
Chapter 1
Set-Theoretic and Combinatorial Background

1.1 Sets and Maps

1.1.1 Sets

I have no desire to include a rigorous introduction to the theory of sets in this
book. Perhaps what follows will motivate the interested reader to learn this theory
in a special course on mathematical logic. In any case, the common intuitive
understanding of a set as an abstract “aggregate of elements” is enough for our
purposes. Any set can be imagined geometrically as a collection of points, and we
will often refer to the elements of a set as points. By definition, all the elements of
a set are distinct. A set X may be considered as having been adequately defined as
soon as one can say that a given item is or is not an element of X. If x is an element
of a set X, we write x 2 X. Two sets are equal if they consist of the same elements.
There is a unique set containing no elements. It is called the empty set and is denoted
by ¿. For a finite set X, we write jXj for the total number of elements in X and call
it the cardinality of X. A set X is called a subset of a set Y if each element x 2 X
also belongs to Y. In this case, we write X � Y. Note that ¿ is a subset of every set,
and every set is a subset of itself. A subset of a set X that is not equal to X is said to
be proper.

Exercise 1.1 How many subsets (including the set itself) are there in a finite set of
cardinality n?

Given two sets X and Y, the union X [ Y consists of all elements belonging to at
least one of them. The union of nonintersecting sets Y, Z is denoted by Y t Z and
called their disjoint union. The intersection X\Y consists of all elements belonging
to both sets X, Y simultaneously. The set difference X X Y consists of all elements
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2 1 Set-Theoretic and Combinatorial Background

that belong to X but not to Y. The direct product1 X � Y consists of all ordered pairs
.x; y/, where x 2 X, y 2 Y.

Exercise 1.2 Check that the intersection can be expressed in terms of the difference
as X \ Y D X X .X X Y/. Is it possible to express the difference in terms of the
intersection and union?

1.1.2 Maps

A map (or function) f W X ! Y from a set X to a set Y is an assignment x 7! f .x/
that relates each point x 2 X with some point y D f .x/ 2 Y called the image of x
under f or the value of f at x. Note that y must be uniquely determined by x and f .
Two maps f W X ! Y and g W X ! Y are said to be equal if f .x/ D g.x/ for all
x 2 X. We write Hom.X;Y/ for the set of all maps X ! Y.

All points x 2 X sent by the map f W X ! Y to a given point y 2 Y form a subset
of X denoted by

f�1.y/ ≝ fx 2 X j f .x/ D yg

and called the preimage of y under f or the fiber of f over y. The preimages of
distinct points are disjoint and may consist of arbitrarily many points or even be
empty. The points y 2 Y with a nonempty preimage form a subset of Y called the
image of f and denoted by

im. f / ≝ fy 2 Y j f�1.y/ ¤ ¿g D fy 2 Y j 9 x 2 X W f .x/ D yg :

A map f W X ! Y is called surjective (or an epimorphism) if the preimage of every
point y 2 Y is nonempty, i.e., if im. f / D Y. We designate a surjective map by a
two-headed arrow X � Y. A map f is called injective (or a monomorphism) if the
preimage of every point y 2 Y contains at most one element, i.e., f .x1/ ¤ f .x2/ for
all x1 ¤ x2. Injective maps are designated by a hooked arrow X ,! Y.

Exercise 1.3 List all maps f0; 1; 2g ! f0; 1g and all maps f0; 1g ! f0; 1; 2g.
How many epimorphisms and monomorphisms are there among them in each case?

A map f W X ! Y is called bijective or an isomorphism if it is simultaneously
surjective and injective. This means that for every y 2 Y, there exists a unique
x 2 X such that f .x/ D y. For this reason, a bijection is also called a one-to-one

1Also called the Cartesian product of sets.
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correspondence between X and Y. We designate a bijection by an arrow with a tilde
over it: X ⥲ Y.

Exercise 1.4 Indicate all bijections, injections, and surjections among the following
maps: (a) N ! N, x 7! x2, (b) Z ! Z, x 7! x2, (c) Z ! Z, x 7! 7x, (d) Q ! Q,
x 7! 7x:

A map from X to itself is called an endomorphism of X. We write
End.X/ ≝ Hom.X;X/ for the set of all endomorphisms of X. Bijective
endomorphisms X ⥲ X are called automorphisms of X. We denote the set of
all automorphisms by Aut.X/. One can think of an automorphism X ⥲ X as a
permutation of the elements of X. The trivial permutation IdX W X ! X, x 7! x,
which takes each element to itself, is called the identity map.

Exercise 1.5 (Dirichlet’s Principle) Convince yourself that the following condi-
tions on a set X are equivalent: (a) X is infinite; (b) there exists a nonsurjective
injection X ,! X; (c) there exists a noninjective surjection X � X.

