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Abstract. Calibrating parameters is a crucial problem within quantita-
tive modeling approaches to reaction networks. Existing methods for sto-
chastic models rely either on statistical sampling or can only be applied
to small systems. Here we present an inference procedure for stochas-
tic models in equilibrium that is based on a moment matching scheme
with optimal weighting and that can be used with high-throughput data
like the one collected by flow cytometry. Our method does not require
an approximation of the underlying equilibrium probability distribution
and, if reaction rate constants have to be learned, the optimal values can
be computed by solving a linear system of equations. We evaluate the
effectiveness of the proposed approach on three case studies.

1 Introduction

Stochastic models have proven to be a powerful tool for the analysis of bio-
chemical reaction networks. Especially when chemical species are present in low
copy numbers, a stochastic approach provides important insights on the random-
ness inherent to the system when compared to deterministic approaches. For the
inference of parameters based on experimentally observed samples, more detailed
descriptions given by stochastic models can substantially improve the quality of
the estimation [18].

The arguably most popular stochastic modeling approach to chemical kinet-
ics is based on a description in terms of continuous time Markov chains
(CTMC) [10]. In this case, the exact time evolution of the entire probability
distribution is given by the chemical master equation (CME). Although, this
description is exact up to the numerical precision of the integration scheme, its
solution is only feasible for simple systems with small molecular populations [22].
Therefore, the applicability of inference approaches based on a maximum likeli-
hood estimation (MLE) is limited to this class of networks since they require an
approximation of the probability distribution, i.e., a solution of the CME [2,3].
An alternative to ease the computational burden is to use stochastic simulation
to estimate the likelihood function or to learn parameters in a Bayesian set-
ting, e.g. by ABC methods [33]. However, the total number of simulations to be
performed is huge, still resulting in a computationally intensive approach.
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A computationally more feasible approach is to consider the statistical
moments (such as the expected value or the variance) instead of the entire prob-
ability distribution. Moment-based analysis approaches rely on a derivation of
a system of equations for the time-derivative of the moments [1,6,30]. Since the
exact time evolution of the moments of order k may depend on moments of
higher order, a closure method has to be applied to arrive at a finite system of
equations. However, moment-based methods complicate the application of MLE
since a reconstruction of the distribution is computationally expensive and may
be inaccurate depending on the shape of the distribution [4].

In this paper we propose a parameter estimation approach that does not
rely on MLE and distribution approximations, but on the generalized method
of moments (GMM), which has been a widely used inference method in econo-
metrics for over 30 years [12,14]. We consider the case in which experimentally
observed samples are drawn when the process is in equilibrium. Population snap-
shot data of equilibrium processes are considered, for instance, if the (possibly
multi-stable) steady-state expression in a gene regulatory network is investi-
gated [7,17] or if the steady-state behavior of a mutant is compared the behavior
of the wild type [19,27]. Modern high-throughput experimental techniques, like
flow cytometry, deliver a large amount of measurements from a population of
cells at steady state and thus give detailed information about the distribution of
proteins and RNAs [13,16,25]. The idea of the GMM is to consider constraints
of the form E[f(Y i,θ0)] = 0 where Y i is a sample and θ0 the parameter vector.
We propose to choose f as the time derivatives of the statistical moments of
the model, which can directly be derived from the CME. This follows from the
fact that the time derivatives will become equal to zero when the process is in
equilibrium. A major advantage, given the availability of steady state samples,
is that, compared to time depended observations, no moment closure approx-
imations are necessary. Instead exact equations for the steady state moments
can be used. If the propensities are linear in the unknown parameters, as is the
case for mass action kinetics, a closed linear form is possible. This results in an
extremely fast inference procedure since no numerical optimization is needed. In
case of propensities that are non-linear in the parameters numerical optimization
is necessary. Still, no numerical integration of moment equations or probabilities
is needed since the objective function corresponds to the right side of the steady
state moment equations.

The moment equations may also contain moments of species whose quantity
is hard to measure (e.g. the state of a promoter). Instead of treating these latent
variables as unknown (probably non-linear) parameters, here we propose a clus-
tering approach that estimates promoter states in a preprocessing step. Then, a
closed linear solution is still possible, which again enables an accurate estimation
in very short time.

