fe R(Cy, Xy),
where R(C,, X,) is the local Hecke algebra at v defined in [30, Chap. IV]. Our aim
in this section is to construct a Hermitian cusp form fy, of level ¢ Hp cs PP = em
which is an eigenform for all the “good” Hecke operators away from ¢m and for
the operators U (i, ;) for all finite places v corresponding to prime ideals in the set
S. Our construction is the unitary analogue of the symplectic situation considered
in [2, Sect.9]. It is important to mention here that our construction is adelic, so it
can be used to generalize the one in [2] to the totally real field situation. Here, as we
mentioned in the introduction, we restrict ourselves to the case where all prime ideals
in § are inert, but our arguments generalize also to the split case. We will consider
this in [7].

We write Mg for the submodule of S;(D[b~", bem], ) generated by f under
the action of the Hecke algebra [[, . R(C), X,), where C' = D(b™!, bem). We let
fo € Mg to be a non-trivial eigenform of all the Hecke operators in [[,.g R(C), X,).
In particular fy # 0. We write the adelic g-expansion of f as

f ((g sgq)) = ¢t q: e} (vs).

Test

ves

and of £ as,

fo ((g SL?‘I)) = z c(t, q; fo)e (ts).

Test

Wepickat € Sy NGL,(K)andg € GL,(K)y such that c(z, g; fy) # 0. In partic-
ular that means that we have g*tq € T, where as always T denotes the dual lattice to
S(6™%) := 85N M,(b~"). Then for any finite place v corresponding to a prime ideal
p € S we have [30, Eq. (20.15)]

Z,(fo, X)e(x, g3 f0) = D Yre(det (d*)|det (d)|;" X" “De(z, gd*; fy), (22)
d

where d € E, \ E,qE,, and Z,(fy, X) denotes the Euler factor Z,(X) of Sect.4.1.
Moreover vy (+) is the valuation associated to the ideal p, and | - |, the normalized
norm.

Following Bocherer and Schmidt [2] we now try to describe the right hand side
of (22) using the Satake parameters of the form f. As in [loc. cit.] we start with the
Andrianov type identity generalized by Shimura [30, Theorem 20.4]. For the selected
1€ S NGL,(K)and g € GL,(K)n we define (this is the local version at v of the
series D (7, g; f) considered in [30, p. 169])
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Dy(r,q :£,X) = D> eldet(gx))ldet(x)],"c(z, gx; £)X ">,
x€B,/E,

where B, = GL,(K,) N M,(t,). We will employ now what may be considered as a
local version of the Andrianov—Kalinin equality in the unitary case. Namely we will
relate the above series D, (7, g : f, X) to the Euler factor Z,(fy, X).

We first introduce some notation. We let £, be the set of v-lattices L in K" such
that £*7€ € bo~! for all £ € L. Moreover for the chosen ideal ¢ above, and for two t
lattices M, N we write M < Nif M C N and M ®. t, = N Q. v, for every v | c.
We now set L := gt”". Then we have the following local version of [30, Theorem
20.7],

Dy(t,q: £, X) - £,0(X) - gu(X) =

Zu0X) - > u(My/Lo)e(det ()X ez, y: p),
L,<M,eL,

where £ ,(X) := Hl'.';ol(l — (=D7IN(p)"* X)~!, and g,(X) is a polynomial in
X with integers coefficients and constant term equal to 1. In the sum over the M’s,
we take y € GL,(K,) such that M, = yt" and y~'¢g € B,. Furthermore 1(-) is the
generalized Mobius function introduced in the previous section, and as in the last
section we write vy, (+) for the discrete valuation associated to the prime ideal p. We
now cite the following lemma regarding g, (X) (see [23, Lemma 5.2.4]).

Lemma 7.1 Write (¢*tq), = diag[l,_,, m,s1] with s1 € 8" (v,). Then we have

r—1

&) =[] = D' NETX).

i=0

In particular we conclude that if (q*tq), is divisible by w, (i.e. r = n) then we
have that g,(X) is equal to S(IL(X).

