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Abstract In this work we construct p-adic measures associated to an ordinary
Hermitian modular form using the Rankin–Selberg method.
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1 Introduction

p-adic measures are known to play an important role in Iwasawa theory, since they
constitute the analytic part of the various Main Conjectures. In this paper we are
interested in p-adic measures attached to an ordinary Hermitian modular form f .
There has been work on the subject by Harris et al. [20, 21], where the first steps
towards the construction of p-adic measures associated to ordinary Hermitian mod-
ular forms were made. Actually in their work they construct a p-adic Eisenstein
measure (see also the works of Eischen [15, 16] on this), and provide a sketch of
the construction of a p-adic measure associated to an ordinary Hermitian modular
form. We also mention here our work [4], where we constructed p-adic measures
associated to Hermitian modular forms of definite unitary groups of one and two
variables. All these works impose the following assumption on the prime number p:
if we denote by K the CM field associated to the Hermitian modular form f and let
F be the maximal totally real subfield of K , then all the primes in F above p must
be split in K . One of the main motivation of this work is to consider the case where
p does not satisfy this condition.

Actually this work differs from the once mentioned above on the method used to
obtain the p-adic measures. Indeed the previous works utilize the doubling method
in order to construct the p-adic measures, where in this work we will use the
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Rankin–Selberg method. In the Rankin–Selberg method one obtains an integral rep-
resentation of the L-values as a Petersson inner product of f with a product of a theta
series and a Siegel-type Eisenstein series, where in the doublingmethod the L-values
can be represented as a Petersson inner product of f with another Hermitian form,
which is obtained by pulling back a Siegel-type Eisenstein series of a larger unitary
group. Of course one should remark right away that the use of the Rankin–Selberg
method puts some serious restrictions on the unitary groups which may be consid-
ered. In particular, the archimedean components of the unitary group must be of the
formU (n, n), where the doublingmethod allows situations of the formU (n,m)with
n �= m. However, we believe that it reasonable to expect, with the current stage of
knowledge at least, to relax the splitting assumption only in the cases ofU (n, n). The
reason being that in the cases of U (n,m) with n �= m, in order to obtain the special
L-values, one needs to evaluate Siegel-type Eisenstein series on CM points, and in
the p-adic setting, one needs that this CM points correspond to abelian varieties with
complex multiplication, which are ordinary at p, and hence the need for the splitting
assumption. For example, even in the “simplest” case of the definiteU (1) = U (1, 0),
which is nothing else than the case of p-adic measures for Hecke characters of a CM
field K considered by Katz in [24], even today, in this full generality, it is not known
how to remove the assumption on the primes above p in F being split in K . We
need to remark here that in some special cases (for example elliptic curves over Q

with CM by imaginary quadratic fields), there are results which provide some p-adic
distributions associated to Hecke characters of CM fields.

In this work we make some assumptions, which will simplify various technicali-
ties, and we postpone to a later work [7] for a full account. In particular, we fix an odd
prime p, and write Pi for the prime ideals in F above p, which are inert in K . We
write pi for the prime ideal of K abovePi , and denote by S the set of these primes.
We will assume that S �= ∅. Then our aim is to construct p-measures for the Galois
group Gal(K (

∏
i p

∞
i )/K ), where K (

∏
i p

∞
i ) denotes the maximal abelian extension

of K unramified outside the prime ideals pi . As we said already our techniques can
also handle the situation of primes split in K , and this will be done in [7]. The other
simplifying assumptions which we impose in this work, which will be lifted in [7],
are

1. we assume that the class number of the CMfield K is equal to the class number of
the underlying unitary group with repsect to the standard congruence subgroup.
This for example happens when the class number of F is taken equal to one,

2. we will investigate the interpolation properties of the p-adic measures only for
the special values for which the corresponding Eisenstein series in the Rankin–
Selberg method are holomorphic, and not just nearly-holomorphic.

We should also remark that this present work should be seen as the unitary analogue
of the work of Panchishkin [27], and Courtieu and Panchishkin [12] in the Siegel
modular form case. We should say here that the second assumption above can be
lifted by developing the techniques of Courtieu and Panchishkin on the holomorphic
projection in the unitary case. Actually the techniques of this present work grew out
of the efforts of the author to extend the work of Courtieu and Panchishkin in the
following directions, which is also one of the aims of [7],



p-adic Measures for Hermitian Modular Forms and the Rankin–Selberg Method 35

1. to consider the situation of totally real fields (they consider the case of Q),
2. to obtain the interpolation properties also for Hecke characters which are not

totally ramified.
3. to construct the measures also for symplectic groups of odd genus. In their work

they consider the case of even genus, and hence no half-integral theta, and Eisen-
stein series appear in the construction. We remark here that, over Q, the work of
Böcherer and Schmidt [2], provides the existence of these p-adic measures, in
both odd and even genus. However their techniques seem to be hard to extend to
the totally real field situation.

Indeed in this paper we work completely adelically, which allow us to work over
any field. Moreover, we use a more precise form of the so-called Adrianov–Kalinin
identity, shown by Shimura, which allows us to obtain a better understanding of the
bad Euler factors above p. And finally, we work here the interpolation properties for
characters that may be unramified at some of the primes of the set S. Note that only
at these primes one sees the needed modification of the Euler factors above p at the
interpolation properties.

Notation: Since our main references for this work are the two books of Shimura
[29, 30] our notation is the one used by Shimura in his books.

2 Hermitian Modular Forms

In this section, which is similar to the corresponding section in [6], we introduce
the notion of a Hermitian modular form, both classically and adelically. We follow
closely the books of Shimura [29, 30], and we remark that we adopt the convention
done in the second book with respect to the weight of Hermitian modular forms (see
the discussion on p. 32, Sect. 5.4 in [30]).

Let K be an algebra equipped with an involution ρ. For a positive integer

n ∈ N we define the matrix η := ηn :=
(

0 −1n
1n 0

)

∈ GL2n(K ), and the group

G := U (n, n) := {α ∈ GL2n(K )|α∗ηα = η}, where α∗ := tα
ρ . Moreover we define

α̂ := (α∗)−1 and S := Sn := {s ∈ Mn(K )|s∗ = s} for the set of Hermitian matrices
with entries in K . If we take K = C and let ρ to denote the complex conjuga-
tion then the group G(R) = {α ∈ GL2n(C)|α∗ηα = η} acts on the symmetric space
(Hermitian upper half space)

Hn := {z ∈ Mn(C)|i(z∗ − z) > 0},

by linear fractional transformations,

α · z := (aαz + bα)(cαz + dα)−1 ∈ Hn, α =
(
aα bα

cα dα

)

∈ G(R), z ∈ Hn,

where the aα, bα, cα, dα are taken in Mn(C).
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Let now K be a CM field of degree 2d := [K : Q] and we write F for its maximal
totally real subfield. Moreover we write r for the ring of integers of K , g for that
of F , DF and DK for their discriminants and d for the different ideal of F . We
write a for the set of archimedean places of F . We now pick a CM type (K , {τv}v∈a)

of K , where τv ∈ Hom(K , C). For an element a ∈ K we set av := τv(a) ∈ C. We
will also regard a as the archimedean places of K corresponding to the embeddings
τv of the selected CM type. Finally we let b be the set of all complex embeddings
of K , and we note that b = {τv, τvρ|v ∈ a}, where ρ denotes complex conjugation
acting on the CM field K . By abusing the notation we may also write b = a

∐
aρ.

We write GA for the adelic group of G, and Gh =∏′
v Gv (restricted product) for

its finite part, and Ga =∏v∈a Gv for its archimedean part. Note that we understand
G as an algebraic group over F , and hence the finite places v above are finite places
of F , which will be denoted by h. For a description of Gv at a finite place we refer to
[29, Chap.2]. Given two fractional ideals a and b of F such that ab ⊆ g, we define
following Shimura the subgroup of GA,

D[a, b] :=
{(

ax bx
cx dx

)

∈ GA|ax ≺ gv, bx ≺ av, cx ≺ bv, dx ≺ gv, ∀v ∈ h
}

,

where we use the notation ≺ in [30, p. 11], where x ≺ bv means that the
v-component of the matrix x has are all its entries in bv . Again we take ax , bx , cx , dx
to be n by n matrices. For a finite adele q ∈ Gh we define �q = �q(b, c) :=
G ∩ qD[b−1, bc]q−1, a congruence subgroup of G. Given a finite order Hecke
character ψ of K of conductor dividing c we define a character on D[b−1, bc] by
ψ(x) =∏v|c ψv(det (ax )v)−1, where ψv denotes the local component of ψ at the
finite place v, and a character ψq on �q by ψq(γ ) = ψ(q−1γ q).

We write Za :=∏v∈a Z, Zb :=∏v∈b Z andH :=∏v∈a Hn . We embed Z ↪→ Za

diagonally and for an m ∈ Z we write ma ∈ Za for its image. We will simply write
a for 1a. We define an action of GA on H by g · z := ga · z := (gv · zv)v∈a, with
g ∈ GA and z = (zv)v∈a ∈ H . For a function f : H → C and an element k ∈ Zb we
define

( f |kα)(z) := jα(z)−k f (α · z), α ∈ GA, z ∈ H,

where,

jα(z)−k :=
∏

v∈a

det (cαv
zv + dαv

)−kvdet (cρ
αv

tzv + dρ
αv

)−kvρ , z = (zv)v∈a ∈ H .

For fixed b and c as above, and q ∈ Gh and a Hecke character ψ of K , we define,

Definition 2.1 [30, p. 31] A function f : H → C is called a Hermitian modular
form for the congruence subgroup �q of weight k ∈ Zb and nebentype ψq if:

1. f is holomorphic,
2. f |kγ = ψq(γ ) f for all γ ∈ �q ,
3. f is holomorphic at cusps (see [30, p. 31] for this notion).
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The space of Hermitian modular forms of weight k for the congruences group �q

and nebentypeψq will be denoted byMk(�
q , ψq). For any γ ∈ G we have a Fourier

expansion of the form (see [30, p. 33])

( f |kγ )(z) =
∑

s∈S
c(s, γ ; f )ea(sz), c(s, γ ; f ) ∈ C, (1)

where S a lattice in S+ := {s ∈ S| sv ≥ 0, ∀v ∈ a}, and

ea(x) := exp(2π i
∑

v

tr(xv)).

An f is called a cusp form if c(s, γ ; f ) = 0 for any γ ∈ G and s with det (s) = 0.
The space of cusp forms we will be denoted by Sk(�

q , ψq). When we do not wish
to determine the nebentype we will be writing f ∈ Mk(�

q), and this should be
understood that there exists some ψq as above such that f ∈ Mk(�

q , ψq).

We now turn to the adelic Hermitian modular forms. If we write D for a group of
the form D[b−1, bc], and ψ a Hecke character of finite order then we define,

Definition 2.2 [30, p. 166] A function f : GA → C is called an adelic Hermitian
modular form if

1. f(αxw) = ψ(w) j kw(i)f(x) for α ∈ G, w ∈ D with wa(i) = i,
2. For every p ∈ Gh there exists f p ∈ Mk(�

p, ψp), where� p := G ∩ pCp−1 such
that f(py) = ( f p|k y)(i) for every y ∈ Ga.

Here we write i := (i1n, . . . , i1n) ∈ H . We denote this space byMk(D, ψ), and the
space of cusp forms by Sk(D, ψ). As in the classical case above, we will write just
Mk(D) if we do not wish to determine the nebentype. A simple computation shows,
if f ∈ Mk(D, ψ) then the form f∗(x) := f(xη−1

h ) belongs to Mk(D′, ψ−c) where
D′ := D[bc, b−1] and ψ−c(x) := ψ(xρ)−1.

By [29, Chap. 2] there exists a finite set B ⊂ Gh such that GA =∐b∈B GbD and
an isomorphism Mk(D, ψ) ∼= ⊕b∈BMk(�

b, ψb) (see [29, Chap. 2]). We note here
that for the congruence subgroups D[b−1, bc] the cardinality of the set B does not

depend on the ideal c and its elements can be selected to be of the form

(
q̂ 0
0 q

)

with q ∈ GLn(K )h, and qv = 1 for v|c, (see for example [6, Lemma 2.6]). For a
q ∈ GLn(K )A and an s ∈ SA we have

f
((

q sq̂
0 q̂

))

=
∑

τ∈S+

cf(τ, q)eA(τ s).

For the properties of cf(τ, q) we refer to the [30, Proposition 20.2] and for the
definition of eA to [30, p. 127]. We also note that sometimes we may write c(τ, q; f)
for cf(τ, q).
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For a subfield L ofCwewill be writingMk(�
q , ψ, L) for the Hermitian modular

forms in Mk(�
q , ψ) whose Fourier expansion at infinity, that is γ is the identity in

Eq.1, has coefficients in L . For a fixed setB as abovewewill bewritingMk(D, ψ, L)

for the subspace ofMk(D, ψ) consisting of elements whose image under the above
isomorphism lies in ⊕b∈BMk(�

b, ψb, L). Finally we define the adelic cusp forms
Sk(D, ψ) to be the subspace of Mk(D, ψ), which maps to ⊕b∈BSk(�

b, ψb). As
above, when we do not wish to determine the nebentype we simply writeMk(�

q , L)

and Mk(D, L).
We fix an embedding Q ↪→ C and write Fcl for the Galois closure of F over Q.

Then by [30, Chap. II, Sect. 10] we have a well-defined action of the absolute Galois
group Gal(Q/Fcl) on Mk(�

q , Q) given by an action on the Fourier-coefficients of
the expansion at infinity. This action will be denoted by f σ for an f ∈ Mk(�

q , Q)

and σ ∈ Gal(Q/Fcl). A similar action can be defined on the space Mk(D, Q) (see
[30, p. 193, Lemma 23.14]), and will be also denoted by fσ for an f ∈ Mk(D, Q).
In both cases (classical and adelic) the action of the absolute Galois group preserves
the space of cusp forms.

We close this section with a final remark concerning Hecke characters. Given an
(adelic) Hecke character χ of K (or F), we will be abusing the notation and write χ

also for the corresponding ideal character.

3 Eisenstein and Theta Series

3.1 Eisenstein Series

In this section we collect some facts concerning Siegel-type Eisenstein series. We
closely follow [30, Chap. IV].

We consider a k ∈ Zb, an integral ideal c in F and a unitary Hecke character χ of
K with infinity component of the form χa(x) = x


a |xa|−
, where 
 = (kv − kvρ)v∈a

and of conductor dividing c. For a fractional ideal bwe write C for D[b−1, bc]. Then
for a pair (x, s) ∈ GA × C, we denote by EA(x, s) or EA(x, s;χ, c) the Siegel type
Eisenstein series associated to the character χ and the weight k. We recall here its
definition, taken from [30, p. 131],

EA(x, s) =
∑

γ∈P\G
μ(γ x)ε(γ x)−s, �(s) >> 0,

where P is the standard Siegel parabolic subgroup and the function μ : GA → C is
supported on PAC ⊂ GA, defined by,

μ(x) = χh(det (dp))
−1χc(det (dw))−1 jx (i)−k | jx (i)|m,
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where x = pw with p ∈ PA and w ∈ C , and m = (kv + kvρ)v . Here we define
| jx (i)|m :=∏v∈a | jxv

(i1n)|mv . The function ε : GA → C is defined as ε(x) =
|det (dpd∗

p)|A where x = pw with p ∈ PA and w ∈ D[b−1, b]. Here for an adele
x ∈ F×

A
we write |x |A for the adele norm normalized as in [29, 30]. Moreover we

define the normalized Eisenstein series

DA(x, s) = EA(x, s)
n−1∏

i=0

Lc(2s − i, χ1θ
i ),

where θ is the non-trivial character associated to K/F and χ1 is the restriction of
the Hecke character χ to F×

A
. We note that since we consider unitary characters the

infinity part of such a character is of the form (χ1)a(x) =∏v∈a

(
xv

|xv |
)
v

, and it will

be often denoted by sgn(xa)

. Moreover for a Hecke character φ of F , we write

Lc(s, φ) for the Dirichlet series associated to φ with the Euler factors at the primes
dividing c removed.