We analyse the effectiveness of the GMM approach for the p53 oscillator
model [9] and two variants of the genetic toggle switch [8,20]. Our results show
that using moments of up to at least second order yields accurate estimates.
The inclusion of higher order moments (higher than three) can lead to a further
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decrease of the estimators variances, but for the p53 model and only few sam-
ples the estimation becomes worse. Nevertheless, even for comparatively small
sample sizes (100) the estimates are usually tightly distributed around the true
parameter value when moments up to order two or three are considered.

The paper is organized as follows. We first provide some background on the
model in Sect. 2 and present our inference approach based on GMM in Sect. 3.
We discuss the inference results for the case studies in Sect. 4 and conclude the
paper in Sect. 6.

2 Stochastic Chemical Kinetics

A stochastic model of a network of chemical reactions is usually specified by a
set of n species, which are represented by a set of symbols S1, . . . ,Sn. We are
interested in the system state, i.e., the number of individuals of the species,
and thus consider state space S ⊆ INn

≥0. Furthermore, a set of J reactions is
given describing the interactions between the different molecular populations.
For j ∈ {1, . . . , J} reaction Rj is specified by its stoichiometry

Rj : S1ν
−
j,1 + · · · + Snν−

j,n

cj−→ S1ν
+
j,1 + · · · + Snν+

j,n , (1)

where the vectors ν−
j and ν+

j ∈ INn
≥0 with entries ν−

j,i and ν+
j,i for i ∈ {1, . . . , n}

specify how many molecules are consumed (produced) of each type, respectively.
The vector νj = ν+

j − ν−
j is called the change vector of Rj . The propensity

functions αj are such that αj : S × Θ → IR≥0, where Θ is the parameter space.
If mass action kinetics are assumed, then αj is the product of the rate constant cj

and the number of possible combinations of reactant molecules, i.e., αj(x,θ) =
cj

∏n
i=1

( xi

ν−
j,i

)
for x ∈ S. Here, we do not restrict to mass action kinetics but

only impose certain regularity conditions on the propensity functions, such as
continuity and the existence of certain expected values. If a reaction does not
follow mass action propensities, we give the propensity function separately from
the stoichiometry (1).

Under the assumption of well-stirredness and thermal equilibrium such a
system can be accurately described by a continuous-time Markov chain (CTMC)
X(t) = (X1(t), . . . , Xn(t)) over the state space S [10]. The time evolution of the
probability distribution is given by the chemical master equation (CME):

d

dt
P (X(t)=x) =

J∑

j=1

P (X(t)=x − νj) αj(x − νj , θ) −
J∑

j=1

P (X(t)=x) αj(x, θ) (2)

Due to the largeness of the state space the integration of d
dtP is computationally

infeasible, especially if we have to integrate until convergence to determine the
equilibrium distribution. Given (2) it is straight-forward to compute the time
derivative of the expectation of some polynomial function g : S → IR [6]:

d

dt
E[g(X)] =

J∑

j=1

E[(g(X + νj) − g(X)) αj(X,θ)] , (3)
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where we omit the dependence of X on t. Here we are concerned with the
population moments of the distribution, which are monomials Xm over X
where we use the multi-index notation xm = xm1

1 · · · xmn
n for the vectors

m = (m1, . . . ,mn) ∈ INn
≥0 and x = (x1, . . . , xn).1 The order of a moment is

given by the sum m1 + · · · + mn. The first order moment of the i-th population,
for example, is obtained from (3) by setting g(x) = xi:

d

dt
E[Xi] =

J∑

j=1

νj,iE[αj(X,θ)] . (4)

In general, the equation of a moment of a certain order may depend on moments
of higher order, except if α is constant or linear, i.e., of the form cTj x+bj for some
constant cj ∈ IRn and bj ∈ IR. Here, we do not aim at finding a finite system
of ODEs to approximate the moments but we rather propose to use the exact
moment equations when the system is in equilibrium. The equilibrium probability
of a state x is defined as the limit of P (X(t)=x) when t → ∞, i.e.,

π(x) = lim
t→∞ P (X(t)=x) . (5)

and is uniquely defined for ergodic processes X. Since the equilibrium distribu-
tion is independent of time, the expected values in (3) are also time-independent
when t → ∞. Thus, we can use the right side of (3) to estimate propensity
parameters given samples from the equilibrium distribution.

