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Abstract. Taxi trip duration affects the efficiency of operation, the satisfaction
of drivers, and, mainly, the satisfaction of the customers, therefore, it is an impor‐
tant metric for the taxi companies. Especially, knowing the predicted trip duration
beforehand is very useful to allocate taxis to the taxi stands and also finding the
best route for different trips. The existence of hyperconnected network can help
to collect data from connected taxis in the city environment and use it collabora‐
tively between taxis for a better prediction. As a matter of fact, the existence of
high volume of data, for each individual taxi, several models can be generated.
Moreover, taking into account the difference between the data collected by taxis,
this data can be organized into different levels of hierarchy. However, finding the
best level of granularity which leads to the best model for an individual taxi could
be computationally expensive. In this paper, the use of metalearning for
addressing the problem of selection of the right level of the hierarchy and the right
algorithm that generates the model with the best performance for each taxi is
proposed. The proposed approach is evaluated by the data collected in the Drive-
In project. The results show that metalearning helps the selection of the algorithm
with the best performance.

Keywords: Hyperconnected world · Machine learning · Metalearning · Data
mining · Intelligent transportation systems · Collaborative data analysis

1 Introduction

Hyperconnectivity is used to define the interconnectedness of people, organizations, and
objects which result from different technology innovations like the Internet, mobile
technology and the Internet of Things (IoT) [1]. The hyperconnectivity exists not only
in the communication between people but also in the connectivity of cars [2]. In addition,
to make the travel and transportation more efficient and more comfortable, the hyper‐
connectivity is the main driver of innovation [3].

On the other hand, the transportation system is clearly overloaded by congestion in the
major cities. For example in the city center of London, the average speed of cars is 14 km/
h [4] while the car’s speed in the city center of Moscow is around 6 km/h [5]. Positively,
this can be an opportunity to improve interconnectedness of cars in the city environment.
These cars can be parts of the communication infrastructure for the Intelligent
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Transportation Systems (ITS) and also offer various opportunities for gathering data about
a city by continually sensing events from streets and process sensed data.

Therefore, utilizing vehicular networks as an infrastructure for urban sensing is a
cost-efficient way of deploying an urban monitoring system without actually deploying
connected sensors [6] (Fig. 1 shows a snapshot of the communication between moving
cars within the city of Porto). Vehicles typically do not have energy constraints. There‐
fore, cars can be equipped with powerful wireless transmitters, processing units, and
sensing devices (vibration sensors, GPS, video cameras, detectors, acoustic detectors,
car sensors, etc.).

Fig. 1. A snapshot showing exchanged messages between taxis in the city of Porto [18]

Thousands of cars which are networked together using wireless communication are
able to connect us to a seemingly unlimited data gathered from the city environment.
The gathered data can be processed and visualized live, enabling monitoring activities
(Fig. 1) and better decision making. However, this data can also be serve as the basis
for predictive models that can be an informative tool for the decision support systems
one step further. Given the availability of the massive amount of data which is geograph‐
ically distributed, data mining approaches are being used to obtain models for all parts
of the city that are integrated into ITS applications [7–14].

One of the interesting examples of ITS applications is the prediction of trip duration
for public transportation [15–17]. Knowing the prediction of trip duration beforehand
can be very instructive for taxi companies, passengers, and drivers to make the right
decision for the route planning and scheduling by using the data collected about the
taxi’s trips by each taxi. Figure 1 shows a snapshot of exchanged messages between
taxis in the city of Porto.

Machine learning algorithms by using the data collected by taxis relate the trip dura‐
tion to several data features which describe the trip like the time of the trip, origin,
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destination, the weather, and the week’s day. The prediction of duration of the trip may
vary from one taxi to another, due to differences in the taxi usage, the brand of the vehicle,
the driving habits, and the route.

In addition, taking advantage of the massive amount of gathered data, the possibility
of having a more specific model for an individual taxi instead of a global model for all
taxis in the traditional data mining approaches is a reality in the current hyperconnected
transportation system.