For a q ∈ GLn(K )h we define Dq(z, s; k, χ, c), a function on (z, s) ∈ H × C,
associated to DA(x, s) by the rule (see [30, p. 146]),

Dq(x · i, s; k, χ, c) = j kx (i)DA(diag[q, q̂]x, s).

We now introduce yet another Eisenstein series for which we have explicit infor-
mation about their Fourier expansion. In particular we define the E∗

A
(x, s) :=

EA(xη−1
h , s) and D∗

A
(x, s) := DA(xη−1

h , s), and as before we write D∗
q(z, s; k, χ, c)

for the series associated to D∗
A
(x, s). We now write the Fourier expansion of

E∗
A
(x, s) as,

E∗
A

((
q σ q̂
0 q̂

)

, s

)

=
∑

h∈S
c(h, q, s)eA(hσ), (2)

whereq ∈ GLn(K )A andσ ∈ SA.Wenowstate a result of Shimuraon the coefficients
c(h, q, s). We first define an r-lattice in S := Sn , by

T := T n := {x ∈ S|tr(xy) ⊂ g, ∀y ∈ S(r)},

where S(r) := S ∩ Mn(r). T is usually called the dual lattice to S(r). For a finite
place v of F we write Tv for T ⊗r rv .

Proposition 3.1 (Shimura, Proposition 18.14 and Proposition 19.2 in [29]). Suppose
that c �= g. Then c(h, q, s) �= 0 only if (tqhq)v ∈ (db−1c−1)vT n

v for every v ∈ h. In
this case

c(h, q, s) = C(S)χ(det (−q))−1|det (qq∗)|n−s
h |det (qq∗)|saN (bc)−n2×

αc(ω · tqhq, 2s, χ1)
∏

v∈a

ξ(qvq
∗
v , hv; s + (kv + kvρ)/2, s − (kv + kvρ)/2)),
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where N (·) denotes the norm from F to Q, |x |h :=∏v∈h |xv|v with | · |v the nor-
malized absolute value at the finite place v, ω is a finite idele such that ωr = bd,
and

C(S) := 2n(n−1)d |DF |−n/2|DK |−n(n−1)/4.

For the function ξ(gv, hv, s, s ′) with 0 < gv ∈ Sv, hv ∈ Sv , s, s ′ ∈ C, v ∈ a we refer
to [30, p. 134].

Moreover if we write r for the rank of h and let g ∈ GLn(F) such that g−1hg =
diag[h′, 0] with h′ ∈ Sr . Then

αc(ω · tqhq, 2s, χ1) = �c(s)
−1�h(s)

∏

v∈c

fh,q,v

(
χ(πv)|πv|2s

)
,

where

�c(s) =
n−1∏

i=0

Lc(2s − i, χ1θ
i ), �h(s) =

n−r+1∏

i=0

Lc(2s − n − i, χ1θ
n+i−1).

Here fh,q,v are polynomials with constant term 1 and coefficients in Z; they are
independent of χ . The set c is determined as follows: c = ∅ if r = 0. If r > 0, then
take gv ∈ GLn(rv) for each v � c so that (ωq∗hq)v = g∗

vdiag[ξv, 0]gv with ξv ∈ T r
v .

Then c consists of all the v prime to c of the following two types: (i) v is ramified in
K and (ii) v is unramified in K and det (ξv) /∈ g×

v .

For a number field W , a k ∈ Zb and r ∈ Za we follow [30] and writeNr
k (W ) for the

space of W -rational nearly holomorphic modular forms of weight k (see [30, p. 103
and p. 110] for the definition). Regarding the near holomorphicity of the Eisenstein
series Dq(z, s;χ, c) we have the following theorem of Shimura,

Theorem 3.2 (Shimura, Theorem 17.12 in [30]) We set m := (kv + kvρ)v∈a ∈ Za.
Let K ′ be the reflex field of K with respect to the selected CM type and Kχ the
field generated over K ′ by the values of χ . Let � be the Galois closure of K
over Q and μ ∈ Z with 2n − mv � μ � mv and mv − μ ∈ 2Z for every v ∈ a.
Then Dq(z, μ/2; k, χ, c) belongs to πβNr

k (�KχQab), except when 0 � μ < n,
c = g, and χ1 = θμ, where β = (n/2)

∑
v∈a(mv + μ) − dn(n − 1)/2. Moreover

r = n(m − μ + 2)/2 if μ = n + 1, F = Q and χ1 = θn+1. In all other cases we
have r = (n/2)(m − |μ − n|a − na).

We now work out the positivity of the Fourier expansion of some holomoprhic
Eisenstein series. In particular we assume that m = μa and we consider the series
D∗

A
(x, s) for s = μ

2 and for s = n − μ

2 . For an h ∈ S, and c(h, q, s) as in Eq.2, we

define c(h, s) :=∏n−1
i=0 Lc(2s − i, χ1θ

i )c(h, q, s), that is the hth Fourier coefficient
of D∗

A
(x, s). Then we have the following,

Proposition 3.3 (Shimura, Proposition 17.6 in [30]) Exclude the case where μ =
n + 1, F = Q and χ = θn+1. Then we have that c(h,

μ

2 ) �= 0 only in the following
situations
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1. h = 0, and μ = n,
2. h �= 0, μ > n and hv > 0 for all v ∈ a,
3. h �= 0, μ = n and hv � 0 for all v ∈ a.

Proof This follows directly from [30, Proposition 17.6], where the positivity of
c(h, q,

μ

2 ) is considered, after observing that�c(μ/2) =∏n−1
i=0 Lc(μ − i, χ1θ

i ) �= 0
for μ > n. For μ = n we need to observe that L(s, χ1θ

n−1) does not have a pole
at s = 1, since χ1θ

n−1 is not the trivial character, since (χ1)a(x) = sgn(xa)
na, and

hence (χ1θ
n−1)a(x) = sgn(xa). hence not trivial. �

The other holomorphic Eisenstein series, i.e. s = n − μ

2 , has a completely different
behaviour. Namely, independently of μ, it may have non-trivial Fourier coefficients
even for h � 0 not of full rank, that is with det (h) = 0. Let us explain this. By
Proposition 3.1 we observe that c(h, s) is equal to a finite non-vanishing factor times

f (s)�h(s)
∏

v∈a

ξ (yv, hv; s + μ/2, s − μ/2) , yv := qvq
∗
v ,

where f (s) :=∏v∈c fh,q,v

(
χ(πv)|πv|2s

)
, and for the function ξ we have (see [30,

p. 140]) that

ξ(yv, hv; a, b) = i nb−na2τπε �t (a + b − n)

�n−q(a)�n−p(b)
det (yv)

n−a−b×

δ+(hv yv)
a−n+q/2δ−(hv yv)

b−n+p/2ω(2πyv, hv; a, b),

where p (resp. q) is the number of positive (resp. negative) eigenvalues of hv and
t = n − p − q; δ+(x) is the product of all positive eigenvalues of x and δ−(x) =
δ+(−x), and

�n(s) := πn(n−1)/2
n−1∏

ν=0

�(s − ν).

For the quantities τ, ε and the function ω(·) we refer to [30, p. 140], since they do
not play any role in the argument below. We are interested in the values

f (n − μ/2)�h(n − μ/2)
∏

v∈a

ξ (yv, hv; n, n − μ) ,

with μ � n.
Let us write r for the rank of h, then �h(s) =∏n−1−r

i=0 Lc(2s − n − i, χ1θ
n+i−1)

and hence �h(n − μ/2) =∏n−1−r
i=0 Lc(n − μ − i, χ1θ

n+i−1). We now note that
(χ1)a(x) = sgn(xa)

μa and hence after setting ψi := χ1θ
n+i−1 we obtain (ψi )a(x) =

sgn(xa)
(μ+n+i−1)a. We now conclude that the quantity �h(n − μ/2) may not be

zero since by [30, Lemma 17.5] we have that L(n − μ − i, ψi ) = 0 if n − μ − i ≡
μ + n + i − 1 mod 2 (the so-called trivial zeros),whichnever holds. For the gamma
factors we have for h = 0,
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∏

v∈a

�n(n − μ)

�n(n)�n(n − μ)
=
∏

v∈a

1

�n(n)
�= 0.

Suppose that h �= 0 and let r = rank(h). Then

∏

v∈a

�n−r (n − μ)

�n(n)�n−r (n − μ)
=
∏

v∈a

1

�n(n)
�= 0.

In particular we conclude that in the case of s = n − μ

2 we may have non-trivial
Fourier coefficients even if the matrix h is not positive definite.

3.2 Theta Series

We start by recalling some results of Shimura in (the appendices of ) [29, 30] regard-
ing Hermitian theta series. We set V := Mn(K ) and we letS(Vh) to denote the space
of Schwartz–Bruhat functions on Vh :=∏′

v∈hVv . We consider an element λ ∈ S(Vh)

and an μ ∈ Zb such that μvμvρ = 0 for all v ∈ a and μv � 0 for all v ∈ b. For a
τ ∈ S+ ∩ GLn(K ) we then consider the theta series defined in [30, p. 277]),

θ(z, λ) :=
∑

ξ∈V
λ(ξ)det (ξ)μρena(ξ

∗τξ), z ∈ H,

where det (ξ)μρ := (∏v∈b det (ξv)
μv
)ρ
.We fix aHecke characterφ of K with infinity

type φa(y) = y−a|y|a and such that φ1 = θ , where we recall that we write θ for the
non-trivial character of K/F . Such a character φ always exists, [30, Lemma A5.1],
but may not be unique. We now let ω be a Hecke character of K and we write f for
its conductor and define h = f ∩ g. Following Shimura we introduce the notation,

R∗ = {w ∈ Mn(K )A|wv ≺ rv,∀v ∈ h},

and we fix an element r ∈ GLn(K )h. Then we define the function λ ∈ S(Vh) by

λ(x) := ω(det (r)−1)
∏

v|h
ωv(det (rvx

−1
v )),

if r−1x ∈ R∗ and r−1
v xv ∈ GLn(rv) for all v|h, and we set λ(x) = 0 otherwise.

As it is explained in Shimura [30, Theorem A5.4] there is an action of GA on S(Vh),
which will be denoted by x
 for x ∈ GA and 
 ∈ S(Vh). Then we define the adelic
theta function θA on GA by

θA(x, ω) := θA(x, λ) := j lx (i)θ(x · i, xλ), x ∈ GA,
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where l = μ + na ∈ Zb. Then Shimura shows that

θA(αxw, λ) = j lw(i)−1θA(x, wλ), α ∈ G, w ∈ GA, and w · i = i. (3)

and,

Theorem 3.4 (Shimura, Sect. A5.5 in [30] and Proposition A7.16 in [29]) θA(x, ω)

is an element in Ml(C, ω′) with C = D[b−1, bc] and ω′ = ωφ−n, and l = μ + na.
Moreover θA(x, ω) is a cusp form if μ �= 0. The ideals b and c are given as follows.
We define a fractional ideals y and t in F such that g∗τg ∈ y and h∗τ−1h ∈ t−1 for
all g ∈ rgn and h ∈ rn. Then we can take

(b, bc) = (dy, d(tefρf ∩ ye ∩ yf)) ,

where e is the relative discriminant of K over F. For an element q ∈ GLn(K )h we
have that the qth component of the theta series is given by

θq,ω(z) = ω′(det (q)−1)|det (q)|n/2
K ×

∑

ξ∈V∩r R∗q−1

ωa(det (ξ))ω(det (r−1ξq)r)det (ξ)μρea(ξ
∗τξ z).

where ξ ∈ V ∩ r R∗q−1 such that ξ ∗τξ = σ .

For our later applications we now work out the functional equation with respect to

the action of the element η = ηn =
(

0 −1n
1n 0

)

. In particular we are interested in the

theta series θ∗
A
(x, ω) := θA(xη−1

h , ω). We note that by Eq.3 we have that

θ∗
A
(x, ω) = θA(xη−1

h , λ) =

θA((−1)hxηh, λ) = θA((−1)hx, ηλ) = ω′
c(−1)θA(x, ηλ),

and by [30, Theorem A5.4 (6)] we have that

ηλ(x) = i p|NF/Q(det (2τ−1))|n
∫

Vh

λ(y)eh(−2−1TrK/F (tr(y∗τ x)))dy,

where p = n2[F : Q] and dy is the Haar measure on Vh such that the volume of
Mn(r)h is |DK |−n2/2. We now compute the integral

I (x) :=
∫

Vh

λ(y)eh(−2−1TrK/F (tr(y∗τ x)))dy.
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We have

I (x) = ω(det (r))−1

⎛

⎝
∏

v�h

∫

rvMn(rv)

ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y

⎞

⎠×

⎛

⎝
∏

v|h

∫

rvGLn(rv)

ω(det (r−1
v yv))

−1ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y

⎞

⎠ .

We compute the local integrals separately. For a prime v � h we have

∫

rvMn(rv)

ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y =

|det (r)|v
∫

Mn(rv)

ev(−2−1TrKv/Fv
(tr(y∗

vr
∗
v τvxv)))dv y =

|det (r)|v
∫

Mn(rv)

ev(−2−1TrKv/Fv
(tr(x∗

v τ
∗
v rv yv)))dv y =

{
0, if x∗

v τ ∗
v rv /∈ T ;

|det (r)|v|DKv
|n2/2v , otherwise.

,

where T := {x ∈ Mn(Kv)|tr(xy) ∈ d−1
v , ∀y ∈ Mn(rv))} and DKv

is the discrimi-
nant of Kv . For the other finite places, we obtain generalized Gauss sums. We have

∫

rvGLn(rv)

ω(det (r−1
v yv))

−1ev(−2−1TrKv/Fv
(tr(y∗

v τvxv)))dv y =

|det (r)|v
∫

GLn(rv)

ω(det (yv))
−1ev(−2−1TrKv/Fv

(tr(y∗
vr

∗
v τvxv)))dv y =

|det (r)|v
∫

GLn(rv)

ω(det (yv))
−1ev(−2−1TrKv/Fv

(tr(x∗
v τ

∗
v rv yv)))dv y.

