Chapter 1
Introduction

Patrick Siarry

Every day, engineers and decision-makers are confronted with problems of
growing complexity in diverse technical sectors, for example in operations research,
the design of mechanical systems, image processing, and, particularly, electronics
(CAD of electrical circuits, the placement and routing of components, improvement
of the performance or manufacturing yield of circuits, characterization of equiva-
lent schemas, training of fuzzy rule bases or neural networks, ...). The problem to
be solved can often be expressed as an optimization problem. Here one defines an
objective function (or several such functions), or cost function, which one seeks
to minimize or maximize vis-a-vis all the parameters concerned. The definition of
the optimization problem is often supplemented by information in the form of con-
straints. All the parameters of the solutions adopted must satisfy these constraints,
otherwise these solutions are not realizable. In this book, our interest is focused
on a group of methods, called metaheuristics or meta-heuristics, which include in
particular the simulated annealing method, evolutionary algorithms, the tabu search
method, and ant colony algorithms. These have been available from the 1980s and
have a common aim: to solve the problems known as hard optimization as well as
possible.

We will see that metaheuristics are largely based on a common set of principles
which make it possible to design solution algorithms; the various regroupings of
these principles thus lead to a large variety of metaheuristics.

P. Siarry (<)

Laboratoire Images, Signaux et Systémes Intelligents (LiSSi, E.A. 3956),
Université Paris-Est Créteil Val-de-Marne,

122 rue Paul Armangot, 94400 Vitry-sur-Seine, France

e-mail: siarry @u-pec.fr

© Springer International Publishing Switzerland 2016 1
P. Siarry (ed.), Metaheuristics, DOI 10.1007/978-3-319-45403-0_1



2 P. Siarry

1.1 ‘“Hard” Optimization

Two types of optimization problems can be distinguished: “discrete” problems and
problems with continuous variables. To be more precise, let us quote two examples.
Among the discrete problems, one can discuss the well-known traveling salesman
problem: this is a question of minimizing the length of the route of a “traveling
salesman,” who must visit a certain number of cities before return to the town of
departure. A traditional example of a continuous problem is that of a search for the
values to be assigned to the parameters of a numerical model of a process, so that the
model reproduces the real behavior observed as accurately as possible. In practice,
one may also encounter “mixed problems,” which comprise simultaneously discrete
variables and continuous variables.

This differentiation is necessary to determine the domain of hard optimization.
In fact, two kinds of problems are referred to in the literature as hard optimization
problems (this name is not strictly defined and is bound up with the state of the art
in optimization):

e Certain discrete optimization problems, for which there is no knowledge of an
exact polynomial algorithm (i.e., one whose computing time is proportional to
N", where N is the number of unknown parameters of the problem and # is an
integer constant). This is the case, in particular, for the problems known as “NP-
hard,” for which it has been conjectured that there is no constant n for which the
solution time is limited by a polynomial of degree .

e Certain optimization problems with continuous variables, for which there is no
knowledge of an algorithm that enables one to definitely locate a global optimum
(i.e., the best possible solution) in a finite number of computations.

Many efforts have been made for a long time, separately, to solve these two types of
problems. In the field of continuous optimization, there is thus a significant arsenal
of traditional methods for global optimization [1], but these techniques are often
ineffective if the objective function does not possess a particular structural property,
such as convexity. In the field of discrete optimization, a great number of heuristics,
which produce solutions close to the optimum, have been developed; but the majority
of them were conceived specifically for a given problem.