Our next step is to rewrite the expression

S UML) Ye(der ()X ez, yi 1),

L,<M,eL,,

in terms of the action of the Hecke algebra. By the above lemma if we take m,g
instead of g we obtain,

Dy(t,nq; f,X) =Z,f, X)x

S WMy /L)Y (et ()X Ve, v 8,

Ly<MyeL,
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where now L, = 7t} and M = yt". Since the y’s are supported only at v and we
are taking p [ ¢ we have ¥.(det(y)) = 1. That is,

Dy(t,mq: £, X) = Z,(£,X) - D p(M,/L)X"P 4T Ve, yi ),

L,<M,eL,

Now we rewrite the above expression in terms of the Hecke operators U (rr;). In
particular we have (see [30, proof of Theorem 19.8]),

D,(t,nq; £, X)=7Z,(f, X)x
c(r, q: | (Z(—l)"N(p)“"l)/zwv(n"”ﬂv(p)"““U(nn_,-)xf)) ,
i=0

where recall that we write the action of the Hecke operators from the right. Using the
fact that f; is obtained from f by using the Hecke operators at the prime p, and the
fact that the Hecke algebra is commutative we obtain that the above relation holds
also for f,. That is, we have

Dy(t, 7q; fo, X) = Z,(f, X)x (23)
c (r, g: fol (Z(—l)"N(p)“"”/zx/fv (n"”)N(p)“"”U(nn_i)X")) :
i=0

We first rewrite the left hand side of the above equation. We recall that

Dy(z, mq; fo, X) = Z Ve(det (gx))|det (x)]," (T, mgx; fo) X VP @),
xeB,/E,

Now we use the fact that f;, is an eigenform for the operators U (77;). We write A; for
the eigenvalues. Then we have that

c(r, gx, o) = N(p) ™" v () " hnc(z, g, fo).
That is we obtain,
Dy(x, 7q: fo. X) = Zy (o, )N (p) " e(z, 4, fo),
and so we can rewrite Eq.23 as,

Z, (o, X)N ()" c(z, g, fo) =
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Z,(f, X)e(t, ¢; o) (Z(—1)fN(p)“"—”/zwv(n")N(p)—“"—%n_ixf) :
i=0

‘We note that we have

ii=1)

N(p) 2

i = NE)VE (1, .. 1) (24)

and (¢ ... t) VE,_i(ty, ..., 1) = Ei(tl_l, ...,tn’l) where E; is the ith symmetric
polynomial. Indeed Eq. 24 is the unitary analogue of the formula employed in [2, pp.
1429-1430] of how to obtain the eigenvalues of the Hecke operators U (7r;) from the
Satake parameters at p, and it can be shown in the same way. Hence we conclude
that after picking t and ¢ such that c(z, ¢, fy) # 0 we have

M N®) " Z,(F0, X) = Z,(F, X)x

O =1 N Iy, (r) XN (p) N (p) T

i=0

(ti. . t)E 07,

n(n+1)

and using the fact that N(p) 2 A, =1;...1, we get

Z,(f0, X) = Z, (£, X) (Z(—1)"wv<n"—">X"N<p>2""E,»(rl‘, s z;‘)) =

i=0
Z,(f, X) (i(—l)"wv(n")N(p)z""Ei (G z,ﬂ)xf),
i=0
and so
Z,(fo, X) = Z,(f, X) (Zn:(—l)l‘wum")X"N(p)MEi(tl‘, oy t;‘)).
=0
Equivalently

Z,(f0, X) = 2,8, ) [ [ (1 = N@ ™ v (1)1 X7)
i=0
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and so we conclude that
" n P . 71
Z,(o, ) [T (1= N>y ()7 X)) = Z,(f, X).
i=0
We now make the following definition

Definition 7.2 Let f € S;(C, ) be a Hecke eigenform for C = D[b™!, b¢]. Let p
be a prime of K prime to ¢, which is inert over F. Then we say that f is ordinary at
p if there exists an eigenform 0 # fy € My, C Sk (D[b™", bepp”], ¥) with Satake

parameters f, ; such that
n
_ ntD
‘ (H tP.i) N(p)~ 2
i=1

where || - ||, the normalized absolute value at p.