3 GMM Conditions at Equilibrium

We propose to use the moments of the equilibrium distribution as an input
for a GMM inference, which is a very generic framework for parameter estima-
tion [12,23]. It is most popular in econometrics, where often the exact distribu-
tion of a model is not known. In this case MLE cannot be used since it needs a
sufficiently accurate description of the distribution for its optimality properties
to hold. As opposed to this, the GMM is based on the construction and min-
imization of certain cost functions, called moment conditions, which relate the
population and sample moments. A moment condition is given by a function
whose expected value is zero for the true parameter value θ0. Given indepen-
dent samples Y1, . . . ,YN of the process X in equilibrium, a vector of moment
conditions is given by

E[f(Y ,θ0)] = 0 , (6)

where we omit the index of the samples whenever they appear within the expec-
tation operator since Y1, . . . ,YN are identically distribution according to the
equilibrium distribution π. Moreover, let f be a vector of q different functions,

1 The existence and convergence of moments is treated Gupta et al. [11]. It can be
proved for the models in Sect. 4 with positive rate constants.
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i.e., f : (S ×Θ) → IRq. The sample equivalent of (6) for the vector f of moment
conditions is given by

fN (θ0) =
1
N

N∑

i=1

f(Y i,θ0) = 0 . (7)

Depending on the number of such conditions q and the number of parameters
to be estimated p, we distinguish for the estimated value the non-identified case
(q < p), the exactly identified case (p = q) and the over-identified case (q > p). In
the exactly identified case, assuming (7) has a unique solution, we have Pearson’s
classical method of moments [28].

Since we are considering the system at equilibrium, the right-hand side of (3)
must equal zero. In principle, it is possible to use any polynomial g meeting cer-
tain regularity conditions [12]. However, using population moments, i.e., mono-
mials of Y is a natural choice that leads to the moment conditions

d

dt
E[Y m] =

J∑

j=1

E
[(

(Y + νj)
m − Y m

)
αj(Y ,θ0)

]
= 0 (8)

for the estimation of θ. Therefore the moment condition vector f in (6) is deter-
mined by the functional form (8) of a selection of different vectors m, i.e., the
entry in the vector f that corresponds to m is

fm(Y ,θ) =
J∑

j=1

(
(Y + νj)

m − Y m
)
αj(Y ,θ) .

Typically, we choose these vectors such that their entries correspond to the
moments up to some fixed order. If, for example, we use first order moments
only, the i-th entry of f is equal to

∑
j νi,jαj(Y ,θ) for i = 1, 2, . . . , n (see Eq. 4).

For the moments of order two we extend f with entries according to the right
side in (8) of the second order moments and so forth.

We may choose as many moment conditions as there are parameters to
exactly identify the estimate. However, the inclusion of further information on
the distribution may lead to a more accurate estimation. GMM provides a frame-
work to deal with over-identified estimation problems. The estimator is given by

θ̂N = arg min
θ∈Θ

QN (θ) , (9)

where QN (θ) is the objective function

QN (θ) = fN (θ)TWfN (θ) . (10)

Here, W is some positive semi-definite matrix containing weights for each pair
of moment conditions. Under certain regularity conditions [12], this estimator is
asymptotically normal and consistent, i.e., the estimator converges in probability
to θ0. These regularity conditions mostly consist of the existence of expectations
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of f and ∂f/∂θ and their continuity w.r.t. θ on the parameter space Θ. Assum-
ing convergence to equilibrium moments the validity of these conditions depends
solely on the propensity functions. They hold for mass action and Hill’s propen-
sities, as they are smooth functions of the parameters. The parameter space
itself is assumed to be bounded, which in practice can be done by either fixing
a biologically relevant space or assuming a sufficiently large Θ [12]. A further
necessary condition for normality is that θ0 is a unique interior point of Θ such
that E[f(Y ,θ0)] = 0. However, if we have only samples from the steady state
distribution this property may not hold if one tries to estimate all parameters
at once. The reason is that often for a fixed steady-state distribution there is an
infinite number of ergodic Markov chains having this steady-state distribution
and the system is not fully identifiable.