By a standard argument (see for example [22, pp. 259–260]), this integral is zero,
if x∗

v τ ∗
v rvrv �= (fdK )−1T×

v , where T×
v := Tv ∩ GLn(rv). If x∗

v τ ∗
v rvrv = (fdK )−1T×

v ,
then after the change of variable yv �→ (x∗

v τ
∗
v rv)

−1yvwe have that the integral
is equal to

|det (r)|v|det (x∗
v τ ∗

v rv)|−1×
∫

f−1d−1
K GLn(rv)

ω(det ((x∗
v τ ∗

v rv)
−1yv))

−1ev(−2−1TrKv/Fv
(tr(yv)))dv y =
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|det (x∗
v τ ∗

v )|−1ω(det (τ ∗
v rvx

∗
v ))×

∫

f−1d−1
K GLn(rv)

ω(yv)
−1ev(−2−1TrKv/Fv

(tr(yv)))dv y

We then have that |det (x∗
v τ ∗

v )|−1 = |det (rv)|vN (fd)−n and hence we can rewrite the
above expression as

|det (rv)|vN (fd)−nω(det (( f d)nτ ∗
v rvx

∗
v ))ω( f d)−n×

∫

f−1d−1
K GLn(rv)

ω(yv)
−1ev(−2−1TrKv/Fv

(tr(yv)))dv y

for some elements f, d such that ( f ) = fv and (d) = dv . By a standard argument
(see for example [22, p. 259]), we obtain

N (d)−nω( f d)−n
∫

f−1d−1
K GLn(rv)

ω(yv)
−1ev(−2−1TrKv/Fv

(tr(yv)))dv y =

∑

y∈(Mn(rv)/Mn(dfv)

ωv(det (y))
−1ev(−tr(y)).

We set τn(ω
−1) :=∑y∈(Mn(rv)/Mn(dfv)

ωv(det (y))−1ev(−tr(y)), and we note that
in the case that ω is primitive we have that the last integral can be related to one-
dimensional standard Gauss sums (see for example [2, p. 1410]). In particular in
such a case we have τn(ω

−1) = N (d)
n(n−1)

2 τ(ω−1)n where τ(ω−1) the standard one
dimensional Gauss sum, associated to the character ω−1. We summarize the above
calculations in the following Proposition.

Proposition 3.5 Let ω be a primitive character of conductor f. For the theta series
θ∗

A
(x, ω) ∈ Ml(C ′, ω′−c

) with C ′ := D[bc, b−1] we have

θ∗
A
(x, ω) = i n

2[F :Q]|N (2det (τ )−1)|nω′
c(−1)|det (r)|hN (f)−nN (d)(

−n

2
)×

∏

v|f
N (dv)

n2

2 τ(ω−1)nθA(x, λ∗),

where λ∗(x) = ωf(( f d)ndet (τvrvx∗
v )) for x ∈ T and x∗

v τ ∗
v rv ∈ fd−1T×

v for all v|f,
and zero otherwise.

We close this section by making a remark on the support of the q-expansion of θ∗.
We first set,
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C(ω) := i n
2[F :Q]|N (2det (τ )−1)|nω′

c(−1)|det (r)|hN (f)−nN (d)
−n
2

∏

v|f
N (dv)

n2

2 .

(4)
and take some q ∈ GLn(K )h. Then, the qth component of θ∗ is given by

θ∗
q (z) = i n

2d |det (q)|n/2
h φ(det (q))n

∑

ξ∈V
I (ξq)det (ξ)μρea(ξ

∗τξ z)

If det (ξ) �= 0, then I (ξq) �= 0 only when (τ ∗rq∗ξ ∗)v ∈ (fd)−1T×
v for all v|fd.

That is,

θ∗
q (z) = C(ω)τ(ω−1)n

∑

ξ∈f̂dR×
fdτ−1r̂q−1∩V

ωf(( f d)nτ ∗rq∗ξ ∗)det (ξ)μρea(ξ
∗τξ z).

In particular we have that (ξ ∗τξ)v ∈ (fd)−1q̂r−1τ̂T×
v τT×

v τ−1r̂q−1 f̂d for all v|f.

4 The L-function Attached to a Hermitian Modular Form

4.1 The Standard L-function

We fix a fractional ideal b and an integral ideal c of F . We set C = D[b−1, bc]. For
the fixed group C and for an integral ideal a of K we write T (a) for the Hecke
operator associated to it as it is defined for example in [30, p. 162].

Weconsider a non-zero adelicHermitianmodular form f ∈ Mk(C, ψ) and assume
that we have f |T (a) = λ(a)f with λ(a) ∈ C for all integral ideals a. If χ denotes a
Hecke character of K of conductor f, for s ∈ C with �(s) >> 0 we consider the
Dirichlet series

Z(s, f, χ) :=
(

2n∏

i=1

Lc(2s − i + 1, χ1θ
i−1)

)

×
∑

a

λ(a)χ(a)N (a)−s, (5)

where the sum runs over all integral ideals of K . It is shown in [30, p. 171] that
this series has an Euler product representation, which we write as Z(s, f, χ) =∏

q Zq

(
χ(q)N (q)−s

)
, where the product is over all prime ideals of K . Here we

remind the reader (see introduction) that we abuse the notation and write χ also for
the ideal character associated to the Hecke character χ . For the description of the
Euler factors Zq at the prime ideal q of K we have (see [30, p. 171]),

1. Zq(X) =∏n
i=1

(
(1 − N (q)n−1tq,i X)(1 − N (q)nt−1

q,i X)
)−1

, if qρ = q and q � c,

2.
Zq1(X1)Zq2(X2) =
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2n∏

i=1

(
(1 − N (q1)

2nt−1
q1q2,i

X1)(1 − N (q2)
−1tq1q2,i X2)

)−1
,

if q1 �= q2, q
ρ
1 = q2 and qi � c for i = 1, 2,

3. Zq(X) =∏n
i=1

(
(1 − N (q)n−1tq,i X)

)−1
, if qρ = q and q|c,

4.
Zq1(X1)Zq2(X2) =

2n∏

i=1

(
(1 − N (q1)

n−1tq1q2,i X1)(1 − N (q2)
n−1tq1q2,n+i X2)

)−1
,

if q1 �= q2, q
ρ
1 = q2 and qi |c for i = 1, 2,

where the t?,i above for ? = q, q1q2 are the Satake parameters associated to the
eigenform f . We also introduce the L-function,

L(s, f, χ) :=
∏

q

Zq

(
χ(q)(ψ/ψc)(πq)N (q)−s

)
, �(s) >> 0 (6)

where πq a uniformizer of Kq. We note here that we may obtain the Dirichelt series
in Eq.5 from the one in Eq.6, up to a finite number of Euler factors, by setting χψ−1

for χ . Moreover if ψ is trivial then the two series coincide.

4.2 The Rankin–Selberg Integral Representation

We recall that in Sect. 3.2 we have fixed a Hecke character φ of K of infinity part
φa(y) = y−a

a |ya|a and the restriction of φ to F×
A
is the non-trivial Hecke character θ

corresponding to the extension K/F . Keeping the notations from above we define
t ∈ Za to be the infinity type of χ , that is χa(x) = x−t

a |xa|t . We then define μ ∈ Zb

by
μv := tv − kvρ + kv, and μvρ := 0 if tv � kvρ − kv,

and
μv := 0, and μvρ := kvρ − kv − tv if tv < kvρ − kv.

Wemoreover set l := μ + na,ψ ′ := χ−1φ−n and h := 1/2(kv + kvρ + lv + lvρ)v∈a.
Givenμ, φ, τ and χ as above we write θχ (x) := θA(x, λ) ∈ Ml(C ′, ψ ′) for the theta
series that we can associate to (μ, φ, τ, χ−1) by taking ω := χ−1 in Theorem 3.4.
We write c′ for the integral ideal defined by C ′ = D[b′−1

, b′c′].
We now fix a decomposition GLn(K )A =∐q∈Q GLn(K )qEGLn(K )a, where

E =∏v∈h GLn(rv). In particular the size of the set Q is nothing else than the class
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number of K . Given an element f ∈ Sk(�
q , ψq), and a function g on H such that

g|kγ = ψq(γ ) f for all γ ∈ �q we define the Petersson inner product

< f, g >:=< f, g >�q :=
∫

�q\H
f (z)g(z)δ(z)mdz,

where δ(z) := det ( i
2 (z

∗ − z)) and dz ameasure on�q \ H defined as in [30, Lemma
3.4 ] and m = (mv)v∈a with mv = kv + kvρ .

The following theorem (see also [25, Theorem 7.8]) is obtained by combining
results of Shimura [30] and Klosin [25]. For details we refer to [6, Sect. 4].

Theorem 4.1 (Shimura, Klosin) Let 0 �= f ∈ Mk(C, ψ)) such that f |T (a) = λ(a)f
for every a, and assume that kv + kvρ � n for some v ∈ a, then there exists τ ∈
S+ ∩ GLn(K ) and r ∈ GLn(K )h such that

�((s))ψc(det (r))cf(τ, r)L(s + 3n/2, f, χ) =

�c(s + 3n/2, θ(ψχ)1) ·
(
∏

v∈b

gv(χ(πp)N (p)−2s−3n)

)

det (τ )sa+h |det (r)|−s−n/2
K ×

C0

∑

q∈Q
|det (qq∗)|−n

F < fq(z), θq,χ (z)Eq(z, s̄ + n; k − l, (ψ ′/ψ)c, c′′) >�q (c′′),

where

�((s)) :=
∏

v∈a

(4π)−n(s+hv)�n(s + hv), and C0 := [�0(c
′′) : �]A
�X

.

where c′′ any non-trivial integral ideal of F such that cc′|c′′, �q(c′′) := G ∩
qD[e, eh]q−1, with e = b + b′ and h = e−1(bc′′ ∩ b′c′′). Moreover gv(·) are Siegel-
series related to the polynomials fτ,r,v(x) mentioned in Proposition 3.1 above, and
we refer to [30, Theorem 20.4] for the precise definition. Finally X denotes the set
of Hecke characters of infinity type t and conductor dividing fχ , � is a congruence
subgroup of SU (n, n) which appears in the [30, p. 179], and A some fixed rational
number times some powers of π , and is independent of χ .

We will make the following assumption (see also the introduction):

Assumption. We assume that the class number of K is equal to the class number
of U (n, n)/F with respect to the full congruence subgroup D[b−1, b]. For example
this holds when the class number of F is taken equal to one [29, p. 66].
From the above assumption it follows that

∑

q∈Q
|det (qq∗)|−n

F < fq(z), θq,χ (z)Eq(z, s̄ + n; k − l, (ψ ′/ψ)c, c′′) >�q (c′′)=
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< f(x), θA,χ (x)ẼA(x, s̄ + n; k − l, (ψ ′/ψ)c, c′′ >c′′ ,

where ẼA(x, s̄ + n; k − l, (ψ ′/ψ)c, c′′) is the adelic Eisenstein series with
q-component |det (qq∗)|−n

F Eq(z, s̄ + n; k − l, (ψ ′/ψ)c, c′′), and < ·, · >c′′ is the
adelic Petersson inner product associated to the group D[e, eh] as defined for exam-
ple in [29, Eq.10.9.6], but not normalized, and hence depends on the level. Moreover
we define,

D̃A(x, s̄ + n; k − l, �, c′′) := �c(s + 3n/2, θ(ψχ)1)ẼA(x, s̄ + n; k − l, �, c′′),
(7)

where � := (ψ ′/ψ)c.

5 Algebraicity of Special L-Values

In this section we present some algebraicity results on the special values of the
L-function introduced above, which were obtained in [6]. Results of this kind have
been obtained by Shimura [30], but over the algebraic closure of Q, and in [6] we
worked out the precise field of definition, as well as, the reciprocity properties. There
is also work by Harris [18, 19] and we refer to [6] for a discussion of how the results
there compare with the ones presented here.

We consider a cuspidal Hecke eigenform 0 �= f ∈ Sk(C, ψ; Q) with C := D
[b−1, bc] for some fractional ideal b and integral ideal c of F . We start by intro-
ducing some periods associated to f . These periods are the analogue in the unitary
case of periods introduced by Sturm in [31], and generalized in [3, 5], in the sym-
plectic case (i.e. Siegel modular forms). In the following theorem we write < ·, · >

for the adelic inner product associated to the group C .

Theorem 5.1 Let f ∈ Sk(D, ψ, Q) be an eigenform, and define mv := kv + kρv for
all v ∈ a. Let � be the Galois closure of K over Q and write W for the exten-
sion of � generated by the Fourier coefficients of f and their complex conjugation.
Assume m0 := minv(mv) > 3n + 2. Then there exists a period�f ∈ C× and a finite
extension � of � such that for any g ∈ Sk(Q) we have

(
< f, g >

�f

)σ

= < fσ , gσ ′
>

�fσ

,

for all σ ∈ Gal(Q/�), with σ ′ := ρσρ. Here �fσ is the period attached to the
eigenform fσ . Moreover �f depends only on the eigenvalues of f and we have
<f,f>

�f
∈ (W�)×. In particular we have <f,g>

<f,f> ∈ (W�)(g, gρ), where (W�)(g, gρ)

denotes the extension of W� obtained by adjoining the values of the Fourier coeffi-
cients of g and gρ .
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We note that the extension � does not depend on f , but only on K and n. We refer
to [6] for more details on this. The following two theorems were obtained in [6].

Theorem 5.2 Let f ∈ Sk(C, ψ; Q) be an eigenform for all Hecke operators, and
assume that m0 � 3n + 2. Let χ be a character of K such that χa(x) = xta|xa|−t

with t ∈ Za, and define μ ∈ Zb by μv := −tv − kvρ + kv and μvρ = 0 if kvρ − kv +
tv � 0, andμv = 0 andμvρ = kvρ − kv + tv , if kvρ − kv + tv > 0. Assumemoreover
that either

1. there exists v, v′ ∈ a such that mv �= mv′ , or
2. mv = m0 for all v and m0 > 4n − 2, or
3. μ �= 0.

Then let σ0 ∈ 1
2Z such that

4n − mv + |kv − kvρ − tv| � 2σ0 � mv − |kv − kvρ − tv|,

and,
2σ0 − tv ∈ 2Z, ∀v ∈ a.

We exclude the following cases: For n � 2σ0 < 2n, if we write f′ for the conductor
of the character χ1, then there is no choice of the integral ideal c′′ as in Theorem 4.1
such that for any prime ideal q of F, q|c′′c−1 implies either q|f′ or q ramifies in K .

We let W be a number field such that f, fρ ∈ Sk(W ) and �� ⊂ W, where � is
the Galois closure of K in Q, and � as in the Theorem 5.1 then

L(σ0, f, χ)

πβτ(χn
1 ψn

1 θn2)ρ i n
∑

v∈a pv < f, f >
∈ W := W (χ),

where β = n(
∑

v mv) + d(2nσ0 − 2n2 + n), W (χ) obtained from W by adjoin-
ing the values of χ on finite adeles, and p ∈ Za is defined for v ∈ a as pv =
mv−|kv−kvρ−tv |−2σ0

2 if σ0 � n, and pv = mv−|kv−kvρ−tv |−4n+2σ0

2 if σ0 < n.

Theorem 5.3 Let f ∈ Sk(C, ψ; Q) be an eigenform for all Hecke operators. With
notation as before we take m0 > 3n + 2. Let χ be a Hecke character of K such
that χa(x) = xta|xa|−t with t ∈ Za. Define μ ∈ Zb as in the previous theorem. With
the same assumptions as in the previous theorem and with �f ∈ C× as defined in
Theorem 5.1 we have for all σ ∈ Gal(Q/�Q) that

(
L(σ0, f, χ)

πβτ(χn
1 ψn

1 θn2)ρ i n
∑

v∈a pv�f

)σ

= L(σ0, fσ , χσ )

πβτ((χn
1 ψn

1 θn2)σ )ρ i n
∑

v∈a pv�fσ

,

where�Q = � if σ0 ∈ Z and it is the algebraic extension of� obtained by adjoining
|det (qq∗)|1/2h for all q ∈ Q, if σ0 ∈ 1

2Z, where the set Q is defined in Sect.4.
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6 The Euler Factors Above p and the Trace Operator

We now fix an odd prime p and write S for the set of prime ideals in K above p such
that they are inert with respect to the totally real subfield F . We assume of course
that S �= ∅. A typical element in this set will be denoted by p.