Exercise 1.6 Show that Aut.N/ is an uncountable set.2

Example 1.1 (Recording Maps by Words) Given two finite sets X D f1; 2; : : : ; ng,
Y D f1; 2; : : : ;mg, every map f W X ! Y can be represented by a sequence of
its values w. f / ≝ . f .1/; f .2/; : : : ; f .n// viewed as an n-letter word in the m-letter
alphabet Y. For example, the maps f W f1; 2g ! f1; 2; 3g and g W f1; 2; 3g !
f1; 2; 3g defined by the assignments f .1/ D 3, f .2/ D 2 and g.1/ D 1, g.2/ D 2,
g.3/ D 2 are represented by the words w. f / D .3; 2/ and w.g/ D .1; 2; 2/ in the
alphabet f1; 2; 3g. Therefore, we get the bijection

w W Hom.X;Y/ ⥲ fjXj � letter words in the alphabet Yg ; f 7! w. f / :

This map takes monomorphisms to words without duplicate letters. Epimorphisms
go to words containing the whole alphabet. Isomorphisms go to words in which
every letter of the alphabet appears exactly once.

1.1.3 Fibers of Maps

A map f W X ! Y decomposes X into the disjoint union of nonempty subsets f�1.y/
indexed by the elements y 2 im. f / :

X D
G

y2im. f /

f�1.y/ : (1.1)

2A set is called countable if it is isomorphic to N. An infinite set not isomorphic to N is called
uncountable.
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This viewpoint may be useful when we need to compare cardinalities of sets. For
example, if all fibers of the map f W X ! Y have the same cardinality m D j f�1.y/j,
then

jXj D m � j im f j : (1.2)

Proposition 1.1 jHom.X;Y/j D jYjjXj for all finite sets X, Y.

Proof Fix an arbitrary point x 2 X and consider the evaluation map

evx W Hom.X;Y/ ! Y ; f 7! f .x/ ; (1.3)

which takes the map f W X ! Y to its value at x. The maps X ! Y with a
prescribed value at x are in bijection with the maps X X fxg ! Y. Thus, jev�1

x .y/j D
jHom.XX fxg;Y/j for all y 2 Y. Hence, jHom.X;Y/j D jHom .X X fxg ;Y/ j � jYj by
formula (1.2). In other words, when we add one more point to X, the cardinality of
Hom.X;Y/ is multiplied by jYj. ut
Remark 1.1 In the light of Proposition 1.1, the set of all maps X ! Y is often
denoted by

YX
≝ Hom.X;Y/ :

Remark 1.2 In the above proof, we assumed that both sets are nonempty. If X D ¿,
then for each Y, there exists just one map ¿ ,! Y, namely the empty map, which
takes every element of X (of which there are none) to an arbitrary element of Y. In
this case, the evaluation map (1.3) is not defined. However, Proposition 1.1 is still
true: 1 D jYj0. Note that Hom.¿; ¿/ D fId¿g has cardinality 1, i.e., 00 D 1 in our
current context. If Y D ¿, then Hom.X; ¿/ D ¿ for every X ¤ ¿. This agrees with
Proposition 1.1 as well: 0jXj D 0 for jXj > 0.

Proposition 1.2 Let jXj D jYj D n. We write Isom.X;Y/ � Hom.X;Y/ for the set
of all bijections X ⥲ Y. Then jIsom.X;Y/j D nŠ, where nŠ ≝ n � .n� 1/ � .n� 2/ � � �1.
In particular, jAut.X/j D nŠ .

Proof For every x 2 X, the restriction of the evaluation map (1.3) to the subset
of bijections assigns the surjective map evx W Isom.X;Y/ � Y, f 7! f .x/.
The bijections f W X ⥲ Y with a prescribed value y D f .x/ are in one-to-one
correspondence with all bijections X X fxg ! Y X fyg. Since the cardinality
of Isom.X X fxg;Y X fyg/ does not depend on x, y, we have jIsom.X;Y/j D
jIsom..X X fxg;Y X fyg/j � jYj by formula (1.2). In other words, when we add one
more point to both X and Y, the cardinality of Isom.X;Y/ is multiplied by jYj C 1.

ut
Remark 1.3 The product nŠ D n � .n � 1/ � .n � 2/ � � �1 is called n-factorial. Since
Aut.¿/ D fId¿g has cardinality 1, we define 0Š ≝ 1.
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Example 1.2 (Multinomial Coefficients) To multiply out the expression .a1 C a2 C
� � � C am/n, we may place the factors in a line:

.a1 C a2 C � � � C am/ � .a1 C a2 C � � � C am/ � � � .a1 C a2 C � � � C am/:

Then for each i D 1; 2; : : : ; n, we choose some letter a�i within the ith pair of
parentheses and form the word a�1a�2 : : : a�n from them. After doing this in all
possible ways, adding all the words together, and collecting like monomials, we get
the sum

.a1 C a2 C � � � C am/n D
X

k1Ck2C ��� CkmDn
8i; 06ki6n

 
n

k1; : : : ; km

!
� ak1

1 ak2

2 � � � akmm ; (1.4)

where each exponent ki varies over the range 0 6 ki 6 n, and the total degree of
each monomial is equal to n D k1 C k2 C � � � C km. The coefficient