Although the estimator’s normality holds for all positive semi-definite weight-
ing matrices, a good choice of W reduces the asymptotic variance of the estima-
tor. It can be shown, that the asymptotically most efficient matrix W0 is given
by the inverse of limN→∞ Var(

√
NfN (θ0)) [12,23]. In case of independent and

identically distributed samples, W0 can be estimated as follows [23]:

ŴN =

(
1
N

N∑

i=1

f(Y i,θ0)f(Y i,θ0)
T

)−1

. (11)

Since this estimate depends on θ0, which is unknown, GMM is usually applied in
a iterative manner: A first estimate θ̂1 is computed using some positive-definite
weight matrix, such as the identity matrix. The estimate θ̂1 is consistent, but
likely asymptotically inefficient. This estimate is then used to approximate (11).
The procedure of estimating θ0 and computing ŴN can be iteratively applied
until some convergence criterion is met. Since W is constant at each iterative
estimation, the solution to (9) can, under some restrictions on the propensities,
be expressed as a linear system (cf. Sect. 3.1).

Beyond this iterative estimation scheme, the continuously updating GMM
(CUGMM) [15] is a popular variant of the GMM estimator. Instead of recom-
puting the weight estimate between minimizations, the weight estimation (11)
is substituted into the objective function (10). The resulting estimator is thus
given by

θ̂CU ,N = arg min
θ∈Θ

fN (θ)T
(

1
N

N∑

i=1

f(Y i,θ)f(Y i,θ)T
)−1

fN (θ) . (12)

This estimator is often associated with improved finite sample properties and
more reliable test statistics [23]. However, a closed form solution for linear
propensities as described in Sect. 3.1 is not possible in a majority of cases. This
necessitates numerical optimization to approximate (12).

3.1 Linear Propensities

In general, the minimization problem (9) can be solved using numerical opti-
mization algorithms. However, depending on the rate functions, this may not be
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necessary, because a closed form solution, i.e., a linear system, can be obtained
for many relevant cases, including mass action kinetics. This system results from
the first order condition of the minimization ∂QN (θ̂N )/∂θ = 0 which yields [12]

0 =
∂fN (θ̂N )

∂θ

T

WfN (θ̂N ) . (13)

We now compute (13) under the condition that propensities are linear in θ and
W is constant, as is the case in iterative GMM. To this end, let R ⊆ {1, . . . , J}
be the index set of functions αj whose propensity is dependent on θ. Further let
f̄ be the part of f independent of θ such that the i-th entry equals

f̄mi
(Y ) =

∑

j∈R
αj(Y )

(
(Y + νj)

mi − Y mi
)
. (14)

By computation of the matrix product (13) and splitting the moment condition
based on (14), we get
(

∂fN

∂θ

T

WfN

)

i

=
p∑

h=1

θh

q∑

�,k=1

∂fN,mk

∂θi
Wk,�

∂fN,m�

∂θh

︸ ︷︷ ︸
(Aθ)i

+
q∑

�,k=1

∂fN,mk

∂θi
Wk,�f̄N,m�

︸ ︷︷ ︸
−bi

.

Note, that the sample derivatives ∂fN/∂θi are independent of θ. In vector nota-
tion this gives us the linear system Aθ̂N = b as a solution to (13) where

Ai,j =
∂fN

∂θi

T

W
∂fN

∂θj
bi = −∂fN

∂θi

T

W f̄N . (15)

Analogous to the general iterative scheme, we now solve (15) and use the estimate
to in turn estimate W using (11). In the following discussion we will refer to this
as the closed form GMM (CFGMM). One sees immediately that this method is
far more efficient than numerically optimizing QN .

4 Case Studies

We evaluate the GMM estimation on three chemical reaction networks. Samples
of the equilibrium distribution were generated by Gillespie’s stochastic simula-
tion algorithm (SSA) [10] and drawn by equidistant sampling after the initial
warm-up period. For each case study 107 samples were generated and sample
sets of different sizes were drawn at random from this large set. For each sample
size considered, the estimation procedure was carried out on 100 random sample
sets, in order to estimate the variance of the estimator.
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4.1 P53 System

We first consider Model IV proposed in [9], that describes the interactions of the
tumor suppressor p53. This system describes a negative feedback loop between
p53 and the oncogene Mdm2, where pMdm2 is a Mdm2 precursor [9]. We chose
the same parameter values as in [1], that is, k1=90, k2=0.002, k3=1.7, k4=1.1,
k5=0.93, k6=0.96, k7=0.01.