For a fractional ideal b and an integral ideal c of F , which are taken prime to
the ideals in the set S, we define C := D[b−1, bc]. We consider a non-zero f ∈
Sk(C, ψ), which we take to be an eigenform for all Hecke operators with respect to
C . Furthermorewe letχ be aHecke character of K of conductor fχ (or simply f if there
is no danger of confusion), supported in the set S. Aswementioned in the introduction
our aim is to obtain measures that interpolate special values of L(s, f, χ) such that
the Eisenstein series involved in the Theorem 4.1 are holomorphic. In particular if we
write t ∈ Za for the infinite type of the character χ and define μ ∈ Zb as in Sect. 4,
then we will assume that

(kv − μv − n) + (kvρ − μvρ) = r, ∀v ∈ a,

for some r � n, where we exclude the case of r = n + 1, F = Q and χ1 = θ . For a
fixed character χ we define

1. �χ := � := θA(x, χ−1), where we put some special condition on the element
r ∈ GLn(K )h in the definition of the theta series. Namelywe pick the element r ∈
GLn(K )h such that rv = πvr ′

v with r
′
v ∈ GLn(rv) for v not dividing the conductor

and v ∈ S, and rv ∈ GLn(rv) for v ∈ S and dividing the conductor. For τ we
assume that τv ∈ GLn(rv).

2. �∗
χ := �∗ := θ∗

A
(x, χ−1), with similar conditions on r and τ as above.

3. Eχ,+ := E+ := D̃A(x, r
2 ; k − l, �, c′′),

4. E∗
χ,+ := E∗+ := D̃∗

A
(x, r

2 ; k − l, �, c′′),
5. Eχ,− := E− := D̃A(x, n − r

2 ; k − l, �, c′′),
6. E∗

χ,− := E∗− := D̃∗
A
(x, n − r

2 ; k − l, �, c′′),

where � := (χ−1φ−nψ−1)c, c′′ is as in Theorem 4.1 and the Eisenstein series D̃A

was introduced in Eq.7.
We now recall some facts about Hecke operators taken from [29, 30]. The action

of the Hecke operator TC(ξ) := T (ξ) := CξC for some ξ ∈ Gh, such that CξC =⊔
y∈Y Cy for a finite set Y , is defined by,

(f |CξC)(x) :=
∑

y∈Y
ψc(det (ay))

−1f(xy−1).

Following Shimura, we introduce the notation E :=∏v∈h GLn(rv) and B := {x ∈
GLn(K )h|x ≺ r}. We have,
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Lemma 6.1 (Shimura, Lemma 19.2 in [30]) Let σ = diag[q̂, q] ∈ Gv with q ∈ Bv

and v|c. Then
CvσCv =

⊔

d,b

Cv

(
d̂ d̂b
0 d

)

,

withd ∈ Ev \ EvqEv andb ∈ S(b−1)v/d∗S(b−1)vd,where S(b−1) := S ∩ Mn(b
−1).

We now introduce the following notation. Let v ∈ h be a finite place of F which
correspond to a prime ideal of F , that is inert in K . We write p for the ideal in K
corresponding to the place in K above v, and πv (or π when there is no fear of
confusion) for a uniformizer of p. Since the choice of v determines uniquely a place
of K (since we deal with the inert situation) we will often abuse the notation and
write v also for this place of K .

For an integral ideal c such that v|c we write U (πi ), for an i = 1, . . . , n, for the
operator CξC defined by taking ξv′ = 12n for v′ not equal to v and ξv = diag[q̂, q]
with q = diag[π, . . . , π, 1, . . . , 1] where there are i-many π ’s. Sometimes, we will
also write U (π) or U (p) for U (πn).

6.1 The Unramified Part of the Character

We now describe how we can choose the elements d in Lemma 6.1 for the operators
U (πi ). We have,

Lemma 6.2 Let q = diag[π, π, . . . π, 1, . . . , 1] with m many π ’s. Then we have
that in the decomposition

EvqEv =
⊔

d

Evd,

the representatives d = (di j )i, j ’s are all the lower triangular matrices such that,

1. there exist n − m many 1 on the diagonal and the rest elements of the diagonal
are equal to π . Write S for the subset of {1, . . . , n} such that i ∈ S if and only if
dii = π .

2. For any i > j , we have

di j =

⎧
⎪⎨

⎪⎩

0 if j /∈ S and i ∈ S

0 if j ∈ S and i ∈ S

α if j ∈ S and i /∈ S

,

whereα ∈ rv runs over somefixed representatives of rv/pv , where pv themaximal
ideal of rv .

Proof See [8, pp. 55–56] �
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We now let λi be the eigenvalues of f with respect to the operatorsU (πi ). For the
fixed prime ideal p as above we write ti for the Satake parameters tp,i associated to
f as introduced in Sect. 4.

Lemma 6.3 We have the identity

λ−1
n

(
n∑

i=0

(−1)i N (p)
i(i−1)

2 +ni+ n(n−1)
2 λi X

i

)

=

(−1)nN (p)n(2n−1)Xn
n∏

i=1

(1 − t−1
i N (p)1−n X−1).

Proof We first note that,

n∑

i=0

(−1)i N (p)
i(i−1)

2 +niλi X
i =

n∏

i=1

(1 − N (p)n−1ti X). (8)

This follows from [30, Lemma 19.13] and the fact that (see [30, p. 163])

∑

d∈Ev\Bv

ω0(Evd)|det (d)|−n
v Xvp(det (d)) =

n∏

i=1

(1 − N (p)n−1ti X)−1,

where vp(·) is the discrete valuation corresponding to the prime p, | · |v the absolute
value at v normalized as |π |v = N (p)−1. For the definition of ω0(Evd), we first find
an upper triangular matrix g so that Evd = Evg and then we define ω0(Evd) :=∏n

i=1

(
N (p)−2i ti

)ei , where the ei ∈ Z are so that gii = π ei for g = (gi j ).
We can rewrite the right hand side of Eq.8 as

n∏

i=1

(1 − N (p)n−1ti X) =

N (p)n(n−1)(−1)n(t1t2 . . . tn)X
n

n∏

i=1

(1 − t−1
i N (p)1−n X−1).

Moreover we have by Eq.8 that λn = N (p)−
n(n+1)

2 t1t2 . . . tn . So we conclude that

λ−1
n

(
n∑

i=0

(−1)i N (p)
i(i−1)

2 +niλi X
i

)

=

(−1)nN (p)n(n−1)+ n(n+1)
2 Xn

n∏

i=1

(1 − t−1
i N (p)1−n X−1),
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or,

λ−1
n

(
n∑

i=0

(−1)i N (p)
i(i−1)

2 +ni+ n(n−1)
2 λi X

i

)

=

(−1)nN (p)n(2n−1)Xn
n∏

i=1

(1 − t−1
i N (p)1−n X−1).

�

In particular if χ is a Hecke character of K which is taken unramified at p and we
set X := χ(p)N (p)s+ with s+ := − n+r

2 for some r ∈ Z we obtain,

λ−1
n

(
n∑

i=0

(−1)i N (p)
(n−i)(n−i−1)

2 − r−3n+2
2 λiχ(p)i

)

=

(−1)nN (p)n(2n−1)−n( r+n
2 )χ(p)n

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 ),

or

λ−1
n

(
n∑

i=0

(−1)i N (p)
(n−i)(n−i−1)

2 − r−3n+2
2 λiχ(p)i−n

)

= (9)

(−1)nN (p)n(2n−1)−n( r+n
2 )

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 ),

and if we set X := χ(p)N (p)s− with s− := − 3n−r
2 , we obtain,

λ−1
n

(
n∑

i=0

(−1)i N (p)
(n−i)(n−i−1)

2 − −n−r+2
2 λiχ(p)i−n

)

= (10)

(−1)nN (p)n(2n−1)−n( 3n−r
2 )

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

n−r+2
2 ).

We also make a general remark about the adjoint operator of the Hecke operators
introduced in Lemma 6.1. First we note that,

(
0 1

−1 0

)(
a b
c d

)(
0 −1
1 0

)

=
(

d −c
−b a

)
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In particular we have

η−1
h D[b−1, bc]ηh = D[bc, b−1].

Now if we write W for the operator (f |W )(x) := f(xη−1
h ) we have,

Lemma 6.4 For f, g ∈ Mk(C, ψ) we have

< f |CσC, g >c=< f, g|WC̃ σ̃ C̃W−1 >c

where C̃ := D[bc, b−1], and σ̃ := diag[q̂∗, q∗] if σ = diag[q̂, q].
Proof By Proposition 11.7 in [29] we have that < f |CσC, g >=< f, g|Cσ−1C >.
Of course we have σ−1 = diag[q∗, q−1]. Moreover we have that

Cσ−1C = WW−1CWW−1σ−1WW−1CWW−1

and we have that Wσ−1W−1 = diag[q−1, q∗] = diag[q̂∗, q∗]. Moreover the group
W−1CW = D[bc, b−1] if C = D[b−1, bc]. Moreover we note that we may write
D[bc, b−1] = D[̃b−1, b̃c] by taking b̃ = b−1c−1. �

For the fixed ideal p, and an s ∈ C, we define the operator J (p, s) on Mk(C, ψ)

as

J (p, s) :=
n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s)+ n(n−1)
2 (χ)(p)i−nU (πi ).

We now note by Lemma 6.3 we have that for the eigenform f

f |J (p, s) = λn(−1)nN (p)n(2n−1)N (p)ns
n∏

i=1

(1 − N (p)1−nχ(p)−1t−1
i N (p)−s)f

Wewill need to consider the adjoint operator of J (p, s)with respect to the Peters-
son inner product. In particular if we write

< f |J (p, s), g >=< f, g|W J̃ (p, s)W−1 >,

then by Lemma 6.4 we have that

J̃ (p, s) =
n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s̄)+ n(n−1)
2 χ(p)n−iU (πi ),

where we keep writing U (πi ) for the Hecke operator

D[bc, b−1]diag[π, π, . . . , π, 1 . . . , 1]D[bc, b−1].
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We note here that

D[bc, b−1]diag[π, π, . . . , π, 1 . . . , 1]D[bc, b−1] =

D[bc, b−1]diag[πρ, πρ, . . . , πρ, 1 . . . , 1]D[bc, b−1]

Of particular interest for us are the operators ˜J (p, s±) where we recall we have
defined s+ := − r+n

2 and s− := 3n−r
2 . We set m0 := cppρ . We note that �∗E∗± ∈

D[bam0, b
−1] for some ideals a, b prime to q. This is clear for the Eisenstein

series by its definition, and for the theta series we need to observe that since
we are taking an r ∈ GLn(K )h of the form ππρr ′ for some r ′ ∈ GLn(K )h with
rv ∈ GLn(rv)we have that the ideals t and y are equal to qqρ . Hence we have that θ ∈
Ml(D[(dqqρ)−1, dqqρeffρ]).Hecne θ∗∈Ml(D[dqqρeffρ, (dqqρ)−1]) ⊂ Ml(D[dqqρ

effρ, d−1]) ⊂ Ml(D[dcqqρeffρ, d−1]). We then take b = d−1 and a = effρ .
Before we go further, we collect some facts which will be needed in the proof of the
following Theorem. We start by recalling the so-called generalized Möbius function
as for example defined by Shimura in [30, pp. 163–164]. We restrict ourselves to the
local version of it, since this will be enough for our purposes. We have fixed a finite
place v of the filed K (recall here our abusing of notation explained above), and write
Kv for the completion at v and rv for its ring of integers. We continue writing p for
the prime ideal of r corresponding to the finite place v, and pv for the maximal ideal
of rv . Finally we write π for a fixed uniformizer of rv .
The generalized Möbius function will be denoted by μ, and it is defined on the set
of rv-submodules of a torsion rv-module. In particular we cite the following lemma
[30, Lemma 19.10].

Lemma 6.5 To every finitely generated torsion rv-module A we can uniquely assign
an integer μ(A) so that

∑

B⊂A

μ(B) =
{
1 if A = {0}
0 if A �= {0} .

We also recall two properties (see [30] for a proof ) of this generalized Möbius
function, which will play an important role later. We have

1. μ((rv/pv)
r ) = (−1)r N (p)r(r−1)/2 if 0 � r ∈ Z.

2. μ(A) �= 0 if and only if A is annihilated by a square free integral ideal of Kv .

Let us now denote byL := L
 the set of rv-lattices in K 

v . Given an y ∈ GL
(Kv)

and an L ∈ L we define a new lattice by yL := {yx |x ∈ L} ∈ L. Conversely it is
clear that given two latticesM, L ∈ L there exists a y ∈ GL
(Kv) such thatM = yL .
We also note that if L , M ∈ L and M ⊂ L then we can write μ(L/M). Let us now
take L := r
v ⊂ K 


v . Then by [30, Lemma 19.13] we have
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∑

L⊃M∈L
μ(L/M)Xvp(det (y)) =


∏

i=1

(1 − N (p)i−1X), (11)

where the sum runs over all lattices M ∈ L contained in L , and y is defined so that
M = yL . Here we write vp(·) for the normalized discrete valuation of Kv .
We will now use the above equality to obtain a relation between the number of left
cosets in the decomposition of Lemma 6.2. We set E
 := GL
(rv) and for an m � 


we set π(
)
m := diag[π, π, . . . , π, 1, . . . , 1] ∈ GL
(Kv) with m-many π ’s. As we

have seen in Lemma 6.2 we have a decomposition

E
π
(
)
m E
 =

⊔

d(
)
m

E
d
(
)
m ,

for some d(
)
m ∈ GL
(Kv) ∩ M
(rv). We write μ(
)

m for the number of the cosets in
the above decomposition. Then we have,

Lemma 6.6 With notation as above,


∑

i=0

(−1)i N (p)
i(i−1)

2 μ
(
)
i = 0.

Proof We first note that by taking the transpose of the decomposition above we may
also work with right cosets, that is E
π

(
)
m E
 =⊔d(
)

m

td(
)
m E
. We now let L := r
v ,

and we see that to every coset td(
)
m E
 for 0 � m � 
 we can associate a lattice

M ∈ L by M := td(
)
m L . Since td(
)

m are integral we have M ⊂ L . Moreover in the
sum
∑

L⊃M∈L μ(L/M)Xvp(det (y)), because of property (ii) of the Möbius function,
we have that the y′s have square free elementary divisors. Indeed it is enough to
notice (see for example [9, Theorem 1.4.1]) that for the lattice M = yL we have that
L/M is isomorphic to ⊕0�i�r (rv/pv)

ei where ei are the (powers) of the elementary
divisors of y, and r its rank. In particular we can conclude that each y in the sum∑

L⊃M∈L μ(L/M)Xvp(det (y)) belongs to some td(
)
m E
 for m equal to vp(det (y)).