� n
k1;:::;km

�
of

the monomial ak1

1 ak2

2 � � � akmm is called a multinomial coefficient. It equals the number
of all n-letter words that can be written with exactly k1 letters a1, k2 letters a2,
etc. To evaluate it precisely, write Y for the set of all such words. Then for each
i D 1; 2; : : : ; n, mark the ki identical letters ai each with different upper index
1; 2; : : : ; ki in order to distinguish these letters from one another. Now write X for
the set of all n-letter words written with n distinct marked letters

a.1/
1 ; a.2/

1 ; : : : ; a.k1/
1„ ƒ‚ …

k1 marked letters a1

; a.1/
2 ; a.2/

2 ; : : : ; a.k2/
2„ ƒ‚ …

k2 marked letters a2

; : : : ; a.1/
m ; a.2/

m ; : : : ; a.km/
m„ ƒ‚ …

km marked letters am

and containing each letter exactly once. We know from Proposition 1.2 that jXj D
nŠ. Consider the forgetful surjection f W X � Y, which erases all the upper indices.
The preimage of every word y 2 Y under this map consists of the k1Š � k2Š � � � kmŠ

words obtained from y by marking the k1 letters a1, k2 letters a2, etc. with upper
indices in all possible ways. (1.2) on p. 4 leads to

 
n

k1; : : : ; km

!
D nŠ

k1Š � k2Š � � � kmŠ
: (1.5)

Thus, the expansion (1.4) becomes

.a1 C a2 C � � � C am/n D
X

k1C ��� CkmDn
8i; 06ki6n

nŠ � ak1

1 ak2

2 � � � akmm
k1Š � k2Š � � � kmŠ

: (1.6)
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Exercise 1.7 How many summands are there on the right-hand side of (1.6)?

For m D 2, we get the following well-known formula3:

.a C b/n D
nX

kD0

nŠ � akbn�k

kŠ.n � k/Š
: (1.7)

The binomial coefficient nŠ
kŠ.n�k/Š is usually denoted by either

�n
k

�
or Ck

n instead of� n
k;n�k

�
. We will use the notation

�n
k

�
. Note that it can be written as

 
n

k

!
D n � .n � 1/ � � � .n � k C 1/

k � .k � 1/ � � �1 ;

where both the numerator and denominator consist of k decreasing integer factors.

Example 1.3 (Young Diagrams) The decomposition of the finite set X D
f1; 2; : : : ; ng into a disjoint union of nonempty subsets

X D X1 t X1 t X2 t � � � t Xk (1.8)

can be encoded as follows. Renumber the subsets Xi in any nonincreasing order of
their cardinalities and set �i D jXij. We obtain a nonincreasing sequence of integers

� D .�1; �2; : : : ; �n/ ; �1 > �2 > � � � > �k ; (1.9)

called a partition of n D jXj or a shape of the decomposition (1.8). Partitions are
visualized by diagrams like this:

(1.10)

Such a diagram is formed by cellular strips of lengths �1; �2; : : : ; �k aligned at the
left and of nonincreasing length from top to bottom. It is called a Young diagram
of the partition �. We will make no distinction between a partition and its diagram
and denote both by the same letter. The total number of cells in the diagram � is
called the weight and denoted by j�j. The number of rows is called the length of the

3This is a particular case of the generic Newton’s binomial theorem, which expands .1 C x/s with
an arbitrary ˛. We will prove it in Sect. 1.2.
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diagram and denoted by `.�/. Thus, the Young diagram (1.10) depicts the partition
� D .6; 5; 5; 3; 1/ of weight j�j D 20 and length `.�/ D 5.

Exercise 1.8 How many Young diagrams can be drawn within a k � n rectangle?4

If we fill the cells of � by the elements of X (one element per cell) and combine
the elements placed in row i into one subset Xi � X, then we obtain the
decomposition (1.8) of shape �. Since every decomposition of shape � can be
achieved in this way from an appropriate filling, we get a surjective map from
the set of all fillings of � to the set of all decompositions (1.8) of shape �. All
the fibers of this map have the same cardinality. Namely, two fillings produce the
same decomposition if and only if they are obtained from each other either by
permuting elements within rows or by permuting entire rows of equal length. Let
us write mi for the number of rows of length5 i in �. By Proposition 1.2, there areQ

�iŠ D Qn
iD1.iŠ/

mi permutations of the first type and
Qn

iD1 miŠ permutations of the
second type. Since they act independently, each fiber has cardinality

Qn
iD1.iŠ/

mimiŠ.
Therefore, nŠ fillings produce

nŠQn
iD1 miŠ � .iŠ/mi

(1.11)

different decompositions of a set of cardinality n into a disjoint union of m1

elements, m2 subsets of cardinality 2, m3 subsets of cardinality 3, etc.

1.2 Equivalence Classes

1.2.1 Equivalence Relations

Another way of decomposing X into a disjoint union of subsets is to declare the
elements in each subset to be equivalent. This can be formalized as follows. A subset
R � X � X D f.x1; x2/ j x1; x2 2 Xg is called a binary relation on X. If .x1; x2/ 2 R,
we write x1�Rx2 and say that R relates x1 with x2. We omit the letter R from this
notation when R is clear from context or is inessential.

For example, the following binary relations on the set of integersZ are commonly
used:

equality W x1�x2; meaning that x1 D x2I (1.12)

inequality W x1�x2; meaning that x1 6 x2I (1.13)

4The upper left-hand corner of each diagram should coincide with that of the rectangle. The empty
diagram and the whole rectangle are allowed.
5Note that the equality j�j D n D m1 C 2m2 C � � � C nmn forces many of the mi to vanish.
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divisibility W x1�x2; meaning that x1 j x2I (1.14)

congruence modulo n W x1�x2; meaning that x1 � x2 .mod n/: (1.15)

(The last of these is read “x1 is congruent to x2 modulo n” and signifies that n divides
x1 � x2.)