Model 1 (p53 System).

R1: ∅
k1−→ p53 R2: p53

k2−→ ∅

R3: p53
k4−→ p53 + pMdm2 R4: p53 → ∅

R5: pMdm2
k5−→ Mdm2 R6: Mdm2

k6−→ ∅

The degradation rate of p53 is in part influenced by Mdm2 and is given by
α4(x,θ) = (k3xp53xMdm2)/(xp53 + k7). Terms of species with stoichiometric con-
stant zero are omitted as well as stoichiometric constants equal to one.

We estimated the four parameters k3, k4, k5, and k6 using the CFGMM as pro-
posed in Sect. 3.1. Note that α4(·, ·) is linear in k4. We fixed k1 and k2 to ensure
identification as well as k7 to avoid a time-consuming numerical optimization.
The iterations were continued until either the parameter vector converged or the
maximum number of four iterations was reached. The plot in Fig. 1 (left) shows
that the best results were obtained already after the second step for moderate
and large sample sizes, while for a small sample size of 100 further iterations were
beneficial. It is important to note that for the first iteration, ŴN is chosen as the
identity matrix such that identical weights are assigned and mixed terms are not
considered. Hence, the general idea of assigning appropriate weights gives signif-
icantly more accurate results compared to an estimation with identical weights.

Fig. 1. p53 System: (left) The normalized parameter deviation ‖θ̂N − θ0‖/‖θ0‖ over
GMM iterations for different sample sizes. Moment conditions up to order two were
used. (right) Comparison of the average running time for a single estimation, as a func-
tion of the number of parameters (maximal moment order three) and of the maximum
order of moment conditions used (estimation for four parameters), for a sample size
of 100.
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Fig. 2. p53 System: (left) Estimate of k4 over GMM iterations (sample size 1000) (right)
Estimates of parameter k3 in relation to the sizes of the sample sets and the maximum
order of used moment conditions. Results are presented as box plots (whiskers with a
maximum of 1.5 IQR).

In Fig. 1 (right) we compare the running times of the CUGMM (using a
numerical optimization scheme, the L-BFGS-B algorithm [36]) and of the itera-
tion based method. The reported times are the average of 100 runs for a single
estimate for different moment orders and different numbers of estimated parame-
ters. As we can see, the iteration based method for linear propensities not only
outperforms CUGMM, but also is essentially insensitive to including higher order
moments and to increasing the number of estimated parameters. For CUGMM,
an optimization is carried out since (12) is not linear in θ and this optimization
becomes more costly when more moment conditions or parameters are consid-
ered. The advantage of CFGMM is that the Jacobian and f̄N is only computed
once for all iterations of a sample and no numerical optimization is needed.

In Fig. 2 we show the distribution of the estimate quality for different maxi-
mum moment orders against (left) different numbers of iterations for CFGMM
and (right) for different sample sizes. The quality of the results is excellent
for large sample sizes, while increasing the moment order beyond two does not
result in significant improvements or may even (for small sample sizes) signifi-
cantly decrease the quality (see Fig. 2 (right)). This bias may occur if the degree
of overidentification (q − p) is increased too much. It can be caused by the
estimation of W and the dependence on the previous estimates and decreases
proportional to N−1 [12,26]. In our evaluation estimators based on a maximal
order of two and three showed the most reliable performance. Moreover, identi-
cal weights in the first step of the iteration lead to a very high variance of the
corresponding estimator, as shown in Fig. 2 (left). In Fig. 2 (right) we also see
that, when the number of samples is increased, the variance of the estimator
becomes small.

4.2 Toggle Switch

The toggle switch is a widely known gene regulatory network [8,20] that models
the production of two proteins A and B. Each protein can bind to the promoter
of the opposite protein and thereby repress its production.
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Model 2 (Explicit Toggle Switch). [20]

R1: RB
ρB−→ RB + A R2: RA

ρA−→ RA + B

R3: A
δA−→ ∅ R4: B

δB−→ ∅

R5,6: RB + B
βB−⇀↽−
γB

RB R7,8: RA + A
βA−⇀↽−
γA

RA

Note that, given appropriate starting values, the conservation law RX + RX = 1
holds (X ∈ {A,B}). In our study we focus on two cases, that are high binding-/
unbinding rates and low binding-/unbinding rates with respect to the production
and degradation of proteins.