That is, we may write

∑

L⊃M∈L
μ(L/M)Xvp(det (y)) =


∑

i=0

(−1)i N (p)
i(i−1)

2 μ
(
)
i X i ,

where we have used property (i) of the Möbius function. We now set X = 1 and use
Eq.11 to conclude the lemma. �

We are now ready to prove the following theorem.

Theorem 6.7 Let p ∈ S and write v for the finite place of F corresponding to p as
above. Consider a Hecke character χ of K unramified at the prime p. Let F± :=
�∗E∗± and write
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g± := F±| ˜J (p, s±).

Then, for q ∈ GL(K )h, with qv ∈ GLn(rv), we have

g±
((

q sq̂
0 q̂

))

= C(p, s±)
∑

τ∈S+

c(τ, q; g±)en
A
(τ s)

with C(p, s±) := (−1)nN (p)n(n−1)+n(n+s±)ψ(p)−n and,

c(τ, q; g±) =
∑

τ1+τ2=τ

c(τ1, qπ,�∗)c(τ2, qπ, E∗
±),

where (τ1)v ∈ (πvπ
ρ
v )−1T×

v , where T×
v = Tv ∩ GLn(rv) and we recall that

T = {x ∈ S|tr(S(r)x) ⊂ g},

where S(r) = S ∩ Mn(r), and Tv := T ⊗r rv .

Proof Wewill show the TheoremwhenF := F+ = �∗E∗+, and a similar proof shows
also the case of F− = �∗E∗−. We set g := g+, and we note that the Nebentype of
�∗E∗+ is ψ−c. We then have,

g
((

q sq̂
0 q̂

))

=

N (p)
n(n−1)

2

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

F
((

q sq̂
0 q̂

)(
d̂−1
i −bid

−1
i

0 d−1
i

))

,

where here we write di and bi for the d’s and b’s corresponding to the Hecke operator
U (πi ) as described in Lemma 6.1, and in order to make the formulas a bit shorter
we have introduced the notation Bi := (−1)i N (p)

i(i−1)
2 +i(n+s+)χ(p)i−n . In particular

we have that

N (p)−
n(n−1)

2 g
((

q sq̂
0 q̂

))

=

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

F
((

qd̂−1
i −qbid

−1
i + sq̂d−1

i

0 q̂d−1
i

))

=

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

F

((
qd∗

i (−qbiq∗ + s )̂qd∗
i

0 q̂d∗
i

))

=
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n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

bi

∑

τ∈S+

c(τ, qd∗
i ; F)en

A
(τ (−qbiq

∗ + s)) =

n∑

i=0

Bi

∑

di

ψv(det (di ))
−1
∑

τ∈S+

c(τ, qd∗
i ; F)

⎛

⎝
∑

bi

enh(−τqbiq
∗)

⎞

⎠ en
A
(τ s)

Since bi ∈ S(bc)v , we have by [30, Lemma 19.6] that

∑

bi

enh(−τqbiq
∗) = |det (di )|−n

A
,

if (q∗τq)v ∈ d−1b−1c−1Tv for all v ∈ h and zero otherwise. We now write

c(τ, qd∗
i ; F) =

∑

τ1+τ2=τ

c(τ1, qd
∗
i ;�∗)c(τ2, qd∗

i ; E∗
+),

and from above we have that (q∗τq)v ∈ d−1b−1c−1Tv for all v ∈ h. Moreover we
have that c(τ1, qd∗

i ;�∗) �= 0 only if (q∗τ1q)v ∈ d−1b−1c−1d−1
i Tv d̂i for all v ∈ h and

c(τ2, qd∗
i ; E∗+) �= 0, only if (q∗τ2q)v ∈ d−1b−1c−1d−1

i Tv d̂i for all v ∈ h. In the above
sum we run over all possible pairs of positive semi-definite hermitian matrices τ1, τ2
with τ1 + τ2 = τ , and set c(τ1, qd∗

i ;�∗) = c(τ2, qd∗
i ; E∗+) = 0 if τ1, τ2 are not in

the set described above.
From now on we will be writing v for the finite place of F corresponding to the
prime ideal p. We introduce the notation

Si := {s ∈ S : q∗sq ∈ d−1b−1c−1d−1
i T d̂i , ordp(dbcν(s)) = 2i},

where ν(s) is the so-called denominator ideal associated to a matrix s, as for example
defined in [29, Chap. I, Sect. 3]. That is, the valuation at p of the denominator-ideal of
the symmetric matrix q∗sq is exactly i , after clearing powers of p coming from dcb.
We note that since τ ∈ S0 we have that τ1 ∈ Si if and only if τ2 ∈ Si if τ1 + τ2 = τ .
We now rewrite the Fourier expansion of g as

∑

τ∈S+

N (p)
n(n−1)

2 χ(p)−n
n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s+)χ(pi )
∑

di

ψv(det (di ))
−1×

∑

τ1+τ2=τ

c(τ1, qd
∗
i ;�∗)c(τ2, qd∗

i ; E∗
+)|det (di )|−n

v ena(i Â
′tqτq)en

A
(τ s),
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where we have used the fact that |det (di )|A = |det (di )|v since (di )v′ = 1n for any
finite place v′ not equal to v. We now work the inner sum for any fixed τ . That is,

n∑

i=0

(−1)i N (p)
i(i−1)

2 +i(n+s+)χ(pi )
∑

di

ψv(det (di ))
−1×

∑

τ1+τ2=τ

c(τ1, qd
∗
i ;�∗)c(τ2, qd∗

i ; E∗
+)|det (di )|−n

v , (12)

or

∑

τ1+τ2=τ

n∑

i=0

(−1)i N (p)
i(i−1)

2 N (p)i(n+s+)χ(pi )×

∑

di

ψv(det (di ))
−1c(τ1, qd

∗
i ;�∗)c(τ2, qd∗

i ; E∗
+)|det (di )|−n

v (13)

We claim that this sum is equal to

N (p)
n(n−1)

2 +n(n+s+)(−1)nχ(p)nψ(p)−n
∑

τ1+τ2=τ

c(τ1, qπ,�∗)c(τ2, qπ, E∗
+), (14)

where (q∗τ1q)v, (q∗τ2q)v ∈ π−2d−1b−1c−1T×
v = Sn . Note that this is enough in

order to establish the claim of the Theorem.
To show this, we consider the nth term of the Eq.12, that is the summand with i = n
and we recall that the dn’s run over the single element π In . That is, the nth term is
equal to

N (p)
n(n−1)

2 +n(n+s+)(−1)nχ(p)nψ(p)−n
∑

τ1+τ2=τ

c(τ1, qπ,�∗)c(τ2, qπ, E∗
+), (15)

where (q∗τ1q)v, (q∗τ2q)v ∈ d−1b−1c−1d−1
n Tv d̂n = d−1b−1c−1π−2Tv .

Note that the difference of the expression in Eq.15, and the claimed sum in Eq.14
is the difference of the support of the Fourier coefficients. Indeed note that in Eq.15
(or better say in the line right after) we write Tv where in Eq.14 we write T×

v ,
and of course T×

v ⊂ Tv . Hence our aim is to prove that for every pair (τ1, τ2) with
τ1 + τ2 = τ and τi ∈ Sj with j < n that contributes a non-trivial term in Eq.15, its
contributionwill be cancelled out by the lower terms (i.e. i < n) that appear in Eq.13.
So the only terms that “survive” the cancellation will be the ones with τ1, τ2 ∈ Sn .
Moreover all lower terms will be cancelled out.

We note that if we consider a τ1 ∈ Sj (hence τ2 ∈ Sj )with j < n, then we observe
that given such a τ1 and τ2, we have that c(τ1, qd∗

m;�∗)c(τ2, qd∗
m; E∗+) �= 0 implies

thatm � j . Indeed since τ1, τ2 ∈ Sj wehave for anym < j that (q∗τ1q)v, (q∗τ2q)v /∈
d−1b−1c−1d−1

i Tv d̂i .
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So in what follows we fix a pair τ1 and τ2 in Sj for some j � 0 with j < n. By [29,
Lemma 13.3] since we are interested in the question whether τ1, τ2 belong to a partic-
ular lattice, we may assume without loss of generality that our τ1, τ2, locally at v, are
of the form diag[s1, . . . , sn] for si ∈ Kv . After reordering the si ’swemay assume that
s j+1, . . . , sn are integral, while the rest have non-trivial denominators. That means,
that the dm’s for j � m � n with c(τ1, qd∗

m;�∗)c(τ2, qd∗
m; E∗+) �= 0 can be taken of

a very particular form, namely we can take them to be lower triangular matrices (by
Lemma 6.2) with the diagonal of the form diag[π, . . . , π, π e j+1 , . . . , π en ], where
e j+1, . . . , en ∈ {0, 1} and e j+1 + . . . + en = m − j . Indeed the first j many π ’s on
the diagonal are imposed to us in order d jτ1d∗

j , d jτ2d∗
j to have integral coefficients

along the diagonal. Given such a pair of indices m and j , with m � j we will write
λ

( j)
m for the number of left cosets Evdm with diagonal of dm as just described. From

now on when we write a dm or d j it will be always one of this particular form (i.e.
lower diagonal and with the above mentioned description of the diagonal).
We now claim that we may write

c(τ1, qd
∗
n ,�

∗) = αn, j c(τ1, qd
∗
j ,�

∗),

and
c(τ2, qd

∗
n , E∗

+) = βn, j c(τ2, qd
∗
j , E∗

+),

for some αn, j and βn, j , and any d j . The terms c(τ1, qd∗
j ,�

∗), c(τ2, qd∗
j , E∗+) are not

trivially zero since (d jq∗τi d∗
j )v ∈ bdc−1Tv . Actually for anym with n � m � j , and

for any dm and d j of the form mentioned in the previous paragraph regarding their
diagonal we may write

c(τ1, qd
∗
m,�∗) = αm, j c(τ1, qd

∗
j ,�

∗),

and
c(τ2, qd

∗
m, E∗

+) = βm, j c(τ2, qd
∗
j , E∗

+),

for τ1, τ2 ∈ Sj . We now compute the αm, j , βm, j . We have by the explicit description
of the Fourier coefficients in Proposition 3.1 that,

c(τ2, qd
∗
m, E∗

+) = (ψχ)(det (dmd
−1
j ))φ(det (dmd

−1
j ))n×

|det (dmdρ
m)d−1

j d−ρ

j |n−r/2
v c(τ2, qd

∗
j , E∗

+).

Now we consider the theta series. We first notice that in order to compute the coef-
ficients c(τ1, qd∗

i ;�∗
χ ) for any i with 0 � i � n it is enough to compute the Fourier

coefficients of θχ (xw) with w = diag[d∗
i , d

−1
i ]h. We now note that by [30, Eq.

(A5.7)] we have that

θχ (xw) = |det (dρ

i )|n/2
v φh(det (d

ρ

i )nχfχ (det (di ))θχ (x),
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where we have used [30, Theorem A5.4] and the definition of the theta series. In
particular we conclude that

c(τ1, qd
∗
m,�∗) = |det (dρ

m)det (d−ρ

j )|n/2
v φh(det (d

ρ
m)det (d−ρ

j ))nc(τ1, qd
∗
j ,�

∗).

where we have used the fact that the character χ is unramified at p, and hence χfχ

can be ignored.
We now note that det (dm) = πm and det (d j ) = π j . In particular we have

βm, j = (χψ)(πm− j )φ(πm− j )n|πm− j |n−r/2
v ,

and
αm, j = |πm− j |n/2

v φ(π(m− j)ρ)n

In particular we observe that the αm, j and βm, j do not depend on the specific class
of Edm and Ed j .

Now we remark that the coefficients c(τ1, qd∗
j ,�

∗) and c(τ2, qd∗
j , E∗+) depend

only on the determinant of d j , and not on the particular choice of the d j , as it follows
from the explicit description of the Fourier coefficients of the Eisenstein series in
Propositions 3.1 and of the theta series in 3.5. Especially for the theta serieswe remark
that it is important here that the character χ is unramified at p. Hence going back
to the Eq.13, we observe that we can factor the term c(τ1, qd∗

j ,�
∗)c(τ2, qd∗

j , E∗+)

since it does not depend on a particular choice of d j . Here we remind the reader the
convention done above, that the d j ’s are taken of a particular form, i.e. lower diagonal
and a condition on the diagonal are described above. So for the fixed choice of the
pair τ1 and τ2, we see that in order to establish the cancellation of the contribution
of the fixed pair (τ1, τ2) in the sum, we need to show, that

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 χ(p)n−mαm, jβm, j |det (dm)|−n

v λ( j)
m = 0.

(We remark one more time here that the outer summation runs from j to n, since
for the fixed choice of τ1 and τ2 we have that c(τ1, qd∗

i ;�∗)c(τ2, qd∗
i ; E∗+) = 0 for

i < j .)
Using the fact that φ((ππρ)m− j )n is equal to φ1(ππρ)(m− j)n and the restriction

φ1 = θ , a quadratic character, we obtain φ((ππρ)m− j )n = 1. Hence we may rewrite
the above sum as

(χn− jψ− j )(p)

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 |πm− j |n−r/2

v |πm− j |n/2
v ×

|det (dm)|−n
v λ( j)

m = 0.
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Of course |π |v = N (p)−1 and hence we have

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 +( j−m)(n−r/2)+( j−m)n/2+mnλ( j)

m =

n∑

m= j

(−1)mN (p)
m(m−1)

2 +m(n+s+)+ n(n−1)
2 +( j−m)(n−r/2)+( j−m)n/2+mnλ( j)

m =

N (p) j (n−r/2+n/2)
n∑

m= j

(−1)mN (p)
2( m(m−1)

2 +m(n+s+)+ n(n−1)
2 )+mr−mn

2 λ( j)
m .

That is, we need to establish that

n∑

m= j

(−1)mN (p)
2( m(m−1)

2 +m(n+s+)+ n(n−1)
2 )+mr−mn

2 λ( j)
m = 0,

which is equivalent to

n∑

m= j

(−1)mN (p)
m(m−1+n+2s++r)

2 λ( j)
m = 0,

and since s+ = − r+n
2 we get that we need to show that,

n∑

m= j

(−1)mN (p)
m(m−1)

2 λ( j)
m = 0. (16)

We now recall that we are considering dm’s of very particular form, namely lower
diagonal matrices where the diagonal is of the form diag[π, . . . , π, π e j+1 , . . . , π en ],
where e j+1, . . . , en ∈ {0, 1} and e j+1 + . . . + en = m − j . We wrote λ

( j)
m for the

number of them. Recalling now the notation introduced in Lemma 6.6, we claim that

λ( j)
m = μ

(n− j)
m− j × N (p)(n−m) j . (17)

We first recall that by Lemma 6.2 we may pick the dm’s in the decomposition
EvπmEv =⊔dm Evdm such that, if we write dm = (aik) we have that aik = 0 for
i < k (i.e. lower triangular), and for i > k we have that aik could be any representa-
tive in rv of rv/pv for k ∈ S and i /∈ S and zero otherwise, where S is the subset of
{1, . . . , n} of cardinality m indicating the indices of the π ’s in the diagonal of dm .
Since we consider dm’s with π in the first j entries of the diagonal we have that
aik = 0 for 1 � k < i � j . Moreover the number of choices for the lower right
n − j × n − j part of dm is equal to μ

(n− j)
m− j since we are putting m − j many π on a
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diagonal of length n − j . We can conclude the claimed equality after observing that
we are free to pick for the entry aik with i > k and j + 1 � i � n, and 1 � k � j
(i.e. the lower left (n − j) × j part) any representative of rv/pv as long as aii = 1.
That is we have N (p)(n−m) j many choices, since we place n − m many ones in the
n − j many lower entries of the diagonal of dm .