Definition 1.1 A binary relation � is called an equivalence relation or simply an
equivalence if it satisfies the following three properties:

reflexivity : 8 x 2 X; x � x ;

transitivity : 8 x1; x2; x3 2 X; x1 � x2 & x2 � x3 ) x1 � x3 ;

symmetry : 8 x1; x2 2 X; x1 � x2 ” x2 � x1.

In the above list of binary relations on Z, (1.12) and (1.15) are equivalences.
Relations (1.13) and (1.14) are not symmetric.6

If X is decomposed into a disjoint union of subsets, then the relation x1�x2,
meaning that x1, x2 belong to the same subset, is an equivalence relation. Conversely,
given an equivalence relation R on X, let us introduce the notion of an equivalence
class of x as

Œx�R ≝ fz 2 X j x�Rzg D fz 2 X j z�Rxg ;

where the second equality holds because R is symmetric.

Exercise 1.9 Verify that any two classes Œx�R, Œ y�R either coincide or are disjoint.

Thus, X decomposes into a disjoint union of distinct equivalence classes. The set of
these equivalence classes is denoted by X=R and called the quotient or factor set of
X by R. The surjective map sending an element to its equivalence class,

f W X � X=R ; x 7! Œx�R ; (1.16)

is called the quotient map or factorization map. Its fibers are exactly the equivalence
classes. Every surjective map f W X � Y is the quotient map modulo the
equivalence defined by x1 � x2 if f .x1/ D f .x2/.

Example 1.4 (Residue Classes) Fix a nonzero n 2 Z and write Z=.n/ for the
quotient of Z modulo the congruence relation (1.15). The elements of Z=.n/ are
called residue classes modulo n. The class of a number z 2 Z is denoted by
Œz�n or simply by Œz� when the value of n is clear from context or is inessential.

6They are skew-symmetric, i.e., they satisfy the condition x1 � x2 & x2 � x1 ) x1 D x2; see
Sect. 1.4 on p. 13.
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The factorization map

Z � Z=.n/ ; z 7! Œz�n;

is called reduction modulo n. The set Z=.n/ consists of the n elements
Œ0�n; Œ1�n; : : : ; Œn � 1�n, in bijection with the residues of division by n. However,
it may sometimes be more productive to think of residue classes as subsets in Z,
because this allows us to vary the representation of an element depending on what
we need. For example, the residue of division of 12100 by 13 can be evaluated
promptly as follows:

�
12100

�
13

D Œ12�100
13 D Œ�1�100

13 D �
.�1/100

�
13

D Œ1�13:

Exercise 1.10 Prove the consistency of the above computation, i.e., verify that the
residue classes Œx C y�n and Œxy�n do not depend on the choice of elements x 2 Œx�n
and y 2 Œ y�n used in their representations.

Thus, the quotient set Z=.n/ has a well-defined addition and multiplication given by

Œx�n C Œ y�n ≝ Œx C y�n ; Œx�n � Œ y�n ≝ Œxy�n : (1.17)

1.2.2 Implicitly Defined Equivalences

Given a family of equivalence relations R� � X �X, the intersection
T

R� � X �X
is again an equivalence relation. Indeed, if each set R� � X�X contains the diagonal
� D f.x; x/ j x 2 Xg � X�X (reflexivity), goes to itself under reflection .x1; x2/ �
.x2; x1/ (symmetry), and contains for every pair of points .x; y/; .y; z/ 2 R� the
point .x; z/ as well (transitivity), then the intersection

T
R� will inherit the same

properties. Therefore, for every subset S � X �X, there exists a unique equivalence
relation S � S contained in all equivalence relations containing S. It is called the
equivalence relation generated by S and can be described as the intersection of all
equivalence relations containing S. A more constructive description is given in the
next exercise.

Exercise 1.11 Check that x is related to y by R if and only if there exists a
finite sequence of points x D z0; z1; z2; : : : ; zn D y in X such that for each
i D 1; 2; : : : ; n, either .xi�1; xi/ or .xi; xi�1/ belongs to R.

However, such an implicit description may be quite ineffective even for understand-
ing whether there are any inequivalent points at all.

Example 1.5 (Fractions) The set of rational numbers Q is usually introduced as the
set of fractions a=b, where a; b 2 Z, b ¤ 0. By definition, such a fraction is an
equivalence class of the pair .a; b/ 2 Z� .ZX 0/ modulo the equivalence generated
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by the relations

.a; b/ � .ac; bc/ for all c 2 Z X 0 ; (1.18)

which assert the equality of the fractions a=b D .ac/=.bc/. The relations (1.18)
do not themselves form an equivalence relation. Indeed, if a1b2 D a2b1, then the
leftmost element in the two-step chain

.a1; b1/ � .a1b2; b1b2/ D .a2b1; b1b2/ � .a2; b2/

may not be related to the rightmost one directly by (1.18). For example, 3=6 and
5=10 produce equal fractions and are not directly related. Thus, the equivalence
generated by (1.18) must contain the relations

.a1; b1/ � .a2; b2/ for all a1b2 D a2b1 : (1.19)

Exercise 1.12 Verify that the relations (1.19) are reflexive, symmetric, and transi-
tive.

Hence, relations (1.19) give a complete explicit description for the equivalence
generated by relations (1.18).