=1,

)4

Summarizing the computations of this section we have,

Theorem 7.3 Let £ be an cuspidal Hecke eigenform. Assume that f is ordinary for
all primes in K above p that are inert from F. Then we can associate to it a cuspidal
Hecke eigenform £y such that its Euler factors above p are related by the equation

Zy60. X) [T (1 = N> v ()7 XT) ' = Z, (8, X),
i=0

where Z,(f, X) and Z,(fy, X) are given by (i) and (iii) respectively of the Euler
factors described at the beginning of Sect.4. Moreover the eigenvalues of fy with
respect to the Hecke operators U (p) are p-adic units. For all other primes q we have
Z4(f, X) = Zy(fo, X).

8 p-adic Measures for Ordinary Hermitian Modular Forms

We recall that for a fixed odd prime p we write S for the set of all prime ideals above
p in K, that are inert from F, and we assume that S # (J. Moreover we denote by v
the ideal ]_[p s P. We denote by K (S) the maximal abelian extension of K unramified
outside the set S, and we write G for the Galois group of the extension K (S)/K.
We consider a Hecke eigenform f € S, (C, ¢) with C = D[b~!, bc] for some ideals
b and ¢ of F which are prime to p. We assume that mg > 3n + 2, where we recall
that mg 1= min,c,(m,) with m, := k, + k,,. Moreover we take f to be ordinary at
every prime p in the set S in the sense defined in the previous section. By Theorem
7.3 we can associate to it a Hermitian modular form fy. In particular the eigenvalues
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of fy with respect to the Hecke operators U (p) for all p € S are p-adic units, where
we recall that we write U (p) for the Hecke operator U (;r,,) where 7 is a uniformizer
corresponding to the prime ideal p. In this section we write «(p) for U (p)fy = o (p)fo.
We also write {¢; ,} for the Satake parameters of fy at the prime p.

Givenak € ZP and at € Z* we define a u € ZP as in Sect. 4. Since in this paper
we have been working with unitary Hecke characters so far we need to establish a
correspondence between Galois characters and unitary Hecke characters. We start
by recalling the definition of a Grossencharacter of type A, for the CM field K. In
the following for an integral ideal m of K we write I (m) for the free abelian group
generated by all prime ideals of K prime to m.

Definition 8.1 A Grossencharacter of type Ay, in the sense of Weil, of_conductor
dividing a given integral ideal m of K, is a homomorphism y : 7(m) — Q such that
there exist integers A(7) for each t : K < C, such that for each « € K* we have

x (@) = HT((X)M”, if =1 mod *m.

Here the condition « = 1 mod *m means that if we write m = Hq q"e with q dis-
tinct prime ideals and nq € N then vq(o — 1) > nq, where v, the standard discrete
valuation associated to the prime ideal q.

It is well known (see for example [24]) if since we are taking K to be a CM field
then the above A(7) must satisfy some conditions. In particular if we select a CM
type of K, which we identify with the places a of F, then there exists integers d, for
each v € a and an integer k such that

1 (aP\*
x (@) = H o (a—”) , ifa=1 mod *m.

We now keep writing x for the associated, by class field theory, adelic character
to x. As itis explained in [24, p. 286] the infinity type is of the form,

ks
X =]] ( o ) : (25)

We now consider the unitary character x' := x| - &i/ 2, where | - |5, the adelic
absolute value with archimedean part |x|y = [],., |*v|v, Wwhere | - |, is the standard
absolute value of C. We then have that

k/24d, k+2d, k+2d,
W =TT e —||(—’“”+ )—||(—’C”+ ’ )
a = ~k/2+d, |~ - Vk/2+d, ) T 2d, | *
% /2+ e (xvxv)k/ +d, e |xu|k+ d

vea

vea
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In particular to a Grossencharacter x of type A of infinity type as in Eq.25 we can
associate a unitary character x ' of infinity type {m,}yea With m, := k + 2d,. The
relation between the associated L functions is given by

L(s, x) = L(s +k/2, x").