By Lemma 6.6 we have,

n− j∑

i=0

(−1)i N (p)
i(i−1)

2 μ
(n− j)
i = 0,

and using Eq.17 we obtain

n− j∑

i=0

(−1)i N (p)
i(i−1)

2 N (p)−(n−(i+ j)) jλ
( j)
i+ j = 0,

or,

n∑

m= j

(−1)m− j N (p)
(m− j)(m− j−1)

2 −(n−m) jλ( j)
m = 0,

or,
n∑

m= j

(−1)mN (p)
m(m−1)

2 λ( j)
m = 0,

which establishes Equality (16), and hence concludes the proof. �

6.2 The Ramified Part of the Character

We now fix two integral ideals c1 and c2 of F with c1|c2. We writeCi := D[b−1, bci ],
for i = 1, 2 and define the trace operator Tr c2c1 : Mk(C2, ψ) → Mk(C1, ψ) by

f �→ Tr c2c1(f)(x) :=
∑

r∈R

ψc2(det (ar ))
−1f(xr),

where R is a set of left coset representatives of D[b−1, bc2] \ D[b−1, bc1]. We note
that for a Hermitian cusp form g ∈ Sk(C1, ψ) we have the well known identity

< g, f >c2=< g, Tr c2c1(f) >c1 , (18)
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where < ·, · >ci denotes the adelic inner product with respect to the group
D[b−1, bci ]. We now give an explicit description of the trace operator Tr c2c1 in the
case of supp(c1) = supp(c2), where by supp(m) of an ideal m is defined to be the
set of prime ideals q of F with q|m. We note that this is similar to the description
given in [27, p. 91, p. 136]. We write c2c

−1
1 = c for some integral ideal c and we fix

elements c, c1, c2 ∈ F×
A
such that c?g = c? as well as b ∈ F×

A
such that bg = b. We

first show the following lemma.

Lemma 6.8 Let a be an integral ideal prime to c2. Then we have the decomposition

D[b−1, bac1] =
⊔

r∈R

D[b−1, bac2]r,

where

R = {
(

1 0
bac1u 1

)

|u ∈ S(g)h mod c},

with a ∈ F×
A
such that ag = a.

Proof Clearly without loss of generality we can set a = g. Moreover it is clear that
the right hand side of the claimed decomposition is included into the left. To prove

the other inclusion we consider an element

(
A B
C D

)

∈ D[b−1, bc1] and show that

there exists an r ∈ R such that

(
A B
C D

)

r−1 ∈ D[b−1, bc2] or otherwise there exists
u ∈ S(g)h mod c such that

(
A B
C D

)(
1 0

bc1u 1

)

∈ D[b−1, bc2].

That is, we need to prove that there exists such a u as above so thatC + bc1Du ≺ bc2.
Since C ≺ bc1r we can write it as C = bc1C0 with C0 ≺ r, and hence we need to
show that bc1(C0 + Du) ≺ bc2r. By our assumption that supp(c1) = supp(c2) we

have that DA∗ ≡ 1n mod
(∏

q|c q
)
r. For a prime ideal q that divides c we write

eq for the largest power of it that divides c and we define e := max(eq). Then we
have that (DA∗ − 1n)e ≺ cr. That means that there exists an element D̃ ≺ r such
that DD̃ ≡ 1 mod cr and D̃C0 ∈ S(g)h. Indeed we have that

(DA∗ − 1n)
e = DA∗DA∗ · · · DA∗ + ...(−1)e In ≺ cr,

or equivalently

D
(
A∗DA∗ · · · DA∗ + · · · + A∗) ≡ (−1)e−1 In mod cr.
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So we need only to check that the matrix

(
A∗DA∗ · · · DA∗ + · · · + A∗)C0 = A∗DA∗ · · · DA∗C0 + ... + A∗C0

is hermitian. But we know that A∗C is hermitian and since bc1 ∈ F×
A

we have that
also A∗C0 is hermitian. The same reasoning holds for the product DC∗

0 . In particular
we have

(A∗DA∗ · · · DA∗C0)
∗ = C∗

0 AD
∗A · · · D∗A = A∗C0D

∗A · · · DA∗ =

A∗DC∗
0 A · · · DA∗ =

· · · = A∗DA∗ · · ·C0A = A∗DA∗ · · · DA∗C0.

This establishes the claim. Thenwe can take u = (−1)e D̃C0 to conclude the proof.�

Let us now assume that the deal c = c2c
−1
1 above is the norm of an integral

ideal c0 of K , that is c = NK/F (c0). We also pick an element c0 ∈ K×
A

such that
c0r = c0. We consider now the Hecke operator TC(c) := T (c) :=∏v|c T (σv) for
σv = diag[ĉ0v1n, c0v1n], where we take C = D[bc1, b−1c]. Note that this group is
of the form D[b̃−1, b̃c̃] with b̃ = (bc1)

−1 and c̃ = cc1 = c2. By Lemma 6.1 we have
that

CvσvCv =
∐

b

Cv

(
ĉ0v1n ĉ0vb
0 c0v1n

)

,

where b ∈ S(bc1)v/cS(bc1)v . We now observe the identity
(

0 −1n
1n 0

)(
c∗
01n −c−1

0 b
0 c0−11n

)(
ĉ01n 0
0 c01n

)(
0 1n

−1n 0

)

=
(
1n 0
b 1n

)

.

We now write V (c0) : Mk(D[bc2, b−1]) → Mk(D[bc1, cb−1]) for the operator

defined by f(x) �→ f
(

x

(
ĉ01n 0
0 c01n

))

. We can conclude from the above calcu-

lation that the trace operator can be decomposed as

Tr c2c1 = W ◦ V (c0) ◦ T (c) ◦ W−1,

where the operators are operating from the right. We note that in general the
image of the right hand side is in Mk(D[b−1c, bc1]) which contains of course
Mk(D[b−1, bc1]), where the image of the trace operator lies. We summarize the
above calculations to the following lemma.
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Lemma 6.9 With notation as above, and assuming that there exists a c0 such that
c = NK/F (c0) we have

Tr c2c1 = W ◦ V (c0) ◦ T (c) ◦ W−1.

The effect of T (c) on the q-expansion. We now study the effect of the operator
T (c) and of V (c0) on the q-expansion of an automorphic form F which we take in
Mk([D[bc1, b−1c]], ψ−c). We write

F
((

q sq̂
0 q̂

))

=
∑

τ∈S+

c(τ, q; F)en
A
(τ s).

Setting G := F|T (c) we have,

G
((

q sq̂
0 q̂

))

=

ψ(det (c0))
−1
∑

b

F
((

q sq̂
0 q̂

)(
c0∗1n −c0−1b
0 c0−11n

))

=

where b runs over the set S(bc1)v/cS(bc1). In particular

G
((

q sq̂
0 q̂

))

=

ψ(det (c0))
−1
∑

b

F
((

qc∗
0 −qc−1

0 b + sq̂c−1
0

0 q̂c−1
0

))

=

∑

b

F
((

qc∗
0 (−qbq∗ + s)q̂c∗

0
0 q̂c∗

0

))

=

ψ(det (c0))
−1
∑

b

∑

τ∈S+

c(τ, qc∗
0; F)en

A
(τ (−qbq∗ + s)) =

ψ(det (c0))
−1
∑

τ∈S+

(
∑

b

en
A
(τqbq∗)

)

c(τ, qc∗
0; F)en

A
(τ s) =

ψ(det (c0))
−1
∑

τ∈S+

(
∑

b

enh(τqbq
∗)

)

c(τ, qc∗
0; F)en

A
(τ s).
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Note that the inner sum is well-defined since by [30, Proposition 20.2] we have that
c(τ, qc∗

0; f) = 0 unless enh(q
∗c0τqc∗

0s) = 1 for every s ∈ S(bc1)h. Moreover (see for
example [30, Lemma 19.6]) we have that

∑

b

enh(τqbq
∗) = |c0|−n2

K ,

if τ ∈ � := qT (bc1)q∗, and zero otherwise. Here T (bc1) denotes the dual lattice of
S(bc1) := S ∩ M(bc1)). That is,

G
((

q sq̂
0 q̂

))

= |c0|−n2

K ψ(det (c0))
−1
∑

τ∈�

c(τ, qc∗
0; F)en

A
(τ s). (19)

The effect of V (c0) on the q-expansion. Now we turn to the operator V (c0). With
F we now consider G = F|V (c0). Then for the q-expansion of G we have,

G
((

q sq̂
0 q̂

))

= F
((

q sq̂
0 q̂

)(
ĉ01n 0
0 c01n

))

= F
((

ĉ0q sq̂c0
0 q̂c0

))

=

∑

τ∈S+

c(τ, ĉ0q; F)en
A
(τ s).

We now take F of a particular dorm, namely we take F = �∗E∗+, and assume
that the conductor fχ of the character χ has the property that fχ |c0. We have that

c(τ, qĉ0,�
∗E∗

+) =
∑

τ1+τ2=τ

c(τ1, qĉ0,�
∗)c(τ2, qĉ0, E∗

+)

We now note that

c(τ1, qĉ0,�
∗) = |cρ

0 |−
n
2

K φh(c
ρ
0 )

n2χfχ (c0)
nc(τ, q,�∗),

and
c(τ2, qĉ0, E∗

+) = (ψχ)(c0)
−nφ(c0)

−n2 |c0|−n(n−r/2)c(τ2, q, E∗
+).

We then conclude that,

c(τ, qĉ0,�
∗E∗

+) = ψ(c0)
−n|c0|−

n
2 −n(n−r/2)

K c(τ, q,�∗E∗
+). (20)

In particular we have that c(τ, qĉ0,�∗E∗+) �= 0 only if

(c−ρ
0 q∗τc−1

0 q)v ∈ (f−1
χ f−ρ

χ )vTv,

for all v|p.
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Similarly we have for �∗E∗− but we need to replace r
2 with n − r

2 in the above
equations. That is

c(τ, qĉ0,�
∗E∗

−) = ψ(c0)
−n|c0|−

n
2 −n(r/2)

K c(τ, q,�∗E∗
−). (21)

6.3 Rewriting the Rankin–Selberg Integral

Wenow use the above identities to rewrite the Rankin–Selberg integrals.We consider
a p ∈ S and we let f0 ∈ Sk(C, ψ) be an eigenform for the Hecke operator U (p), of
eigenvalue α(p). We take C := D[b−1, bm0] where m0 := c′ppρ for some c′ prime
to p. We now consider a Hecke character χ of K , of some conductor fχ , and write
mχ for the ideal c′pnppnpρ where pnp is the smallest power-p ideal contained in the
conductor fχ . Moreover we take c′ small enough so that it includes the prime to p
level of�. Note that by Theorem 3.4 the level of� supported at p is exactly pnppnpρ .
We then show,

Proposition 6.10 Consider any cp ∈ N with cp � np � 1. Then we have

α(p)−np−1 < f0,�E± >mχ
=

α(p)−cp−1 < f0|W,�∗E∗
±|V (p)np−1 ◦U (p)cp−1 >m0 .

Proof
< f0,�E± >mχ

=

< f0,�E±|Trmχ

m0 >m0=< f0,�E±|W ◦ V (p)np−1 ◦U (p)np−1 ◦ W−1 >m0=

α(p)np−cp < f0|U (p)cp−np ,�E±|W ◦ V (p)np−1 ◦U (p)np−1 ◦ W−1 >m0=

< f0,�E±|W ◦ V (p)np−1 ◦U (p)np−1 ◦ W−1 ◦ W ◦U (p)cp−np ◦ W−1 >m0

α(p)−np+cp
=

α(p)np−cp < f0,�E±|W ◦ V (p)np−1 ◦U (p)cp−1 ◦ W−1 >m0=

α(p)np−cp < f0|W,�∗E∗
±|V (p)np−1 ◦U (p)cp−1 >m0 .

Hence

< f0,�E± >mχ
= α(p)np−cp < f0|W,�∗E∗

±|V (p)np−1 ◦U (p)cp−1 >m0 ,

or
α(p)−np < f0, �E± >mχ = α(p)−cp < f0|W, �∗E∗±|V (p)np−1 ◦U (p)cp−1 >m0 .

�
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7 The p-stabilization

Let us consider C := D[b−1, bc], where we take the integral ideal c prime to the
ideals in the fixed set S. We consider a Hermitian cusp form f in Sk(C, ψ) which
we take to be an eigenform for all the “good” Hecke operators in

∏
v�c R(Cv,Xv),

whereR(Cv,Xv) is the local Hecke algebra at v defined in [30, Chap. IV]. Our aim
in this section is to construct a Hermitian cusp form f0, of level c

∏
p∈S ppρ =: cm

which is an eigenform for all the “good” Hecke operators away from cm and for
the operators U (πv,i ) for all finite places v corresponding to prime ideals in the set
S. Our construction is the unitary analogue of the symplectic situation considered
in [2, Sect. 9]. It is important to mention here that our construction is adelic, so it
can be used to generalize the one in [2] to the totally real field situation. Here, as we
mentioned in the introduction, we restrict ourselves to the case where all prime ideals
in S are inert, but our arguments generalize also to the split case. We will consider
this in [7].

We write MS for the submodule of Sk(D[b−1, bcm], ψ) generated by f under
the action of the Hecke algebra

∏
v∈S R(C ′

v,Xv), where C ′ = D(b−1, bcm). We let
f0 ∈ MS to be a non-trivial eigenform of all the Hecke operators in

∏
v∈S R(C ′

v,Xv).
In particular f0 �= 0. We write the adelic q-expansion of f as

f
((

q sq̂
0 q̂

))

=
∑

τ∈S+

c(τ, q; f)en
A
(τ s).

and of f0 as,

f0

((
q sq̂
0 q̂

))

=
∑

τ∈S+

c(τ, q; f0)enA(τ s).

We pick a τ ∈ S+ ∩ GLn(K ) and q ∈ GLn(K )h such that c(τ, q; f0) �= 0. In partic-
ular that means that we have q∗τq ∈ T , where as always T denotes the dual lattice to
S(b−1) := S ∩ Mn(b

−1). Then for any finite place v corresponding to a prime ideal
p ∈ S we have [30, Eq. (20.15)]

Zv(f0, X)c(τ, q; f0) =
∑

d

ψc(det (d
∗))|det (d)∗|−n

v Xvp(det (d∗))c(τ, qd∗; f0), (22)

where d ∈ Ev \ EvqEv , and Zv(f0, X) denotes the Euler factor Zp(X) of Sect. 4.1.
Moreover vp(·) is the valuation associated to the ideal p, and | · |v the normalized
norm.

Following Böcherer and Schmidt [2] we now try to describe the right hand side
of (22) using the Satake parameters of the form f . As in [loc. cit.] we start with the
Andrianov type identity generalized by Shimura [30, Theorem 20.4]. For the selected
τ ∈ S+ ∩ GLn(K ) and q ∈ GLn(K )h we define (this is the local version at v of the
series D(τ, q; f) considered in [30, p. 169])
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Dv(τ, q : f, X) :=
∑

x∈Bv/Ev

ψc(det (qx))|det (x)|−n
v c(τ, qx; f)Xvp(det (x)),

where Bv = GLn(Kv) ∩ Mn(rv). We will employ now what may be considered as a
local version of the Andrianov–Kalinin equality in the unitary case. Namely we will
relate the above series Dv(τ, q : f, X) to the Euler factor Zv(f0, X).