However, this is not true for all taxis due to the lack of existence of enough data
for creating an accurate model for all taxis. For example, in a sparse area of the city,
like the area indicated in Fig. 1 with a circle, only a few observations is available for
modeling. In this case, a collaborative data modeling would be a good solution to
improve the quality of the model by using the data from other sources. The previous
results [19, 20] confirm that there is potential in sharing data in the process of
learning local models. For the prediction of the trip duration, different taxis can use
different data like taxi’s data, data from taxi’s neighbors, data collected at the road‐
side unit, or the data which is collected throughout the city (different dimensions).
Further, collaborative data modeling may improve the quality of the prediction in the
cost of data communication.

On the other hand, various algorithms have been introduced which can be used for
the prediction of trip duration. However, their performance varies and therefore causes
several challenges. One of the important challenges in the area of data mining is that to
discover for a specific problem which algorithm has the best performance. Yet, it has
already been shown that there is no unique algorithm in which it has the best performance
for a broad problem domain [21]. Therefore, the problem of algorithm selection is done
either based on expert advice or a trial-and-error approach. Neither way is utterly satis‐
factory for the end user who wishes to access the technology cost-effectively [22].

A metalearning approach [23] is used in this paper to deal with these problems: (1)
which algorithm should be used, and (2) when and with whom the data should be shared.
Metalearning uses a machine learning algorithm to relating the algorithm’s performance
to the data characterization. The contribution is also extended to (3) applying this
collaborative data analysis to the problem of estimating of the taxi trip duration using
the taxi dataset which is obtained from the Carnegie Mellon (CMU) Portugal project,
DRIVE-IN (Distributed Routing and Infotainment through Vehicular Inter-networking)
[24]. We also (4) discuss the use of this approach for other applications including manu‐
facturing of products and supply chain management.

The rest of the paper is organized as follow. Section 2 explains the proposed approach
and the results of the experiment. An extension of the approach is discussed in Sect. 3.
Finally, Sect. 4 concludes the paper.

2 An Example of Collaborative Data Analysis in Hyperconnected
Transportation System

In this section, a collaborative data analysis (Sect. 2.2) is introduced and applied to a
dataset from hyperconnected transportation system (Sect. 2.1). Then, the proposed
approach is evaluated on the dataset and the results are presented in Sect. 2.3.
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2.1 Taxi Data

The data is collected from a large-scale scenario [24], from taxis in the city of Porto.
Porto has an area of 41.3 km2, and contains 965 km of roads which make it the second
largest city in Portugal. It has with more than one million inhabitants and is in a center
of a metropolitan area. There are 441 taxis and 63 taxi stands in the city. Each taxi has
a GPS receiver and can collect the log about each trip. The dataset consists of 5 months
in 2013 for all the taxis. The dataset contains 13 data features characterizing events [24].

As an example of the scenario where the data is collected, Fig. 2 shows a snapshot of
the taxis placements in the city of Porto. The green dots show the taxi positions in the city.
The communication range for two taxis (red and black) is also shown by purple circles.

Fig. 2. Illustrative map of Porto, Portugal. The green dots are the initial taxi placement. The
communication range for the red and the black taxi is shown by a purple circle around them. (Color
figure online)

There are five months data in 2013. Table 1 shows the number of taxis and the average
number of observations for each taxi in each month. There are around 440 taxis and on
average, there are between 1238–1484 observations for each taxi. The fourth and fifth
columns also show the minimum and the maximum number of observations per each taxi,
respectively. As it can be seen, there are taxis with few examples (2–14 observations). In
these cases, data aggregation to use data from other taxis may be useful for modeling.
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Table 1. A simple statistics about Taxi dataset

Month No. of taxis Average number of
observations per each
taxi

Minimum number of
observations per each
taxi

Maximum number of
observations per each
taxi

201302 443 1238.5 2 2467
201303 443 1356.6 6 3452
201304 446 1302.7 14 2824
201305 443 1484.9 2 3165
201306 442 1385.7 6 3037

2.2 Collaborative Data Analysis

As mentioned earlier, to improve the problem of algorithms selection and collaborative
data modeling, we propose a metalearning approach which helps to select the right
algorithm and the right part of data space for each individual taxi. In this section, we
briefly describe the methodology which is summarized in Fig. 3.