The arrival of metaheuristics marks a reconciliation of the two domains: indeed,
they can be applied to all kinds of discrete problems and they can also be adapted
to continuous problems. Moreover, these methods have in common the following
characteristics:

e They are, at least to some extent, stochastic: this approach makes it possible to
counter the combinatorial explosion of the possibilities.

e They are generally of discrete origin, and have the advantage, decisive in the contin-
uous case, of being direct, i.e., they do not resort to often problematic calculations
of the gradients of the objective function.
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Fig. 1.1 Shape of the test function F6

e They are inspired by analogies: with physics (simulated annealing, simulated
diffusion, ...), with biology (evolutionary algorithms, tabu search, ...), or with
ethology (ant colonies, particle swarms, ...).

e They also share the same disadvantages: difficulties of adjustment of the parame-
ters of the method, and a large computation time.

These methods are not mutually exclusive: indeed, with the current state of
research, it is generally impossible to envisage with certainty the effectiveness of a
given method when it is applied to a given problem. Moreover, the current tendency
is the emergence of hybrid methods, which endeavor to benefit from the specific
advantages of different approaches by combining them. Finally, another aspect of
the richness of metaheuristics is that they lend themselves to all kinds of extensions.
We can quote, in particular:

e multiobjective optimization [6], which is a question of optimizing several contra-
dictory objectives simultaneously;

e multimodal optimization, where one endeavors to locate a whole set of global or
local optima;

e dynamic optimization, which deals with temporal variations of the objective func-
tion;

e the use of parallel implementations.

These extensions require, for the development of solution methods, various specific
properties which are not present in all metaheuristics. We will reconsider this subject,
which offers a means for guiding the user in the choice of a metaheuristic, later. The
adjustment and comparison of metaheuristics are often carried out empirically, by
exploiting analytical sets of test functions whose global and local minima are known.
We present in Fig. 1.1 the shape of one of these test functions as an example.



4 P. Siarry

1.2 Source of the Effectiveness of Metaheuristics

To facilitate the discussion, let us consider a simple example of an optimization prob-
lem: that of the placement of the components of an electronic circuit. The objective
function to be minimized is the length of the connections, and the unknown factors—
called “decision variables”—are the sites of the circuit components. The shape of the
objective function of this problem can be represented schematically as in Fig. 1.2,
according to the “configuration”: each configuration is a particular placement, asso-
ciated with a choice of a value for each decision variable. Throughout the entire
book—except where otherwise explicitly mentioned—we will seek in a similar way
to minimize an objective. When the space of the possible configurations has such a
tortuous structure, it is difficult to locate the global minimum c*. We explain below
the failure of a “classical” iterative algorithm, before commenting on the advantage
that we can gain by employing a metaheuristic.

1.2.1 Trapping of a “Classical” Iterative Algorithm in a
Local Minimum

The principle of a traditional “iterative improvement” algorithm is the following:
one starts from an initial configuration ¢y, which can be selected at random, or—for
example in the case of the placement of an electronic circuit—can be determined by
a designer. An elementary modification is then tested; this is often called a “move-
ment” (for example, two components chosen at random are swapped, or one of them
is relocated). The values of the objective function are then compared, before and after
this modification. If the change leads to a reduction in the objective function, it is
accepted, and the configuration c; obtained, which is a “neighbor” of the preceding
one, is used as the starting point for a new test. In the opposite case, one returns
to the preceding configuration before making another attempt. The process is car-
ried out iteratively until any modification makes the result worse. Figure 1.2 shows
that this algorithm of iterative improvement (also known as the classical method or
descent method) does not lead, in general, to the global optimum, but only to one

Fig. 1.2 Shape of the A OBJECTIVE
objective function of a hard FUNCTION
optimization problem
depending on to the
“configuration”
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local minimum c,, which constitutes the best accessible solution taking the initial
assumption into account.

To improve the effectiveness of the method, one can of course apply it several
times, with arbitrarily selected different initial conditions, and retain as the final solu-
tion the best local minimum obtained. However, this procedure appreciably increases
the computing time of the algorithm, and may not find the optimal configuration c*.
The repeated application of the descent method does not guarantee its termination and
it is particularly ineffective when the number of local minima grows exponentially
with the size of the problem.