Slow Binding Toggle Switch. In the case of low binding-/unbinding rates
several attractor regions can arise that directly correspond to a given DNA state.
Here, we use the parameters ρX=3, δX=0.5, βX=10−6, γX=3×10−4, which are
identical for X = A and X = B. During the inference procedure, however, we did
not make use of the information that the parameters are symmetric. For these
parameters we get three distinct attractor regions corresponding to either one
of the repressors being bound and both repressors being free2.

Currently, our GMM-based approach requires all variables to be observed,
which is in general unfeasible for the DNA state. One possible solution, when
only proteins are observed, is to cluster the samples of the proteins using the k-
Means algorithm (cf. Fig. 3 (left) for an example of a clustering of samples of the
toggle switch). Then we can infer the state of the latent DNA state by assigning
each cluster to a specific combination of DNA states and by looking at the clus-
ter centroids, as illustrated in Fig. 3 (left). For low binding-/unbinding rates, the
attractors are well separated and this approach is feasible, though more sophis-
ticated approaches may be required when clusters overlap. After reconstruction
of the state of the unobserved variables, we used the GMM estimation with the
closed form solution for linear propensities. Results comparing different sample
sizes are shown in Fig. 3 (right). The estimation quality is very good even in the
case of only few samples, provided enough iterations are carried out. It is impor-
tant to note that for these results, we excluded moment conditions corresponding
to mixed moments involving the state of the gene as their moment conditions
have very similar values. Including them leads to severe numerical instabilities
(the matrix of the linear system for linear propensities becomes quasi-singular).
However, ill-conditioned matrices are detected automatically when their deter-
minant is calculated during the computation. Then, those entries responsible for
the numerical instabilities can be excluded.

Fast Binding Toggle Switch. Often, it can be assumed that the repressor
(RA,B) binding and unbinding (R5,6 and R7,8) happens a lot faster than the

2 The case of both repressors being bound, would result in samples around the origin,
which can be neglected if there are no such samples.
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Fig. 3. Slow Switching Toggle Switch: (left) Clustering of a sample (size 100) using
k-Means. (right) The normalized parameter deviation ‖θ̂N − θ0‖/‖θ0‖ over GMM
iterations for different sample sizes given the toggle switch with k-Means clustering.
Moment conditions up to order 3 were used and 4 parameters were estimated.

protein production. Then, a Michaelis-Menten approximation is possible [20].
Therein the time derivative of the repressors is assumed to be zero. Applying
this assumption to the mean-field equations of Model 2 yields the implicit toggle
switch (Model 3). In this case, we no longer need the repressor state of each
sample.

Model 3 (Implicit Toggle Switch).

R1: ∅ → A R2: ∅ → B R3: A
δA−→ ∅ R4: B

δB−→ ∅

The rate function of reactions R1 and R2 resulting from the Michaelis-Menten
approximation are

α1(x,θ) =
ρA

1 + kBxB
α2(x,θ) =

ρB
1 + kAxA

where θ is the vector of all parameters, x = (xA, xB), and kX = βX

γX
is the quotient

of the binding and unbinding rate, X ∈ {A,B}.
The toggle switch exhibits bistability if the binding happens significantly faster
than the unbinding, i.e., kA, kB � 1 [20]. However, the estimation of kA and kB
is inherently difficult because switching between the attractors is a rare event.