In particular, in what follows, when we say that we consider a character x of G
of infinite type ¢ € Z* we shall mean that the corresponding unitary character, in the
way we explained above, is of infinity type . And we will keep writing x, instead
of x! for this corresponding unitary character.

Now we return to the general setting introduced at the beginning of this section.
Given a character y of G we write f, = ]_[pE ¢ p"v for its conductor and define the
ideal m, := a]_[j(pp")mlg where my, = ny, forny, # 0 and m, = 1 for n, =0, and
a is a small enough ideal so that it is included in ¢ and the prime to S level of the
theta series ©,, where ©, is defined at the beginning of Sect. 6. Moreover we define

mo := a[[, s pp” and
AT = C)TICS) TIN G T D N (v),

where C(x~!) was defined in Eq.4, C(S) in Proposition 3.1, and we recall that
v = [[,csp. We also define

2_n__nr

A" () =C(H'C® NG 272 N(v),

P

5+7 +r
BﬁL = nQ2n—1)—n(%+32 —1)—n? _I’l
00 =[N i [[co.-—>)| -
plfy pliy

-p

- n@2n—1)—n(—5+3—-1)—n 3n—r
B0 = [[ Ny s TTee -=——) | .
plfy P«

where C(p, s) was defined in Theorem 6.7. We also write Co(m, ) for the quantity
appearing in Theorem 4.1 by taking ¢” equal to m, there. We then have the following
theorems,

Theorem 8.2 Assume we are given at € 7* such that
(ky =y —n) + (kyp — Lyp) =1, Yv€a

for some r > n. Moreover assume that r > n if Yy = 1 or ¢ = g. Then there exists
a measure u?’ , of G such that for any primitive Hecke character x of conductor

fy = Hp pe of infinite type xa(x) = x; " |xa|" we have
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AT ()BT (x) - _
d + Ny np
/G X = =G Ha(p) T(X) " x

rent2

Hf[ L= x5, N(p) 2 L L5 0
ﬂﬁQfO ’

Pl i=1 1 - X(p)ti,pN(p)%_l

where B is as in Theorem 5.2, and Q, € C* is the period defined in Theorem5.1
corresponding to the eigenform fy. In the case of r = n + 1 and F = Q we exclude
the characters x such that (xy), = 0.

‘We remark here that on the left hand side, y denotes a Galois character to which by
class field theory we can associate a Hecke character of A type, and by the process
described above we can further associate to it a unitary character x'. Then as it was
indicated above it is our convention that in the right hand side of the above theorem
we write x for this x'. Moreover we recall that we declared the infinite type of x to
be the infinite type of x!.

Furthermore we remark that the archimedean periods we use for our interpolation
properties are the ones related to f. However it is not hard to see by the definition
of these periods in [6] that they are related to Q¢ by some algebraic factor, which
can be made very precise. For the cases excluded in the above theorem we have the
following theorem.

Theorem 8.3 We let q be a prime ideal of F, prime to p. Assume that r = n and
further that r; = 1 or ¢ = g there exists a measure u;f a such that for all characters
x of G of infinite type t we have

ATGOBT(x) _ N
d + — ny np
/G Kb = G ga@) ()" x

n—1

‘ 1= x® T, NE) Y Lo, £, 1)
- N(g)™! o —
[T a-cyr@nN@ )}}H(I_X(p)n’pmp)_l) TN

i=0
i+n=1mod?2

where AT (x) and B (x) are defined by taking r = n there.

For the other critical value, which does not involve nearly-holomorphic Eisenstein
series we have the following theorem.

Theorem 8.4 Assume that i # 1, ¢ # g and r > n. Then there exists a measure
Kg., on G such that for all characters x of G of infinite type t we have,

. AT(OB (0 _ _
d = - Ty np
/Gx 2 Co(m,) plf!a(p) T(x)
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Hli[ L= XM N® 5 Lo(55L 8, x)
ﬂﬁQfo ’

Pl i=1 1 - X(p)[i,pN(p)%71

And finally,

Theorem 8.5 Assume that Yy = 1 or ¢ = g, and moreover r > n. Let q be an ideal
prime to p. Then there exist a measure [i; at such that

_ A B () . .
/Gxduf,fw !}x(p) ()"

n—1

A n 1— ( )_ltl-_]N( )”*5”
T (1—(an(q)zv(q)’*l*'—")]'[l"[( X fip )x

Pl i=1 - X(P)ti,pN(P)%A

i=0
n+i=1mod?2

2
JT/SQfO

LU(Sn_rv fv X)

Remark 8.6 We remark that in the interpolation properties above, at the modified
Euler factors above p, we use the Satake parameters of the Hermitian form f,, and
not of f. However Theorem 7.3 provides a relation between them.