1.2.2 Capability of Metaheuristics to Extract Themselves
Jrom a Local Minimum

Another idea for overcoming the obstacle of local minima has been demonstrated to
be very profitable, so much so that it is the basic core of all metaheuristics based on
a neighborhood (the simulated annealing and tabu methods). This is a question of
authorizing, from time to time, movements of increase, in other words, accepting a
temporary degradation of the situation, during a change in the current configuration.
This happens, for example, if one passes from ¢, to ¢, in Fig. 1.2. A mechanism for
controlling these degradations—specific to each metaheuristic—makes it possible
to avoid divergence of the process. It consequently becomes possible to extract the
process from a trap which represents a local minimum, to allow it to explore another
more promising “valley.” The “distributed” metaheuristics (such as evolutionary
algorithms) also have mechanisms allowing the departure of a particular solution
out of a local “well” of the objective function. These mechanisms (such as mutation
in evolutionary algorithms) affect the solution in hand; in this case, they help the
collective mechanism for fighting against local minima, represented by the parallel
control of a “population” of solutions.

1.3 Principles of the Most Widely Used Metaheuristics

1.3.1 Simulated Annealing

Kirkpatrick and his colleagues were specialists in statistical physics, who were inter-
ested specifically in the low-energy configurations of disordered magnetic materials,
referred to by the term spin glasses. The numerical determination of these configu-
rations posed frightening problems of optimization, because the “energy landscape”
of a spin glass contains several “valleys” of unequal depth; it is similar to the “land-
scape” in Fig. 1.2. Kirkpatrick et al. [14] (and, independently, Cerny [2]) proposed
to deal with these problems by taking as a starting point the experimental technique
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Fig. 1.3 Comparison of the techniques of annealing and quenching

of annealing used by metallurgists to obtain a “well-ordered” solid state, of mini-
mum energy (avoiding the “metastable” structures characteristic of local minima of
the energy). This technique consists in heating a material to a high temperature and
then lowering this temperature slowly. To illustrate the phenomenon, we represent
in Fig. 1.3 the effect of the annealing technique and that of the opposite technique of
quenching on a system consisting of a set of particles.

The simulated annealing method transposes the process of annealing to the solu-
tion of an optimization problem: the objective function of the problem, similarly to
the energy of a material, is then minimized, with the help of the introduction of a
fictitious temperature, which in this case is a simple controllable parameter of the
algorithm.

In practice, the technique exploits the Metropolis algorithm, which enables us
to describe the behavior of a thermodynamic system in “equilibrium” at a certain
temperature. On the basis of a given configuration (for example, an initial placement
of all the components), the system is subjected to an elementary modification (for
example, one may relocate a component or swap two components). If this trans-
formation causes the objective function (or energy) of the system to decrease, it is
accepted. On the other hand, if it causes an increase AE in the objective function,
it can also be accepted, but with a probability e 7 . This process is then repeated
in an iterative manner, keeping the temperature constant, until thermodynamic equi-
librium is reached, at the end of a “sufficient” number of modifications. Then the
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temperature is lowered, before implementing a new series of transformations: the
rule by which the temperature is decreased in stages is often empirical, just like the
criterion for program termination.

A flowchart of the simulated annealing algorithm is schematically presented in
Fig. 1.4. When it is applied to the problem of the placement of components, simulated
annealing generates a disorder—order transformation, which is represented in pictorial
manner in Fig. 1.5. One can also visualize some stages of this ordering by applying
the method of placement of components to the nodes of a grid (see Fig. 1.6).

The disadvantages of simulated annealing lie in the “adjustments,” such as the
management of the decrease in the temperature; the user must have the know-how
about “good” adjustments. In addition, the computing time can become very signif-
icant, which has led to parallel implementations of the method. On the other hand,
the simulated annealing method has the advantage of being flexible with respect to
the evolution of the problem and easy to implement. It has given excellent results for
a number of problems, generally of big size.