1.3 Compositions of Maps

1.3.1 Composition Versus Multiplication

A composition of maps F W X ! Y and g W Y ! Z is a map

g ∘ f W X ! Z ; x 7! g
�
f .x/

�
:

The notation g ∘ f is usually shorted to gf , which should not be confused with a
product of numbers. In fact, the algebraic properties of compositions differ from
those used in numeric computations. The composition of maps is not commutative:
fg ¤ gf in general. When fg is defined, gf may not be. Even if both compositions
are well defined, say for endomorphisms f ; g 2 End.X/ of some set X, the equality
fg D gf usually fails.

Exercise 1.13 Let two lines `1, `2 in the plane cross at the point O. Write �1 and
�2 for the reflections (i.e., axial symmetries) of the plane in these lines. Describe
explicitly the motions �1�2 and �2�1. How should the lines be situated in order to
get �1�2 D �2�1?

Cancellation of common factors also fails. Generically, neither fg D fh nor gf D hf
implies g D h.
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Example 1.6 (Endomorphisms of a Two-Element Set) The set X D f1; 2g has four
endomorphisms. Let us record maps f W X ! X by two-letter words . f .1/; f .2//

as in Example 1.1 on p. 3. Then the four endomorphisms X are .1; 1/ ;.1; 2/ D
IdX ;.2; 1/ ;.2; 2/. The compositions fg are collected in the following multiplication
table:

fŸg .1; 1/ .1; 2/ .2; 1/ .2; 2/

.1; 1/ .1; 1/ .1; 1/ .1; 1/ .1; 1/

.1; 2/ .1; 1/ .1; 2/ .2; 1/ .2; 2/

.2; 1/ .2; 2/ .2; 1/ .1; 2/ .1; 1/

.2; 2/ .2; 2/ .2; 2/ .2; 2/ .2; 2/

(1.20)

Note that .2; 2/ ∘ .1; 1/ ¤ .1; 1/ ∘ .2; 2/, .1; 1/ ∘ .1; 2/ D .1; 1/ ∘ .2; 1/, whereas
.1; 2/ ¤ .2; 1/ and .1; 1/ ∘ .2; 2/ D .2; 1/ ∘ .2; 2/, whereas .1; 1/ ¤ .2; 1/.

The only nice property of numeric multiplication shared by the composition of
maps is associativity: .hg/f D h.gf / for every triple of maps f W X ! Y, g W Y ! Z,
h W Z ! T. Indeed, in each case, we have x 7! h.g. f .x///.

Lemma 1.1 (Left Inverse Map) The following conditions on a map f W X ! Y
are equivalent:

1. f is injective;
2. there exists a map g W Y ! X such that gf D IdX (any such g is called a left

inverse to f );
3. for any two maps g1; g2 W Z ! X such that fg1 D fg2, the equality g1 D g2 holds.

Proof We verify the implications (1) ) (2) ) (3) ) (1). Let f be injective. For
y D f .x/, put g.y/ D x. For y … im f , define g.y/ arbitrarily. Then g W Y ! X
satisfies (2). If (2) holds, then the left composition of both sides of the equality
fg1 D fg2 with g leads to g1 D g2. Finally, if f .x1/ D f .x2/ for some x1 ¤ x2, then
(3) is not satisfied for g1 D IdX and g2 W X ⥲ X that swaps x1, x2 and leaves all the
other points fixed. ut

1.3.2 Right Inverse Map and the Axiom of Choice

A feeling of harmony calls for the right counterpart of Lemma 1.1. We expect that
the following conditions on a map f W X ! Y should be equivalent:

(1) f is surjective;
(2) there exists a map g W Y ! X such that fg D IdY ;
(3) for any two maps g1; g2 W Z ! X such that g1f D g2f , the equality g1 D g2

holds.

If these conditions hold, we shall call the map g from (2) a right inverse to f . Another
conventional name for g is a section of the surjective map f , because every map g
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satisfying (2) just selects some element g.y/ 2 f�1.y/ in the fiber of f over each point
y 2 Y simultaneously for all y 2 Y. In rigorous set theory, which we try to avoid
here, there is a special selection axiom, called the axiom of choice, postulating that
every surjective map of sets admits a section. Thus, implication (1) ) (2) is part of
the rigorous definition of a set. The proof of the implication (2) ) (3) is completely
symmetric to the proof from Lemma 1.1: compose both sides of g1 f D g2 f with g
from the right and obtain g1 D g2. Implication (3) ) (1) is proved by contradiction:
if y … im f , then (1) fails for g1 D IdY and every g2 W Y ! Y that takes y to some
point in im f and leaves all other points fixed. Therefore, the above three properties,
symmetric to those of Lemma 1.1, are equivalent as well.

1.3.3 Invertible Maps

If a map f W X ⥲ Y is bijective, then the preimage f�1.y/ � X of a point y 2 Y
consists of exactly one point. Therefore, the prescription y 7! f�1.y/ defines a map
f�1 W Y ! X that is simultaneously a left and right inverse to f , i.e., it satisfies the
equalities

f ∘ f�1 D IdY and f�1 ∘ f D IdX : (1.21)

The map f�1 is called a (two-sided) inverse to f .