The rest of this section is devoted to proving the above theorems. We will establish
in details the proof of Theorem 8.2 and then comment on the needed modifications
to establish the rest.

‘We define,

7= B [V | [ []Ck s Tk.s0 ],
plfy Pl

and

7= OB | [ [V ) [[Tck.s0) " Tes) |
plfx Py

where ©* and E7 are the series defined at the beginning of Sect. 6, associated to
the character y, and C(p, s+ ) is defined in Theorem 6.7. We now define the following
distribution on G, which later we will show it is actually a measure. For the definition
of the distribution it is enough to give the values at each character x of infinite type ¢.
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! 1 —n — —n,
Lxduf,+,t = nﬂQf0A+(X) [Te®™ | ([Te@m ] 00 x

plfx plfx

<fW. FHTJUum™ ™ >,
plfy

We now show that g , , is actually a measure. We start by recalling the classical
Kummer congruences (see [24]). Let Y be a profinite topological space, and R a
p-adic ring.

Proposition 8.7 (abstract Kummer congruences) Suppose R is flat over Z,, and let
{fi}ics be a collection of elements of Cont (Y, R), whose R[1/p]-span is uniformly
densin Cont (Y, R[1/p]). Let{a;}ic; be afamily elements of R with the same indexing
set 1. Then there exists an R-valued p-adic measure L on'Y such that

/ﬁdu:ai, Viel
Y

if and only if the a;’s satisfy the following “Kummer congruences”:
forevery collection {b;};c of elements in R[1/ p] which are zero for all but finitely
many i, and every integer n such that

D bifiy) €p'R, Vy ey,

we have

Zbiai € an
Proof [24] O

Proposition 8.8 The distribution i , , is a measure.

Proof We establish the Kummer congruences. We first start with a remark. For a
character x of conductor f, = Hp <5 P"'7 we consider any vector ¢ = (cp)pes With
¢p € Z, and ¢, > max(ny, 1) for all p € S. Then, by the same considerations as in
the proof of Proposition 6.10, we have that

[Te™ | ([Tem? | <tiw. 7 [JU@™ >n,

plfy plfy plfy

[Te@ ™ ) [Tew 2] <tW. FHA]TUG" >m=

plf)( pl/fx plf)(
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[Te ") ([Tewm "] x

plfy plfx

<wW.F 1 [Tve | (TTvo> | >m -
plfy Plfy

We now consider a finite set of characters x; with i = 1,...¢ of conductors
fro = HpeS p"ei. We define ¢ = (cp)pes With ¢, := max(max;(ny;), 1). We now
let O be a large enough p-adic ring and take elements a; € O[1/ p] such that

¢
Z aixi € p"O
i=0

for some m € N. We then establish the congruences

12
D a At ot FI [Tue™ | [[Tuee | € polign.

i=0 plfy P«

The above statement should be understood that the g-expansion of the Hermitian
modular form on the left has coefficients in p™O.

The first observation here is that by Theorem 6.7 and by the discussion right after
Proposition 3.5, the Fourier expansion for all

G =77 [luw> | ([]vem>!

plfy plfx

is supported at the same Hermitian matrices. That is, the sets Supp; := {(z, q) :
c(tr,q;G;) #0}fori =1, ..., ¢, are the same.

We note here that we need to apply one power less of the Hecke operators U (p) at
the primes p which divide f,, since for the rest we have already applied U (p) as the

n’th term of the operator J (p, s).