Fig. 3. Methodology used for a collaborative data analysis in hyperconnected transportation
systems

The data collection is done within the DRIVE-IN project [24] (see Sect. 2.1). Then,
the dataset is organized in hierarchy structure using two levels of hierarchy: the data
associated with a taxi as local data and the data for the whole month as global data.

In the proposed model, at the first level, each taxi ( ) makes a category,
 where  is the number of taxis. The level two has only one category

joining all the data from 440 taxis.
After forming the dataset in a customized format,

, it is passed to the base-level experiment. In
the next step, each algorithm is applied on the data from both levels for each taxi.

At the base-level, four machine learning algorithms are applied to the data: support
vector machines (SVMs) [25–27], random forest [25–27], decision tree [31–33], and
linear regression [31, 32]. As a result, there are several performance indicators for each
taxi:  which indicates the performance of the algorithm  at level  for taxi .

(1)

Where  indicates the algorithms,  shows taxis, and  stands for levels.
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In addition, for each taxi and at each level of the hierarchy, the metafeatures are
calculated.

There are 31 metafeatures in which they describe the dataset’s structure. All the
metafeatures that we used are briefly described in [36]. In general  is the value of the
metafeatures for the taxi  at the level . By comparing the performance indicators at the
base-level for each taxi, the best one is selected according to the Eq. 2:

(2)

The metadata consists of the taxi identification, metafeatures for both levels and the best
performance indicator obtained from Eq. 2.

(3)

The purpose of the metalearning is to discover the best algorithm and level to obtain the
best performance. Consequently, the meta-level experiment maps the extracted meta‐
features to the best performance obtained at the base-level (target variable at the meta-
level).

Finally, the proposed model can recommend an algorithm and a level for each taxi
that by applying the recommended algorithm on the suggested level, the best perform‐
ance can be obtained (see Eq. 4).

(4)

More detail about the methodology used to obtain the results is presented in [36].

2.3 Evaluation

Base-Level Evaluation. The problem of prediction of the trip duration at the base-level
is a regression problem. Each trained model tries to predict the trip duration. This eval‐
uation of the prediction is done by the Normalized Root-Mean-Square-Error (NRMSE).
RMSE is a routinely used metric which indicates the differences between the actual
observed value and the predicted value by a machine learning model. In addition, the
NRMSE is calculated using the RMSE divided by the standard deviation (std) of the
predicted variable (See Eqs. 5 and 6). We use the hydroGOF package [37] in R [38] to
calculate the NRMSE.

(5)

(6)
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Where  is the number of predictions,  is the std of the prediction values,  is the real
trip duration, and  is the predicted trip duration. Considering the NRMSE values, the
algorithm with the lowest NRMSE is chosen as the best one for each taxi and is used at
the meta-level.

Meta-Level Evaluation. The proposed framework at the meta-level predicts an algo‐
rithm and a level of granularity which have the lowest NRMSE for a selected taxi. As
a result, the meta-level problem is a classification problem. This prediction is made based
on metafeatures which describe the characterization of the dataset.

At the meta-level, the performance of the framework is evaluated by the accuracy
of the model. Moreover, the performance of the proposed framework is also evaluated
by comparing to the possible range of base-level performance.  is a metric that
shows the relative NRMSE of the metalearning framework with respect to the best and
the worst NRMSE at the base-level. It is calculated by the following equation:

(7)

Where  is the NRMSE of the metalearning framework,  is the best
NRMSE and  is the worst NRMSE at the base-level. Therefore, the range of

 is from 0 to 1. Furthermore, a lower  shows a better performance
at the meta-level.

2.4 Is Collaborative Data Analysis Useful?

In this section, we sum up the obtained results from the evaluation part of our method‐
ology.

Base-Level Results. As previously mentioned (Sect. 2.3), the performance of the base-
level is evaluated by NRMSE. Figure 4(a) is the box-plot of the average NRMSE for
each taxi for each month. It is clear that the NRMSE is less than 5 % for all months. The
average NRMSE is approximately 1 % for each month. So, the base-level error is around
1 % on average which sounds significantly good. These results show that at the base-
level, the models can predict the trip duration very precisely.