Proposition 1.3 The following properties of a map f W X ! Y are equivalent:

(1) f is bijective;
(2) there exists a map g W Y ! X such that f ∘ g D IdY and g ∘ f D IdX;
(3) there exist maps g0; g00 W Y ! X such that g0 ∘ f D IdX and f ∘ g00 D IdY .

If f satisfies these properties, then g D g0 D g00 D f�1, where f�1 is the map defined
before formula (1.21).

Proof If (1) holds, then g D f�1 satisfies (2). Implication (2) ) (3) is obvious.
Conversely, if (3) holds, then g0 D g0 ∘ IdY D g0 ∘ . f ∘ g00/ D .g0 ∘ f / ∘ g00 D
IdX ∘ g00 D g00. Therefore, (2) holds for g D g0 D g00. Finally, let (2) hold. Then
for every y 2 Y, the preimage f�1.y/ contains g.y/, because f .g.y// D y. Moreover,
every x 2 f�1.y/ equals g.y/: x D IdX.x/ D g. f .x// D g.y/. Hence, f is bijective,
and g D f�1. ut

1.3.4 Transformation Groups

Let X be an arbitrary set. A nonempty subset G � AutX is called a transformation
group of X if 8 g1; g2 2 G, g1g2 2 G and 8 g 2 G, g�1 2 G. Note that every
transformation group automatically contains the identity map IdX , because IdX D
g�1g for every g 2 G. For a finite transformation group G, its cardinality jGj is
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called the order of G. Every transformation group H � G is called a subgroup of G.
Every transformation group is a subgroup of the group Aut.X/ of all automorphisms
of X.

Example 1.7 (Permutation Groups) For X D f1; 2; : : : ; ng, the group Aut.X/ is
denoted by Sn and called the nth symmetric group or the permutation group of n
elements. By Proposition 1.2, jSnj D nŠ. We will indicate a permutation � 2 Sn by
the row .�1; �2; : : : ; �n/ of its values �i D �.i/, as in Example 1.1. For example,

� D .3; 4; 2; 1/ and � D .2; 3; 4; 1/

encode the maps

1 2 3 4

3 4 2 1

and

1 2 3 4

2 3 4 1

The compositions of these maps are recorded as �� D .4; 2; 1; 3/ and �� D
.4; 1; 3; 2/ .

Exercise 1.14 For the six elements of the symmetric group S3, write a multiplica-
tion table similar to that from formula (1.20) on p. 11.

Example 1.8 (Abelian Groups) A group G in which every two elements f ; g 2 G
commute, i.e., satisfy the relation fg D gf , is called commutative or abelian.
Examples of abelian groups are the group T of parallel displacements of the
Euclidean plane and the group SO2 of the rotations of the plane about some fixed
point. For every integer n > 2, rotations by integer multiples of 2�=n form a finite
subgroup of SO2 called the cyclic group of order n.

1.4 Posets

1.4.1 Partial Order Relations

A binary relation7 x 6 y on a set Z is called a partial order if, like an equivalence
relation, it is reflexive and transitive,8 but instead of symmetric, it is skew-symmetric,
which means that x 6 y and y 6 x imply x D y. If some partial order is given, we

7See Sect. 1.2 on p. 7.
8See Definition 1.1 on p. 8.
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write x < y if x 6 y and x ¤ y. A partial order on Z is called a total order if for
all x; y 2 Z, x < y or x D y or y < x holds. For example, the usual inequality
of numbers provides the set of integers Z with a total order, whereas the divisibility
relation n j m, meaning that n divides m, is a partial but not total order on Z. Another
important example of a nontotal partial order is the one provided by inclusions on
the set S.X/ of all subsets in a given set X.

Exercise 1.15 (Preorder) Let a set Z be equipped with a reflexive transitive binary
relation9 x - y. We write x � y if both x - y and y - x hold simultaneously. Verify
that � is an equivalence relation and that on the quotient set Z= �, a partial order is
well defined by the rule Œx� 6 Œy� if x - y.

A set P equipped with a partial order is called a partially ordered set, or poset for
short. If the order is total, we say that P is totally ordered. Every subset X of a poset
P is certainly a poset with respect to the order on P. Totally ordered subsets of a
poset P are called chains. Elements x; y 2 Z are called incompatible if neither x 6 y
nor y 6 x holds. Otherwise, x; y are said to be compatible. Thus, a partial order is
total if and only if every two elements are compatible. Note that two incompatible
elements have to be distinct.

A map f W M ! N between two posets is called order-preserving10 if for all
x; y 2 M, the inequality x 6 y implies the inequality f .x/ 6 f .y/. Posets M;N are
said to be isomorphic if there is an order-preserving bijection M ⥲ N. We write
M ' N in this case. A map f is called strictly increasing if for all x; y 2 M, the
inequality x < y implies the inequality f .x/ < f .y/. Every injective order-preserving
map is strictly increasing. The converse is true for maps with totally ordered domain
and may fail in general.

An element y 2 P is called an upper bound for a subset X � P if x 6 y for
all x 2 X. Such an upper bound is called exterior if y … X. In this case, the strong
inequality x < y holds for all x 2 X.