It now follows from the explicit description of the Fourier coefficients given in
Propositions 3.1 and 3.5 and by Eq. 20 that the coefficients of A™(x;)z( X,-)’”"T;
are all p-integral and that we have the congruences

14
> @At Fl [ [Tueme | [[Tuwe | € p"ollgn.

i=0 Plfy pes
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Indeed, let us write R for the “polynomial” ring O[q|q € Ps], in the variables q €
Ps. where Py is the set of prime ideals of K not ig the set S. A character x of
G, induces then a ring homomorphism yz : R — Q,,, where we have extended

O- linear the multiplicative map x : Ps — @; Given an element P € R we write

P(x) for xg(P) € @p. Then by Propositions 3.5 and 3.1 we have that the Fourier
coefficients of AT ()t (i) " F. ; at any given Hermitian matrix t are of the form
Pr, (xi) Pr,(xi) = P:(x;) forsome Py, P, € R, with P, = P P,.In particular if we
have > . a; x; € p"Othen >, a; P;(x;) € p"O. We also remark here that we need to
use also Proposition 3.3, which guarantees that the coefficients of the Eisenstein series
are supported only at full rank Hermitian matrices, and hence no L-values of Dirichlet
series appear in the Fourier coefficients (and so the polynomial description above is
enough). Moreover we also use the fact that the operator U (p) is p-integral as it was
shown using the g-expansion in Eq. 19, where in the notation there U (p)" = T (p™)
foranym e Nandp € S.

Itis now a standard argument using the finite dimension of the space of cusp forms
of a particular level (see for example [2, Lemma 9.7] or [11, p. 134]) to show that
by taking projection to fy| W we obtain a measure. For this of course we use also by
Theorem 5.1, 2 (fy) is up to algebraic factor equal to < fy, fy >. Hence we conclude
that ,u/f’ ;.+ 1s indeed a measure. O

We now define the measure j1g on G by
/ Xd:ug = Hgv(X(nv)|7Tu|r+n)’
G veb

where g,(X) are the polynomials appearing in Theorem 4.1. Note that g, € Z[X]
with g,(0) = 1, and hence since we evaluate then at places prime to p, we have that
g is indeed a measure. We now define are measure '“Z , as the convolution of /,Li n
with pg. In particular we now obtain after evaluating at a character x that,

[ () (f)-

a4 00 [ [Te@™ | | [Tam™ ) z00™7x

0 pliy plfx

<fIW.F U™ =m, [[eoxG@lml ™).

plix veb
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However we have by Proposition 6.10, by taking there n, = ¢, for all p|f, that

[Te@™ ) [[Tewm | <blW, 7, >n=
plfx plfx

[Te@ ™ | {TTe@® ) <@l []/®.50), 0B >,

plfy plfy plfx

and using Lemma 6.3, and in particular Eq. 9, we get that the above is equal to

Ha(p)_”v Ha(p)—l H(_l)nN(p)n(Zn—l)—n(%)X

plfx plfx Py
[TO = x® ™' 'Ne) =) < fo0. 0B, 4 >, -
i=1

We now use Theorem 4.1, where we pick an invertible T such that c(z, r, fy) # 0,
which is of course always possible since f is a cusp form. Moreover after using the
fact that ¢(t, 7rr, fy) = N(p)’"za(p)c(r, r, fy) we have that

/ xdui, =B x o' [ [Ta®@™ | ATGOT(0 ™ x
G
Pl

ntr " r—n+2 L(V+Vl b va X)
N(p)"@=D=nC= TT(p — y () 7 'Np) =) | —2 222
[[N® [Ta=xm ' 'Ne ) TR

plfy i=1

’

where B is some non-zero algebraic constant independent of x. We then define the
measure ji¢, 4 = B~ ug,. Using the fact that f and fy have the same Satake para-
meters away from p, we obtain the claimed interpolation properties of Theorem 8.2.
The proofs of Theorems 8.3, 8.4 and 8.5 are similar, we just need to take some
extra care for the fact that in the Fourier coefficients of the Eisenstein series involve
values of various Dirichlet series. In order to establish the congruences we use the
Barsky, Cassou-Nogues, Deligne—Ribet p-adic L-function [1, 10, 14]. Let us write
F(p*) for the maximal abelian extension of F unramified outside p and infinity.
Then it is known that if we pick an ideal q of F' prime to p, then there exists a measure
Wr,q of the Galois group G’ := Gal(F (p™)/F), such that for any k > 1 we have,