We first introduce some notation. We let Lτ be the set of r-lattices L in Kn such
that 
∗τ
 ∈ bd−1 for all 
 ∈ L . Moreover for the chosen ideal c above, and for two r
lattices M, N we write M < N if M ⊂ N and M ⊗r rv = N ⊗r rv for every v | c.
We now set L := qrn . Then we have the following local version of [30, Theorem
20.7],

Dv(τ, q; f, X) · L0,v(X) · gv(X) =

Zv(f, X) ·
∑

Lv<Mv∈Lτ

μ(Mv/Lv)ψc(det (y))X
vp(det (q∗ ŷ)c(τ, y; f),

where L0,v(X) :=∏n−1
i=0 (1 − (−1)i−1N (p)n+i X)−1, and gv(X) is a polynomial in

X with integers coefficients and constant term equal to 1. In the sum over the M’s,
we take y ∈ GLn(Kv) such that Mv = yrn and y−1q ∈ Bv . Furthermore μ(·) is the
generalized Möbius function introduced in the previous section, and as in the last
section we write vp(·) for the discrete valuation associated to the prime ideal p. We
now cite the following lemma regarding gv(X) (see [23, Lemma 5.2.4]).

Lemma 7.1 Write (q∗τq)v = diag[1n−r , πvs1] with s1 ∈ Sr (rv). Then we have

gv(X) =
r−1∏

i=0

(1 − (−1)i−1N (p)n+i X).

In particular we conclude that if (q∗τq)v is divisible by πv (i.e. r = n) then we
have that gv(X) is equal to L−1

0,v(X).

Our next step is to rewrite the expression

∑

Lv<Mv∈Lτ,v

μ(Mv/Lv)ψc(det (y))X
vp(det (q∗ ŷ)c(τ, y; f),

in terms of the action of the Hecke algebra. By the above lemma if we take πvq
instead of q we obtain,

Dv(τ, πq; f, X) = Zv(f, X)×
∑

Lv<Mv∈Lτ

μ(Mv/Lv)ψc(det (y))X
vp(det (q∗π∗ ŷ)c(τ, y; f),
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where now Lv = πvr
n
v and M = yrn . Since the y’s are supported only at v and we

are taking p � | c we have ψc(det (y)) = 1. That is,

Dv(τ, πq; f, X) = Zv(f, X) ·
∑

Lv<Mv∈Lτ

μ(Mv/Lv)X
vp(det (q∗π∗ ŷ)c(τ, y; f).

Now we rewrite the above expression in terms of the Hecke operators U (π j ). In
particular we have (see [30, proof of Theorem 19.8]),

Dv(τ, πq; f, X) = Zv(f, X)×

c

(

τ, q; f |
(

n∑

i=0

(−1)nN (p)i(i−1)/2ψv(π
i−n)N (p)−n(n−i)U (πn−i )X

i

))

,

where recall that we write the action of the Hecke operators from the right. Using the
fact that f0 is obtained from f by using the Hecke operators at the prime p, and the
fact that the Hecke algebra is commutative we obtain that the above relation holds
also for f0. That is, we have

Dv(τ, πq; f0, X) = Zv(f, X)× (23)

c

(

τ, q; f0|
(

n∑

i=0

(−1)nN (p)i(i−1)/2ψv(π
i−n)N (p)−n(n−i)U (πn−i )X

i

))

.

We first rewrite the left hand side of the above equation. We recall that

Dv(τ, πq; f0, X) =
∑

x∈Bv/Ev

ψc(det (qx))|det (x)|−n
v c(τ, πqx; f0)Xvp(det (x)).

Now we use the fact that f0 is an eigenform for the operators U (πi ). We write λi for
the eigenvalues. Then we have that

c(τ, πqx, f0) = N (p)−n2ψv(π)−nλnc(τ, qx, f0).

That is we obtain,

Dv(τ, πq; f0, X) = Zv(f0, X)λnN (p)−n2c(τ, q, f0),

and so we can rewrite Eq.23 as,

Zv(f0, X)λnN (p)−n2c(τ, q, f0) =
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Zv(f, X)c(τ, q; f0)

(
n∑

i=0

(−1)i N (p)i(i−1)/2ψv(π
i )N (p)−n(n−i)λn−i X

i

)

.

We note that we have

N (p)
i(i−1)

2 +niλi = N (p)i(n−1)Ei (t1, . . . , tn) (24)

and (t1 . . . tn)−1En−i (t1, . . . , tn) = Ei (t
−1
1 , . . . , t−1

n ) where Ei is the ith symmetric
polynomial. Indeed Eq.24 is the unitary analogue of the formula employed in [2, pp.
1429–1430] of how to obtain the eigenvalues of the Hecke operatorsU (πi ) from the
Satake parameters at p, and it can be shown in the same way. Hence we conclude
that after picking τ and q such that c(τ, q, f0) �= 0 we have

λnN (p)−n2 Zv(f0, X) = Zv(f, X)×

(

n∑

i=0

(−1)i N (p)i(i−1)/2ψv(π
i )Xi N (p)−n2N (p)−

i(i−1)
2 +2ni− n(n+1)

2 ×

(t1 . . . tn)Ei (t
−1
1 , . . . , t−1

n )),

and using the fact that N (p)
n(n+1)

2 λn = t1 . . . tn we get

Zv(f0, X) = Zv(f, X)

(
n∑

i=0

(−1)iψv(π
n−i )Xi N (p)2ni Ei (t

−1
1 , . . . , t−1

n )

)

=

Zv(f, X)

(
n∑

i=0

(−1)iψv(π
i )N (p)2ni Ei (t

−1
1 , . . . , t−1

n )Xi

)

,

and so

Zv(f0, X) = Zv(f, X)

(
n∑

i=0

(−1)iψv(π
i )Xi N (p)2ni Ei (t

−1
1 , . . . , t−1

n )

)

.

Equivalently

Zv(f0, X) = Zv(f, X)

n∏

i=0

(
1 − N (p)2nψv(π)i t−1

i X i
)
,
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and so we conclude that

Zv(f0, X)

n∏

i=0

(
1 − N (p)2nψ(π)i t−1

i X i
)−1 = Zv(f, X).

We now make the following definition

Definition 7.2 Let f ∈ Sk(C, ψ) be a Hecke eigenform for C = D[b−1, bc]. Let p
be a prime of K prime to c, which is inert over F . Then we say that f is ordinary at
p if there exists an eigenform 0 �= f0 ∈ M{p} ⊂ Sk(D[b−1, bcppρ], ψ) with Satake
parameters tp,i such that

∥
∥
∥
∥
∥

(
n∏

i=1

tp,i

)

N (p)−
n(n+1)

2

∥
∥
∥
∥
∥
p

= 1,

where ‖ · ‖p the normalized absolute value at p.

Summarizing the computations of this section we have,

Theorem 7.3 Let f be an cuspidal Hecke eigenform. Assume that f is ordinary for
all primes in K above p that are inert from F. Then we can associate to it a cuspidal
Hecke eigenform f0 such that its Euler factors above p are related by the equation

Zp(f0, X)

n∏

i=0

(
1 − N (p)2nψv(π)i t−1

i X i
)−1 = Zp(f, X),

where Zp(f, X) and Zp(f0, X) are given by (i) and (i i i) respectively of the Euler
factors described at the beginning of Sect.4. Moreover the eigenvalues of f0 with
respect to the Hecke operators U (p) are p-adic units. For all other primes q we have
Zq(f, X) = Zq(f0, X).

8 p-adic Measures for Ordinary Hermitian Modular Forms

We recall that for a fixed odd prime p we write S for the set of all prime ideals above
p in K , that are inert from F , and we assume that S �= ∅. Moreover we denote by v
the ideal

∏
p∈S p.We denote by K (S) themaximal abelian extension of K unramified

outside the set S, and we write G for the Galois group of the extension K (S)/K .
We consider a Hecke eigenform f ∈ Sk(C, ψ) with C = D[b−1, bc] for some ideals
b and c of F which are prime to p. We assume that m0 � 3n + 2, where we recall
that m0 := minv∈a(mv) with mv := kv + kvρ . Moreover we take f to be ordinary at
every prime p in the set S in the sense defined in the previous section. By Theorem
7.3 we can associate to it a Hermitian modular form f0. In particular the eigenvalues
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of f0 with respect to the Hecke operators U (p) for all p ∈ S are p-adic units, where
we recall that we writeU (p) for the Hecke operatorU (πn) where π is a uniformizer
corresponding to the prime ideal p. In this sectionwewriteα(p) forU (p)f0 = α(p)f0.
We also write {ti,p} for the Satake parameters of f0 at the prime p.

Given a k ∈ Zb and a t ∈ Za we define a μ ∈ Zb as in Sect. 4. Since in this paper
we have been working with unitary Hecke characters so far we need to establish a
correspondence between Galois characters and unitary Hecke characters. We start
by recalling the definition of a Grössencharacter of type A0 for the CM field K . In
the following for an integral ideal m of K we write I (m) for the free abelian group
generated by all prime ideals of K prime to m.

Definition 8.1 A Grössencharacter of type A0, in the sense of Weil, of conductor
dividing a given integral idealm of K , is a homomorphism χ : I (m) → Q such that
there exist integers λ(τ) for each τ : K ↪→ C, such that for each α ∈ K× we have

χ((α)) =
∏

τ

τ (α)λ(τ), if α ≡ 1 mod ×m.

Here the condition α ≡ 1 mod ×m means that if we write m =∏q q
nq with q dis-

tinct prime ideals and nq ∈ N then vq(α − 1) � nq, where vq the standard discrete
valuation associated to the prime ideal q.

It is well known (see for example [24]) if since we are taking K to be a CM field
then the above λ(τ) must satisfy some conditions. In particular if we select a CM
type of K , which we identify with the places a of F , then there exists integers dv for
each v ∈ a and an integer k such that

χ((α)) =
∏

v∈a

(
1

αk
v

(
αρ

v

αv

)dv

)

, if α ≡ 1 mod ×m.

We now keep writing χ for the associated, by class field theory, adelic character
to χ . As it is explained in [24, p. 286] the infinity type is of the form,

χa(x) =
∏

v∈a

(
xk+dv

v

xρdv
v

)

. (25)

We now consider the unitary character χ1 := χ | · |−k/2
AK

, where | · |AK the adelic
absolute value with archimedean part |x |a =∏v∈a |xv|v , where | · |v is the standard
absolute value of C. We then have that

χ1
a (x) =

∏

v∈a

(
xk/2+dv

v

x̄v
k/2+dv

)

=
∏

v∈a

(
xk+2dv

v

(xv x̄v)k/2+dv

)

=
∏

v∈a

(
xk+2dv

v

|xv|k+2dv

)

.
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In particular to a Grössencharacter χ of type A0 of infinity type as in Eq.25 we can
associate a unitary character χ1 of infinity type {mv}v∈a with mv := k + 2dv . The
relation between the associated L functions is given by

L(s, χ) = L(s + k/2, χ1).

In particular, in what follows, when we say that we consider a character χ of G
of infinite type t ∈ Za we shall mean that the corresponding unitary character, in the
way we explained above, is of infinity type t . And we will keep writing χ , instead
of χ1 for this corresponding unitary character.

Now we return to the general setting introduced at the beginning of this section.
Given a character χ of G we write fχ =∏p∈S pnp for its conductor and define the
ideal mχ := a

∏
j (pp

ρ)mp where mp = np for np �= 0 and mp = 1 for np = 0, and
a is a small enough ideal so that it is included in c and the prime to S level of the
theta series �χ , where �χ is defined at the beginning of Sect. 6. Moreover we define
m0 := a

∏
p∈S ppρ and

A+(χ) := C(χ−1)−1C(S)−1N (fχ )n
2− n

2 −n(n− r
2 )N (v),

where C(χ−1) was defined in Eq.4, C(S) in Proposition 3.1, and we recall that
v =∏p∈S p. We also define

A−(χ) := C(χ−1)−1C(S)−1N (fχ )n
2− n

2 − nr
2 N (v),

B+(χ) :=
∏

p �|fχ
N (p)n(2n−1)−n( r

2 + 3n
2 −1)−n2

⎛

⎝
∏

p �|fχ
C(p,−n + r

2
)

⎞

⎠

−ρ

,

B−(χ) :=
∏

p �|fχ
N (p)n(2n−1)−n(− r

2 + 5n
2 −1)−n2

⎛

⎝
∏

p �|fχ
C(p,−3n − r

2
)

⎞

⎠

−ρ

,

where C(p, s) was defined in Theorem 6.7. We also write C0(mχ ) for the quantity
appearing in Theorem 4.1 by taking c′′ equal tomχ there. We then have the following
theorems,

Theorem 8.2 Assume we are given a t ∈ Za such that

(kv − μv − n) + (kvρ − μvρ) = r, ∀v ∈ a

for some r � n. Moreover assume that r > n if ψ1 = 1 or c = g. Then there exists
a measure μ+

f,t of G such that for any primitive Hecke character χ of conductor
fχ =∏p p

np of infinite type χa(x) = x−t
a |xa|t we have
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∫

G
χdμ+

f,t = A+(χ)B+(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ×

∏

p �|fχ

n∏

i=1

(
1 − χ(p)−1t−1

i,p N (p)
r−n+2

2

1 − χ(p)ti,pN (p)
n−r
2 −1

)

× Lv(
r+n
2 , f, χ)

πβ�f0
,

where β is as in Theorem 5.2, and �f0 ∈ C× is the period defined in Theorem5.1
corresponding to the eigenform f0. In the case of r = n + 1 and F = Q we exclude
the characters χ such that (χψ)1 = θ .

We remark here that on the left hand side,χ denotes aGalois character towhich by
class field theory we can associate a Hecke character of A0 type, and by the process
described above we can further associate to it a unitary character χ1. Then as it was
indicated above it is our convention that in the right hand side of the above theorem
we write χ for this χ1. Moreover we recall that we declared the infinite type of χ to
be the infinite type of χ1.

Furthermore we remark that the archimedean periods we use for our interpolation
properties are the ones related to f0. However it is not hard to see by the definition
of these periods in [6] that they are related to �f by some algebraic factor, which
can be made very precise. For the cases excluded in the above theorem we have the
following theorem.

Theorem 8.3 We let q be a prime ideal of F, prime to p. Assume that r = n and
further thatψ1 = 1 or c = g there exists a measureμ+

f,q,t such that for all characters
χ of G of infinite type t we have

∫

G
χdμ+

f,q,t = A+(χ)B+(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ×

n−1∏

i=0
i+n≡1mod 2

(1 − (χψ)1(q)N (q)i+1)
∏

p �|fχ

n∏

i=1

(
1 − χ(p)−1t−1

i,p N (p)

1 − χ(p)ti,pN (p)−1

)
Lv(n, f, χ)

πβ�f0
,

where A+(χ) and B+(χ) are defined by taking r = n there.

For the other critical value, which does not involve nearly-holomorphic Eisenstein
series we have the following theorem.