An element m� 2 X is called maximal in X if for all x 2 X, the inequality
m� 6 x implies x D m�. Note that such an element may be incompatible with some
x 2 X, and therefore it is not necessarily an upper bound for X. A poset may have
many different maximal elements or may not have any, like the poset Z. If X is
totally ordered, then the existence of a maximal element forces such an element to
be unique. Minimal elements are defined symmetrically: m� 2 X is called minimal
if 8 x 2 X, m� 6 x ) x D m�, and the above discussion for maximal elements
carries over to minimal elements with the obvious changes.

9Every such relation is called a partial preorder on Z.
10Also nondecreasing or nonstrictly increasing or a homomorphism of posets.
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1.4.2 Well-Ordered Sets

A totally ordered set W is called well ordered if every subset U � W has a minimal
element.11 For example, the set N of positive integers is well ordered by the usual
inequality between numbers. All well-ordered sets share one of the most important
properties of the positive integers: they allow proofs by induction. If some statement
˙ D ˙.w/ depends on an element w running through a well-ordered set W, then
˙.w/ holds for all w 2 W as soon the following two statements are proven:

(1) ˙.w�/ holds for the minimal element w� of W;
(2) for every x 2 W, if ˙.w/ holds for all w < x, then ˙.x/ holds.

This is known as the principle of transfinite induction.

Exercise 1.16 Verify the principle of transfinite induction.

Let us write Œ y/ ≝ fw 2 W j w < yg for the set of all elements strictly preceding y
in a well-ordered set W and call it the initial segment of W preceding y. Note that y
is uniquely determined by Œy/ as the minimal element in W X Œ y/. For the minimal
element w� of the whole of W, we set Œw�/ ≝ ¿. We write U 6 W if U ' Œw/

for some w 2 W, and write U < W if U 6 W and U § W. As good training in
the use of the principle of transfinite induction, I strongly recommend the following
exercise.

Exercise 1.17 For any two-well ordered sets U;W, either U < W or U ' W or
W < U holds.

Classes of isomorphic well-ordered sets are called cardinals. Thus, the set N can
be identified with the set of all finite cardinals. All the other cardinals, including N

itself, are called transfinite.

1.4.3 Zorn’s Lemma

Let P be a poset. We write W.P/ for the set of all well-ordered (by the partial order
on P) subsets W � P. Certainly, W.P/ ¤ ¿, because all one-point subsets of P are
within W.P/. We also include ¿ as an element of W.P/.

Lemma 1.2 For every poset P, there is no map ˇ W W.P/ ! P sending each
W 2 W.P/ to some exterior upper bound of W.

Proof Let such a map ˇ exist. We will say that W 2 W.P/ is ˇ-stable if ˇ.Œ y// D y
for all y 2 W. For example, the set

˚
ˇ.¿/; ˇ

�fˇ.¿/g�; ˇ
�˚

ˇ.¿/; ˇ.fˇ.¿/g/��� is
ˇ-stable, and it certainly can be enlarged by any amount to the right. For any two ˇ-
stable sets U;W 2 W.P/ with common minimal element, either U � W or W � U

11Such an element is unique, as we have seen above.
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holds, because the minimal elements u 2 U X .U \ W/ and w 2 W X .U \ W/ are
each the ˇ-image of the same initial segment Œu/ D Œw/ � U \ W and therefore
must be equal.

Exercise 1.18 Check that the union of all ˇ-stable sets having the same minimal
element p 2 P is well ordered and ˇ-stable.

Let U be some union from Exercise 1.18. Then ˇ.U/ cannot be an exterior upper
bound for U, because otherwise, U [ fˇ.U/g would be a ˇ-stable set with the same
minimal point as U, which forces it to be a subset of U. Contradiction. ut
Corollary 1.1 (Zorn’s Lemma I) Suppose that every well-ordered subset in a
poset P has an upper bound, not necessarily exterior. Then there exists a maximal
element in P.

Proof Assume the contrary. Then for all x 2 P there exists y > x. Hence, the
axiom of choice allows us to choose some exterior upper bound12 b.W/ for every
W 2 W.P/. The resulting map W 7! b.W/ contradicts Lemma 1.2. ut

Exercise 1.19 (Bourbaki–Witt Fixed-Point Lemma) Under the assumption of
Corollary 1.1, show that every map f W P ! P such that f .x/ > x for all x 2 X
has a fixed point, i.e., that there exists p 2 P such that f .p/ D p.

Definition 1.2 (Complete Posets) A partially ordered set is said to be complete if
every totally ordered (with respect to the order on P) subset in P has an upper bound,
not necessarily exterior.

Lemma 1.3 (Zorn’s Lemma II) Every complete poset P has a maximal element.

Proof Every complete poset surely satisfies the assumption of Corollary 1.1. ut

Problems for Independent Solution to Chap. 1

Problem 1.1 Find the total number of maps from a set of cardinality 6 to a set of
cardinality 2 such that every point of the target set has at least two elements in its
preimage.

Problem 1.2 Let X, Y be finite sets, jXj > jY. How many right inverse maps does a
given surjection X � Y have? How many left inverse maps does a given injection
Y ,! X have?