In this case study, we simulated the explicit model using the symmetric con-
stants βX=100.0, γX=50.0, ρX =0.2 and δX=0.005, assuming we could observe
only the two proteins. Thus, we estimated the parameters kX and δX of the
implicit model and fixed ρX to ensure identification. Due to non-linear depen-
dency of production rates on kX, we cannot rely anymore on the method for linear
propensities of Sect. 3.1, hence we resort to a numerical minimization routine,
namely the L-BFGS-B algorithm [36], for the CUGMM scheme. The initial guess
was chosen at random from [0, 1]p. For detection of unsuccessful optimizations
we used the J-Test statistic [14], which states that under the null hypothesis
of a correctly specified model, NQN (θ̂N ) converges to the χ2

q−p distribution. A
confidence threshold of 90 % was fixed and the optimization was repeated for at
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Fig. 4. Fast Binding Toggle Switch: Estimates of parameter kB in relation to the sizes of
the sample sets and the maximum order of used moment conditions. Only the parameter
kB was estimated. Results are presented as box plots (whiskers with a maximum of
1.5 IQR).

most four times until the threshold was met. The use of numerical optimization
increased the cost of a single estimate: For a sample size of 10,000 observations
and order 2, the computation takes 1–2 of minutes.

In Fig. 4, we give statistics on the quality of estimates based on 100 runs of
independently generated datasets. More specifically, we show how the quality of
estimates varies with the maximum order of moments considered in the method
and with sample size. For a fixed sample size, increasing the order from 1 to
2 improves considerably the quality of results. Use of higher order moments
significantly reduces the variance of the estimator, in particular for the case of
few samples.

5 Related Work

In the context of stochastic chemical kinetics, parameter inference methods are
either based on Bayesian inference [5,32,34] or maximum likelihood estima-
tion [2,3,29,31]. The advantage of the latter method is that the corresponding
estimators are, in a sense, the most informative estimates of unknown parame-
ters and have desirable mathematical properties such as unbiasedness, efficiency,
and normality. On the other hand, the computational complexity of maximum
likelihood estimation is high. If an analytic solution of the MLE is not possi-
ble, then, as a part of the non-linear optimization problem, the likelihood and
its derivatives have to be calculated. Monte-Carlo simulation has been used to
estimate the likelihood [31]. During the repeated random sampling it is difficult
to explore those parts of the state space that are unlikely under the current rate
parameters. Thus, especially if the rates are very different from the true parame-
ters, many simulation runs are necessary to calculate an accurate approximation
of the likelihood.

Therefore methods using computationally far more attractive moment expan-
sion approximations have been proposed. Kügler [18] uses results of the moment
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closure approximations to apply an ad-hoc weighted least squares estimator. Mil-
ner et al. [24] construct a multi-variate normal distribution based on low order
moments obtained from a moment closure approximation in order to apply MLE.
Another approach based on moment closure and MLE relies on a normal distri-
bution based on sample means and variances [35].

All of the aforementioned moment-based inference methods are, in contrast
to the scenario discussed in this paper, based on samples of the transient distribu-
tion before equilibrium is reached. Therefore they have to rely on moment closure
approximations, which is not necessary in our approach based on the equilibrium
distribution. Recently, the performance of GMM estimators has been studied for
transient (non-equilibrium) data [21] together with a (hybrid) moment closure
approach.

6 Conclusion

Parameter inference methods for stochastic models of reaction networks require
huge computational resources. The proposed approach based on the general-
ized method of moments is based on an adjustment of the statistical moments
of the model in equilibrium and therefore does not require the computation of
likelihoods. This makes the approach appealing for complex networks where sto-
chastic effects play an important role, since no statistical sampling or numerical
integration of master or moment equations is necessary. The proposed approach
gives accurate results in seconds when the parameters are linear because a closed
form of the solution is available. For non-linear parameters, a global optimiza-
tion problem must be solved and therefore the inference takes longer but is
still fast compared to other approaches based on the numerical computation of
likelihoods.

Our results show that the GMM estimator yields accurate results, where
its variance decreases when moments of higher order are considered. We found
that when moments of order higher than three are included, the results become
slightly worse in case of the p53 system while for the toggle switch quality
improved (variance decreased). A general strategy could be to start with as
many cost functions as unknown parameters and increase the maximal order
until appropriate statistical tests suggest that higher orders do not lead to an
improvement.

Currently, a major drawback of the method is that all species must be
observed in order to apply it. For populations of at most one individual, the
proposed clustering approach circumvents the problem that such species can
usually not be observed. In general, however, the clustering may not always
be possible and there may be other species that can not be observed. To deal
with such cases, we plan to develop an extension of the method that treats
the moments of such species as (additional) unknown parameters. Moreover, we
will investigate how measurement errors could be taken into account within the
GMM framework.
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