Theorem 8.4 Assume that ψ1 �= 1, c �= g and r � n. Then there exists a measure
μ−

f,t on G such that for all characters χ of G of infinite type t we have,

∫

G
χdμ−

f,t = A−(χ)B−(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ
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∏

p �|fχ

n∏

i=1

(
1 − χ(p)t−1

i,p N (p)
n−r+2

2

1 − χ(p)ti,pN (p)
r−n
2 −1

)
Lv(

3n−r
2 , f, χ)

πβ�f0
,

And finally,

Theorem 8.5 Assume that ψ1 = 1 or c = g, and moreover r � n. Let q be an ideal
prime to p. Then there exist a measure μ−

f,q,t such that

∫

G
χdμ−

f,q = A−(χ)B−(χ)

C0(mχ )

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ τ(χ)−nρ×

n−1∏

i=0
n+i≡1mod 2

(1 − (χψ)1(q)N (q)r+i+1−n)
∏

p �|fχ

n∏

i=1

(
1 − χ(p)−1t−1

i,p N (p)
n−r+2

2

1 − χ(p)ti,pN (p)
r−n
2 −1

)

×

Lv(
3n−r
2 , f, χ)

πβ�f0
.

Remark 8.6 We remark that in the interpolation properties above, at the modified
Euler factors above p, we use the Satake parameters of the Hermitian form f0, and
not of f . However Theorem 7.3 provides a relation between them.

The rest of this section is devoted to proving the above theorems.Wewill establish
in details the proof of Theorem 8.2 and then comment on the needed modifications
to establish the rest.

We define,

F +
χ := �∗E∗

+|
⎛

⎝
∏

p|fχ
V (πp)

np−1

⎞

⎠

⎛

⎝
∏

p �|fχ
C(p, s+)−1 ˜J (p, s+)

⎞

⎠ ,

and

F −
χ := �∗E∗

−|
⎛

⎝
∏

p|fχ
V (πp)

np−1

⎞

⎠

⎛

⎝
∏

p �|fχ
C(p, s−)−1 ˜J (p, s−)

⎞

⎠ ,

where �∗ and E∗± are the series defined at the beginning of Sect. 6, associated to
the character χ , andC(p, s±) is defined in Theorem 6.7.We now define the following
distribution onG, which later we will show it is actually a measure. For the definition
of the distribution it is enough to give the values at each character χ of infinite type t .
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∫

G
χdμ′

f,+,t := 1

πβ�f0
A+(χ)

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ τ(χ)−nρ×

< f0|W,F +
χ |
∏

p|fχ
U (p)np−1 >m0 ,

We now show that μ′
f,+,t is actually a measure. We start by recalling the classical

Kummer congruences (see [24]). Let Y be a profinite topological space, and R a
p-adic ring.

Proposition 8.7 (abstract Kummer congruences) Suppose R is flat over Zp, and let
{ fi }i∈I be a collection of elements of Cont (Y, R), whose R[1/p]-span is uniformly
dens inCont (Y, R[1/p]). Let {ai }i∈I be a family elements of R with the same indexing
set I . Then there exists an R-valued p-adic measure μ on Y such that

∫

Y
fi dμ = ai , ∀i ∈ I

if and only if the ai ’s satisfy the following “Kummer congruences”:
for every collection {bi }i∈I of elements in R[1/p]which are zero for all but finitely

many i , and every integer n such that

∑

i

bi fi (y) ∈ pn R, ∀y ∈ Y,

we have ∑

i

biai ∈ pn R.

Proof [24] �

Proposition 8.8 The distribution μ′
f,+,t is a measure.

Proof We establish the Kummer congruences. We first start with a remark. For a
character χ of conductor fχ =∏p∈S pnp we consider any vector c = (cp)p∈S with
cp ∈ Z, and cp � max(np, 1) for all p ∈ S. Then, by the same considerations as in
the proof of Proposition 6.10, we have that

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|W,F +
χ |
∏

p|fχ
U (p)np−1 >m0

⎛

⎝
∏

p|fχ
α(p)−np−1

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|W,F +
χ |
∏

p|fχ
U (p)np >m0=
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⎛

⎝
∏

p|fχ
α(p)−cp−1

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−cp−1

⎞

⎠×

< f0|W,F +
χ |
⎛

⎝
∏

p|fχ
U (p)cp

⎞

⎠

⎛

⎝
∏

p �|fχ
U (p)cp−1

⎞

⎠ >m0 .

We now consider a finite set of characters χi with i = 1, . . . 
 of conductors
fχi =∏p∈S pnp,i . We define c = (cp)p∈S with cp := max(maxi (np,i ), 1). We now
let O be a large enough p-adic ring and take elements ai ∈ O[1/p] such that


∑

i=0

aiχi ∈ pmO

for some m ∈ N. We then establish the congruences


∑

i=0

ai A
+(χi )τ (χ)−nρF +

χi
|
⎛

⎝
∏

p|fχi
U (p)cp

⎞

⎠

⎛

⎝
∏

p �|fχ
U (p)cp−1

⎞

⎠ ∈ pmO[[q]].

The above statement should be understood that the q-expansion of the Hermitian
modular form on the left has coefficients in pmO.

The first observation here is that by Theorem 6.7 and by the discussion right after
Proposition 3.5, the Fourier expansion for all

Gi := F +
χi

|
⎛

⎝
∏

p|fχi
U (p)cp

⎞

⎠

⎛

⎝
∏

p �|fχ
U (p)cp−1

⎞

⎠ ,

is supported at the same Hermitian matrices. That is, the sets Suppi := {(τ, q) :
c(τ, q;Gi ) �= 0} for i = 1, . . . , 
, are the same.
We note here that we need to apply one power less of the Hecke operators U (p) at
the primes p which divide fχ , since for the rest we have already applied U (p) as the

n’th term of the operator ˜J (p, s+).
It now follows from the explicit description of the Fourier coefficients given in

Propositions 3.1 and 3.5 and by Eq.20 that the coefficients of A+(χi )τ (χi )
−nρF +

χi

are all p-integral and that we have the congruences


∑

i=0

ai A
+(χi )τ (χ)−ρFχi |

⎛

⎝
∏

p|fχi
U (p)cp

⎞

⎠

⎛

⎝
∏

p∈S
U (p)cp−1

⎞

⎠ ∈ pmO[[q]].
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Indeed, let us write R for the “polynomial” ring O[q|q ∈ PS], in the variables q ∈
PS . where PS is the set of prime ideals of K not in the set S. A character χ of
G, induces then a ring homomorphism χR : R → Qp, where we have extended

O- linear the multiplicative map χ : PS → Q
×
p . Given an element P ∈ R we write

P(χ) for χR(P) ∈ Qp. Then by Propositions 3.5 and 3.1 we have that the Fourier
coefficients of A+(χi )τ (χi )

−nρF +
χi

at any given Hermitian matrix τ are of the form
Pτ1(χi )Pτ2(χi ) = Pτ (χi ) for some Pτi , Pτ ∈ R, with Pτ = Pτ1 Pτ2 . In particular if we
have
∑

i aiχi ∈ pmO then
∑

i ai Pτ (χi ) ∈ pmO. We also remark here that we need to
use alsoProposition 3.3,which guarantees that the coefficients of theEisenstein series
are supported only at full rankHermitianmatrices, and hence no L-values ofDirichlet
series appear in the Fourier coefficients (and so the polynomial description above is
enough). Moreover we also use the fact that the operatorU (p) is p-integral as it was
shown using the q-expansion in Eq.19, where in the notation there U (p)m = T (pm)

for any m ∈ N and p ∈ S.
It is now a standard argument using the finite dimension of the space of cusp forms

of a particular level (see for example [2, Lemma 9.7] or [11, p. 134]) to show that
by taking projection to f0|W we obtain a measure. For this of course we use also by
Theorem 5.1, �(f0) is up to algebraic factor equal to < f0, f0 >. Hence we conclude
that μ′

f,t,+ is indeed a measure. �

We now define the measure μg on G by

∫

G
χdμg :=

∏

v∈b

gv(χ(πv)|πv|r+n),

where gv(X) are the polynomials appearing in Theorem 4.1. Note that gv ∈ Z[X ]
with gv(0) = 1, and hence since we evaluate then at places prime to p, we have that
μg is indeed a measure. We now define are measure μ+

f,2 as the convolution of μ′
f,+

with μg. In particular we now obtain after evaluating at a character χ that,

∫

G
χdμ+

f,2 =
(∫

G
χdμ′

f,+

)(∫

G
χdμg

)

=

1

πβ�f0
A+(χ)

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ τ(χ)−nρ×

< f0|W,F +
χ |
∏

p|fχ
U (p)np−1 >m0

∏

v∈b

gv(χ(πv)|πv|r+n).
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However we have by Proposition 6.10, by taking there np = cp for all p|fχ that

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|W,F +
χ >m0=

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−2

⎞

⎠ < f0|
∏

p �|fχ
J (p, s+),�χE+,χ >mχ

,

and using Lemma 6.3, and in particular Eq.9, we get that the above is equal to

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠

⎛

⎝
∏

p �|fχ
α(p)−1

⎞

⎠
∏

p �|fχ
(−1)nN (p)n(2n−1)−n( n+r

2 )×

n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 ) < f0,�χ Eχ,+ >mχ

.

We now use Theorem 4.1, where we pick an invertible τ such that c(τ, r, f0) �= 0,
which is of course always possible since f0 is a cusp form. Moreover after using the
fact that c(τ, πr, f0) = N (p)−n2α(p)c(τ, r, f0) we have that

∫

G
χdμ+

f,2 = B × C−1
0

⎛

⎝
∏

p|fχ
α(p)−np

⎞

⎠ A+(χ)τ(χ)−nρ×

⎛

⎝
∏

p �|fχ
N (p)n(2n−1)−n( n+r

2 )−n2
n∏

i=1

(1 − χ(p)−1t−1
i N (p)

r−n+2
2 )

⎞

⎠
L( r+n

2 , f0, χ)

πβ�f0
,

where B is some non-zero algebraic constant independent of χ . We then define the
measure μf,t,+ := B−1μf,2. Using the fact that f and f0 have the same Satake para-
meters away from p, we obtain the claimed interpolation properties of Theorem 8.2.

The proofs of Theorems 8.3, 8.4 and 8.5 are similar, we just need to take some
extra care for the fact that in the Fourier coefficients of the Eisenstein series involve
values of various Dirichlet series. In order to establish the congruences we use the
Barsky, Cassou-Noguès, Deligne–Ribet p-adic L-function [1, 10, 14]. Let us write
F(p∞) for the maximal abelian extension of F unramified outside p and infinity.
Then it is known that if we pick an ideal q of F prime to p, then there exists a measure
μF,q of the Galois group G ′ := Gal(F(p∞)/F), such that for any k � 1 we have,

∫

G ′
χNkdμF,q = (1 − χ(q)N (q)k

)
L(p)(1 − k, χ),



p-adic Measures for Hermitian Modular Forms and the Rankin–Selberg Method 83

where N denotes the cyclotomic character. Moreover if we select some primitive
character ψ , of some non-trivial conductor prime to p, then we can define a twisted
measure μF,ψ on G ′ such that for any k � 1 we have,

∫

G ′
χNkdμF,ψ = L(p)(1 − k, χψ),

where in both equations L(p)(1 − k, ?)means that we remove the Euler factors above
p. Nowwe are ready to dealwith the proof of the theorems.We explain it for Theorem
8.3, and similarly we argue for the rest. The main difference is the fact that the τ ’th
Fourier expansion of �∗E∗ is of the form Pτ1(χ)Pτ2(χ) (with notation as before)
multiplied by the L-values

∏n−1−r2
i=0 Lc(−i, χ1θ

n+i−1), where r2 is the rank of the
matrix τ2. That is we need to establish congruences of the form

∑

i

ai Pτ1(χi )Pτ2(χi )

n−1∏

i=0
i+n≡1mod 2

(1 − χ−1
i,1 (q)N (q)i+1)×

n−1−r2∏

i=0

Lc(−i, χ−1
i,1 θn+i−1) ∈ pnO.

But now the congruences follow from the existence of the Cassou-Nogues, Deligne–
Ribet p-adic measure since the above congruences can be understood as convolution
(which we denote as product below) of the measures

⎛

⎜
⎝

n−1∏

i=0
i+n≡1 mod 2

N i+1μF,q

⎞

⎟
⎠ �

(
n−1−r2∏

i=0

N i+1μF,θn+i−1

)

� P,

where P is the measure in the Iwasawa algebra represented by the polynomial Pτ1 ×
Pτ2 ∈ R, where the Iwasawa algebra. The rest of the proof is entirely identical where
of coursewe need to replace the quantities A+(χ) and B+(χ)with A−(χ) and B−(χ)

respectively.

9 The Values of the p-adic Measures

We now obtain a result regarding the values of the p-adic measures constructed
above. We show the following theorem.

Theorem 9.1 Writeμ for any of the measures constructed in Theorems 8.2, 8.3, 8.4
and 8.5. Define the normalized measure
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μ′ :=
(
τ(ψ1θ

n2)
)−ρ

i−n
∑

v∈a pvμ,

where the pv’s are defined as in Theorem5.2. Assume that one of the cases of Theorem
5.2 occurs. Then μ′ is W-valued, where W is the field appearing in the Theorem 5.2.

Proof By comparing the interpolation properties of the measure μ′ and the reci-
procity law shown in Theorem 5.3, we need only to establish that the Gauss sums

τ(χ1) and τ(χ) have the same reciprocity properties, namely
(

τ(χ)

τ(χ1)

)σ = τ(χσ )

τ (χσ
1 )

for

any σ ∈ Gal(Q/W ), and any character χ of G. For the proof we follow the strategy
sketched in [17, p. 33] and [28, p. 105].
We first recall a property (see [26, p. 36]) of the transfer map,

det (ρ) = θ · χ ◦ Ver = θ · χ1,

where ρ := I ndK
F (χ) is the two-dimensional representation induced from K to F ,

and for the second equakity we used the fact that the restriction F×
A

↪→ K×
A
on the

automorphic side is the transfer map (Ver) on the Galois side. We note here that the
result in [26] is more general but we have applied it to our special case (i.e. χ is a
one-dimensional representation and the extension K/F is quadratic). Recalling that
the gauss sum attached to a character is closely related to the Deligne–Langlands
epsilon factor attached to the same character, we have that

τ(det (ρ)) = τ(θχ1) = ±τ(χ1)τ (θ),

where we have used the fact that K/F is unramified above p, χ1 can be ramified
only above p, θ is a quadratic character, and the property [32, p. 15, Eq. (3.4.6)].
Now we note that by [13, p. 330, Eq.5.5.1 and 5.5.2] we have that

(
τ(ρ)

τ(det (ρ))

)σ

= τ(ρσ )

τ (det (ρσ ))

for all σ ∈ Gal(Q/Q). We note here that we write τ(ρ) for the Deligne–Langlands
epsilon factor associated to the representation ρ. In particular since τ(θ) ∈ W we
have that (

τ(ρ)

τ(χ1)

)σ

= τ(ρσ )

τ (χσ
1 )

,

and now using the fact that also τ(ρ) = τ(χ) up to elements in W× we conclude
that (

τ(χ)

τ(χ1)

)σ

= τ(χσ )

τ (χσ
1 )

, σ ∈ Gal(Q/W ),

which concludes the proof of the theorem. �
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