1.3.2 The Tabu Search Method

The method of searching with tabus, or simply the tabu search or tabu method, was
formalized in 1986 by Glover [10]. Its principal characteristic is based on the use of
mechanisms inspired by human memory. The tabu method, from this point of view,
takes a path opposite to that of simulated annealing, which does not utilize memory
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Fig. 1.5 Disorder—order
transformation created by
simulated annealing applied
to the placement of
electronic components

Fig. 1.6 Evolution of a
system at various
temperatures, on the basis of
an arbitrary configuration: L
indicates the overall length
of the connections

at all, and thus is incapable of learning lessons from the past. On the other hand,
the modeling of memory introduces multiple degrees of freedom, which hinders—
even in the opinion of the original author [11]—any rigorous mathematical analysis
of the tabu method. The guiding principle of the tabu method is simple: like simu-
lated annealing, the tabu method functions at any given time with only one “current
configuration” (at the beginning, an unspecified solution), which is updated during
successive “iterations.” In each iteration, the mechanism of passage of a configura-
tion, called s, to the next one, called ¢, comprises two stages:
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e One builds the set of neighbors of s, i.e., the set of the configurations that are
accessible in only one elementary movement of s (if this set is too large, one
applies a technique for reduction of its size: for example, one may utilize a list of
candidates, or extract at random a subset of neighbors of fixed size). Let V (s) be
the set (or a subset) of these neighbors.

e One evaluates the objective function f of the problem for each configuration
belonging to V (s). The configuration ¢ which succeeds s in the series of solutions
built by the tabu method is the configuration of V (s) in which f takes the minimum
value. Note that this configuration ¢ is adopted even if it is worse than s, i.e., if
f () > f(s): this characteristic helps the tabu method to avoid the trapping of f
in local minima.

The procedure cannot be used precisely as described above, because there is a sig-
nificant risk of returning to a configuration already obtained in a preceding iteration,
which generates a cycle. To avoid this phenomenon, the procedure requires the updat-
ing and exploitation, in each iteration, of a list of prohibited movements, the “tabu
list.” This list—which gave its name to the method—contains m movements (t — s),
which are the opposite of the last m movements (s — ¢) carried out. A flowchart of
this algorithm, known as the“simple tabu,” is represented Fig. 1.7.

The algorithm thus models a rudimentary form of memory, a short-term memory of
the solutions visited recently. Two additional mechanisms, named intensification and
diversification, are often implemented to equip the algorithm with a long-term mem-
ory also. This process does not exploit the temporal proximity of particular events
more, but rather the frequency of their occurrence over a longer period. Intensifica-
tion consists in looking further into the exploration of certain areas of the solution
space, identified as particularly promising ones. Diversification is, in contrast, the
periodic reorientation of the search for an optimum towards areas seldom visited
until now.

For certain optimization problems, the tabu method has given excellent results;
moreover, in its basic form, the method has fewer adjustable parameters than
simulated annealing, which makes it easier to use. However, the various additional
mechanisms, such as intensification and diversification, bring a notable amount of
complexity with them.

1.3.3 Genetic Algorithms and Evolutionary Algorithms

Evolutionary algorithms (EAs) are search techniques inspired by the biological evo-
lution of species and appeared at the end of the 1950s [9]. Among several approaches
[8, 13, 16], genetic algorithms (GAs) constitute certainly the most well-known exam-
ple, following the publication in 1989 of the well-known book by Goldberg [12].
Evolutionary methods initially aroused limited interest, because of their significant
cost of execution. But, in the last ten years, they have experienced considerable devel-
opment, which can be attributed to the significant increase in the computing power
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Fig. 1.7 Flowchart of the simple tabu algorithm