Meta-Level Results. As discussed previously (Sect. 2.3), our metric to evaluate the
meta-level results is . Figure 4(b) shows this metric on average for all months.
As it can be seen, the  is about 30 % in the worst scenario and around 5 % for
the best one. The meta-level results (the blue line) are much better than the baseline
results (the green line). The baseline is the majority best solution at the base-level which
is a combination of an algorithm and a level for each taxi that has the best performance.
Generally speaking, the results show that during the raining months (February to April)
in Porto, when there are more taxi trips in the city, the meta-level is more accurate than
the months that there are fewer taxi trips (May and June) due to lack of enough data for
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building a model. In this case, it is recommended to use the global model to have an
accurate model.

Meta-Level vs Base-Level Results. The comparison results between the meta-level
and the base-level show that the performance of the algorithms selected by the meta-
model is near the best performance obtained at the base-level (Fig. 4(c)). The perform‐
ance of the suggested solution by the meta-level (the blue and the cyan line) is almost
close to the best performance at the base-level (the green line) while is better than the
baseline performance (the black line). This satisfies our objectives.

Finally, the comparison of accuracy between the baseline (the black line) and the
meta-level (the blue line) is illustrated in Fig. 4(d). According to these results, the
performance of the meta-level exceeds the performance of the baseline for all months.

Fig. 4. Evaluation results (Color figure online)
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3 Discussion

The proposed approach in this paper helps to identify the best solution for the problem
of prediction of taxi trip duration to improve the taxi utilization and passenger satisfac‐
tion. Using the hyperconnected intelligent systems, this proposal can be used by different
applications including manufacturing of products by forecasting of product demands,
supply chain management by predicting of the best location of stocks, and real-time
optimization of supply chain networks by prediction of the best route for fleets, through
networking machinery, sensors and control systems together.

All manufacturers have a desire to give their consumers exactly what they want. This
can be done by using past data collected from sales and production lines and forecasting
the demand for a product. Our proposed approach can be implemented in this case by
organizing the past data into hierarchy structure. One of possible solution can be using
three different hierarchy levels: the data associated with a product, the data related to a
group of products which have the same type, i.e. foods, clothes, and so on, and all the
data.

Another example is supply chain management where a poor stock’s location can
give low productivity, unreliable deliveries of materials, high costs, and poor customer
service. The same approach can be done using the data that can be collected from the
logistics and also stocks movement within the supply chain. The approach can help to
deal with the uncertain and non-stationary demand with minimum cost.

The hyperconnected networks and IoT present excellent possibilities for businesses
to conduct through evolution and innovation. For this purpose, companies need to be
aware of the changing of the business dynamics caused by innovation.

4 Conclusion

The existence of hyperconnected networks can make a revolution in the public trans‐
portation systems. High resource utilization and customer satisfaction are two major
metrics which can be achieved using hyperconnected networks and machine learning
approaches. In this paper, a metalearning proposal is introduced for the prediction of
taxi trip duration to improve the taxi utilization and passenger’s satisfaction by using a
collaborative data analysis. The proposed approach aims at assisting taxi companies,
passengers, and the public authorities for better distributing taxis to the taxi stands and
determining the best route for the taxi trips using appropriate learning algorithm for the
prediction of taxi trip duration. The experiments are carried out on the data collected in
the Drive-In project. Several models are obtained from two levels of granularity: taxi
itself and whole taxis. The results demonstrate that the proposed metalearning frame‐
work can help recommending an algorithm with the best performance at the base-level
with high accuracy and outperforms the baseline accuracy. Furthermore, the perform‐
ance of the base-level is also substantially adequate. In overall, the metalearning fore‐
casts the duration of the taxi trip with the error rate less than 5 %.
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As interesting future works, this approach can be extended to other parts of the
hyperconnected networks, i.e. manufacturing of products and supply chain management,
as discussed in Sect. 3.
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