/G, aNtdipq = (1= x@N@") Ly =k x),
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where N denotes the cyclotomic character. Moreover if we select some primitive
character ¥, of some non-trivial conductor prime to p, then we can define a twisted
measure (try on G "such that for any k > 1 we have,

/ AN gy = Loy(1 =k, x9),
.

where in both equations L, (1 — k, ?) means that we remove the Euler factors above
p.Now we are ready to deal with the proof of the theorems. We explain it for Theorem
8.3, and similarly we argue for the rest. The main difference is the fact that the 7’th
Fourier expansion of ®*E* is of the form P, (x) P, (x) (with notation as before)
multiplied by the L-values []/=) "> Lc(—i, x10"7~"), where r, is the rank of the
matrix 7,. That is we need to establish congruences of the form

n—1
DILZLACOLACONN | IO CLICIARE

i=0
i+n=1mod2

n—1-ry

[T Le=ixilomt=" e pro.
i=0

But now the congruences follow from the existence of the Cassou-Nogues, Deligne—
Ribet p-adic measure since the above congruences can be understood as convolution
(which we denote as product below) of the measures

n—1 n—1-—ry
l—[ Ni-H,bLF,q *( H Ni+ll/LF'9n+i—l)*P,

i+nzli=0mod 2 =0

where P is the measure in the Iwasawa algebra represented by the polynomial P;, x
P,, € R, where the Iwasawa algebra. The rest of the proof is entirely identical where
of course we need to replace the quantities A (x) and B () with A= (x) and B~ (x)
respectively.

9 The Values of the p-adic Measures

We now obtain a result regarding the values of the p-adic measures constructed
above. We show the following theorem.

Theorem 9.1 Write u for any of the measures constructed in Theorems 8.2, 8.3, 8.4
and 8.5. Define the normalized measure
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i o= (enem)) i B,

where the p,’s are defined as in Theorem 5.2. Assume that one of the cases of Theorem
5.2 occurs. Then (1 is W-valued, where W is the field appearing in the Theorem 5.2.

Proof By comparing the interpolation properties of the measure ' and the reci-
procity law shown in Theorem 5.3, we need only to establish that the Gauss sums

a o
7(x1) and 7(x) have the same reciprocity properties, namely (%) = 530; for
1

any o € Gal(Q/ W), and any character x of G. For the proof we follow the strategy
sketched in [17, p. 33] and [28, p. 105].
We first recall a property (see [26, p. 36]) of the transfer map,

det(p) =0 -xoVer =0y,

where p := Indf (x) is the two-dimensional representation induced from K to F,
and for the second equakity we used the fact that the restriction F,* < K on the
automorphic side is the transfer map (Ver) on the Galois side. We note here that the
result in [26] is more general but we have applied it to our special case (i.e. x is a
one-dimensional representation and the extension K /F is quadratic). Recalling that
the gauss sum attached to a character is closely related to the Deligne—Langlands
epsilon factor attached to the same character, we have that

t(det(p)) = t(Ox1) = £r(x1)T(O),
where we have used the fact that K /F is unramified above p, x; can be ramified

only above p, 0 is a quadratic character, and the property [32, p. 15, Eq. (3.4.6)].
Now we note that by [13, p. 330, Eq.5.5.1 and 5.5.2] we have that

( 7(p) )” ()

T(det(p)) T(det(p?))

forall o € Gal(@/ Q). We note here that we write t(p) for the Deligne—-Langlands
epsilon factor associated to the representation p. In particular since 7(6) € W we

have that .
( T(p) ) _T(p%)
T(x1) (X))’
and now using the fact that also 7(p) = 7(x) up to elements in W* we conclude

that Y .
(f(x)) _tx )’ o € Gal(@/ W),
T(Xx1) (x7)

which concludes the proof of the theorem. (]
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