of computers, in particular, following the appearance of massively parallel architec-
tures, which exploit “intrinsic parallelism” (see for example [5] for an application
to the placement of components). The principle of a simple evolutionary algorithm
can be described as follows: a set of N points in a search space, selected a priori at
random, constitutes the initial population; each individual x of the population has a
certain performance, which measures its degree of adaptation to the objective aimed
at. In the case of the minimization of an objective function f, x becomes more pow-
erful as f(x) becomes smaller. An EA consists in evolving gradually, in successive
generations, the composition of the population, with its size being kept constant.
During generations, the objective is to improve overall the performance of the indi-
viduals. One tries to obtain such a result by mimicking the two principal mechanisms
which govern the evolution of living beings according to Darwin’s theory:

e selection, which favors the reproduction and survival of the fittest individuals;
e reproduction, which allows mixing, recombination and variation of the hereditary
features of the parents, to form descendants with new potentialities.
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Fig. 1.8 Examples of crossover and mutation operators, in the case of individuals represented by
binary strings of eight numbers

In practice, a representation must be selected for the individuals of a population.
Classically, an individual can be a list of integers for a combinatorial problem, a
vector of real numbers for a numerical problem in a continuous space, or a string
of binary numbers for a Boolean problem; one can even combine these representa-
tions into complex structures if the need is so felt. The passage from one generation
to the next proceeds in four phases: a phase of selection, a phase of reproduction
(or variation), a phase of performance evaluation, and a phase of replacement. The
selection phase designates the individuals that take part in reproduction. They are
chosen, possibly on several occasions, a priori more often the powerful, they are.
The selected individuals are then available for the reproduction phase. This phase
consists in applying variation operators to copies of the individuals selected to gener-
ate new individuals; the operators most often used are crossover (or recombination),
which produces one or two descendants starting from two parents, and mutation,
which produces a new individual starting from only one individual (see Fig. 1.8 for
an example). The structure of the variation operators depends largely on the repre-
sentation selected for the individuals. The performances of the new individuals are
then evaluated during the evaluation phase, starting from the objectives specified.
Lastly, the replacement phase consists in choosing the members of the new genera-
tion: one can, for example, replace the least powerful individuals of the population
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by the best individuals produced, in equal numbers. The algorithm is terminated after
a certain number of generations, according to a termination criterion to be specified.
Figure 1.9 represents the principle of an evolutionary algorithm.

Because they handle a population of solution instances, evolutionary algorithms
are particularly suitable for finding a set of different solutions when an objective
function has several global optima. In this case they can provide a sample of com-
promise solutions when one is solving problems with several objectives, possibly
contradictory. These possibilities are discussed more specifically in Chap. 11.

1.3.4 Ant Colony Algorithms

This approach, proposed by Colorni et al. [7], endeavors to simulate the collective
capability to solve certain problems observed in colonies of ants, whose members
are individually equipped with very limited faculties. Ants came into existence on
earth over 100 million years ago and they are one of the most successful species:
10 million billion individuals, living everywhere on the planet. Their total weight
is of the same order of magnitude as that of humans! Their success raises many
questions. In particular, entomologists have analyzed the collaboration which occurs
between ants seeking food outside an anthill. It is remarkable that the ants always
follow the same path, and this path is the shortest possible one. This is the result of a
mode of indirect communication via the environment called “stigmergy.” Each ant
deposits along its path a chemical substance, called a pheromone. All members of
the colony perceive this substance and direct their walk preferentially towards the
more “odorous” areas.

This results particularly in a collective ability to find the shortest path quickly
after the original path has been blocked by an obstacle (Fig. 1.10). Although this
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1. Real ants follow a path between the nest and a source of food.

2. An obstacle appears on the path, and the ants choose to turn to the left or right with
equal probabilities; the pheromone is deposited more quickly on the shortest path.

3. All the ants choose the shortest path.

Fig. 1.10 Ability of an ant colony to find the shortest path after the path has been blocked by an
obstacle

behavior has been taken as a starting point for modeling the algorithm, Colorni et
al. [7] proposed a new algorithm for the solution of the traveling salesman problem.
Since this research work, the method has been extended to many other optimization
problems, some combinatorial and some continuous.