12To be more precise (see Sect. 1.3.2 on p. 11), let I � W � P consist of all pairs .W; c/ such
that w < c for all w 2 W. Then the projection �1 W I ! W , .W; c/ 7! W, is surjective, because
by the assumption of the lemma, for every W, there exists some upper bound d, and then we have
assumed that there exists some c > d. Take b W W ! P to be the composition �2 ∘ g, where
g W W ! I is any section of �1 followed by the projection �2 W I ! P, .W; c/ 7! c.
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Problem 1.3 How many distinct “words” (i.e., strings of letters, not necessarily
actual words) can one get by permuting the letters in the words:

(a) algebra, (b) syzygy, (c)aa... a„ ƒ‚ …
˛

bb... b„ ƒ‚ …
ˇ

,

(d)a1a1 : : :a1„ ƒ‚ …
˛1

a2a2 : : :a2„ ƒ‚ …
˛2

...amam : : :am„ ƒ‚ …
˛m

?

Problem 1.4 Expand and collect like terms in (a) .a1Ca2C� � �Cam/2, (b).aCbCc/3.

Problem 1.5 Given m; n 2 N, how many solutions does the equation x1 Cx2 C� � �C
xm D n have in (a) positive, (b) nonnegative, integers x1; x2; : : : ; xm?

Problem 1.6 Count the number of monomials in n variables that have total degree13

(a) exactly d, (b) at most d.

Problem 1.7 Is 1000Š=
�
100Š10

�
an integer?

Problem 1.8 For a prime p 2 N, show that every binomial coefficient
�p
k

�
with

1 6 k 6 .p � 1/ is divisible by p.

Problem 1.9 Evaluate the sums: (a)
�n

0

�C�n
1

�C � � � C�nn
�
, (b)

�n
0

�C�n�1
1

�C�n�2
2

�C� � � ,

(c)
�k
k

�C�kC1
k

�C� � �C�kCn
k

�
, (d)

�n
1

�C2
�n

2

�C � � � Cn
�n
n

�
, (e)

�n
0

�C2
�n

1

�C � � � C
.nC1/

�n
n

�
, ( f)

�n
0

���n
1

�C�n
2

���n
3

�C � � � C.�1/n
�n
n

�
, (g)

�n
0

�2 C�n
1

�2 C� � �C�n
n

�2
.

Problem 1.10 For given m; n 2 N, count the total number of (a) arbitrary, (b) bijec-
tive, (c) strictly increasing, (d) injective, (e) nonstrictly increasing, ( f) nonstrictly
increasing and surjective, (g) surjective maps f1; 2; : : : ;mg ! f1; 2; : : : ; ng.

Problem 1.11 Count the total number of Young diagrams (a) of weight 6, (b) of
weight 7 and length at most 3, (c) having at most p rows and q columns.

Problem 1.12� (by L. G. Makar-Limanov). A soda jerk is whiling away the time
manipulating 15 disposable cups stacked on a table in several vertical piles.
During each manipulation, he removes the topmost cup of each pile and stacks
these together to form a new pile. What can you say about the distribution of cups
after 1000 such manipulations?

Problem 1.13 Given four distinct cups, four identical glasses, ten identical sugar
cubes, and seven cocktail straws each in different color of the rainbow, count the
number of distinct arrangements of (a) straws between cups, (b) sugar between
cups, (c) sugar between glasses, (d) straws between glasses. (e) Answer the same
questions under the constraint that every cup or glass must have at least one straw
or sugar cube (possibly one or more of each) in it.

Problem 1.14 The sides of a regular planar n-gon lying in three-dimensional
space are painted in n fixed different colors, one color per side, in all possible
ways. How many different painted n-gons do we get if two colored n-gons are
considered the same if one can be obtained from the other by some motion in
three-space?

13The total degree of the monomial xm1

1 xm2

2 � � � xmn
n equals

Pn
iD1 mi.
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Problem 1.15 How many different necklaces can be made from 5 red, 7 blue, and
11 white otherwise identical glass beads?

Problem 1.16 All the faces of a regular (a) cube, (b) tetrahedron, are painted using
six fixed colors (different faces in distinct colors) in all possible ways. How many
different painted polyhedra do we get?

Problem 1.17 How many different knick-knacks do we get by gluing pairs of the
previously painted (a) cubes, (b) tetrahedra face to face randomly?

Problem 1.18 Show that Zorn’s lemma, Lemma 1.3, is equivalent to the axiom of
choice. More precisely, assume that Lemma 1.3 holds for every poset P and prove
that every surjective map f W X � Y admits a section. Hint: consider the set of
maps gU W U ! X such that U � Y and fgU D IdU ; equip it with a partial order,
where gU 6 gW means that U � W and gW jU D gU; verify that Lemma 1.3 can
be applied; prove that every maximal gU has U D Y.

Problem 1.19 (Hausdorf’s Maximal Chain Theorem) Use Lemma 1.3, Zorn’s
lemma, to prove that every chain in every poset is contained in some maximal
(with respect to inclusion) chain. Hint: consider the set of all chains containing a
given chain; equip it with the partial order provided by inclusion; then proceed as
in the previous problem.

Problem 1.20 (Zermelo’s Theorem) Write S.X/ for the set of all nonempty
subsets in a given set X including X itself. Use the axiom of choice to construct
a map 	 W S.X/ ! X such that 	.Z/ 2 Z for all Z 2 S.X/. Write W.X/ for the
set of all W 2 S.X/ possessing a well ordering such that 	.W X Œw// D w for all
w 2 W. Verify that W.X/ ¤ ¿, and modify the proof of Lemma 1.2 on p. 15 to
show that X 2 W.X/. This means that every set can be well ordered.
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