Ant colony algorithms have several interesting characteristics; we shall mention
in particular high intrinsic parallelism, flexibility (a colony of ants is able to adapt to
modifications of the environment), robustness (a colony is able to maintain its activity
even if some individuals fail), decentralization (a colony does not obey a centralized
authority), and self-organization (a colony finds a solution, which is not known in
advance, by itself). This method seems particularly useful for problems which are
distributed in nature, problems of dynamic evolution, and problems which require
strong fault tolerance. At this stage of development of these recently introduced
algorithms, however, their application to particular optimization problems is not
trivial: it must be the subject of a specific treatment, which can be difficult.

1.3.5 Other Metaheuristics

Whether other metaheuristics are variants of the most famous methods or not, they are
legion. The interested reader can refer to Chaps. 9 and 10 of this book and three other
recent books [15, 17, 19] each one of which is devoted to several metaheuristics.
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1.4 Extensions of Metaheuristics

We review here some of the extensions which have been proposed to deal with some
special features of optimization problems.

1.4.1 Adaptation for Problems with Continuous Variables

Problems with continuous variables, by far the most which are common ones in
engineering, have attracted less interest from specialists in informatics. The majority
of metaheuristics, which are of combinatorial origin, can however be adapted to
the continuous case; this requires a discretization strategy for the variables. The
discretization step must be adapted in the course of optimization to guarantee at the
same time the regularity of the progression towards the optimum and the precision
of the result. Our proposals relating to simulated annealing, the tabu method, and
GAs are described in [3, 4, 21].

1.4.2 Multiobjective Optimization

More and more problems require the simultaneous consideration of several contra-
dictory objectives. There does not exist, in this case, a single optimum; instead, one
seeks a range of solutions that are “Pareto optimal,” which form the “compromise
surface” for the problem considered. These solutions can be subjected to final arbitra-
tion by the user. The principal methods of multiobjective optimization (either using
a metaheuristic or not) and some applications, in particular in telecommunications,
were presented in the book [6].

1.4.3 Hybrid Methods

The rapid success of metaheuristics is due to the difficulties encountered by traditional
optimization methods in complex engineering problems. After the initial success of
using various metaheuristics, the time came to make a realistic assessment and to
accept the complementary nature of these new methods, both with other methods
of this type and with other approaches: from this, we saw the current emergence of
hybrid methods (see for example [18]).
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1.4.4 Multimodal Optimization

The purpose of multimodal optimization is to determine a whole set of optimal solu-
tions, instead of a single optimum. Evolutionary algorithms are particularly well
adapted to this task, owing to their distributed nature. The variants of the “multi-
population” type exploit several populations in parallel, which endeavor to locate
different optima.

1.4.5 Parallelization

Multiple modes of parallelization have been proposed for the various metaheuristics.
Certain techniques were desired to be general; others, on the other hand, benefit
from specific characteristics of the problem. Thus, in problems of placement of
components, the tasks can be naturally distributed between several processors: each
one of them is responsible for optimizing a given geographical area and information
is exchanged periodically between nearby processors (see, for example, [20, 22]).

1.5 Place of Metaheuristics in a Classification of
Optimization Methods

In order to recapitulate the preceding considerations, we present in Fig. 1.11 a general
classification of mono-objective optimization methods, already published in [6]. In
this figure, one can see the principal distinctions made above:

e Initially, combinatorial and continuous optimizations are differentiated.

e For combinatorial optimization, one can approach the problem by several different
methods when one is confronted with a hard problem; in this case, a choice is
sometimes possible between “specialized” heuristics, entirely dedicated to the
problem considered, and a metaheuristic.

e For continuous optimization, we immediately separate the linear case (which is
concerned in particular with linear programming) from the nonlinear case, where
the framework for hard optimization can be found. In this case, a pragmatic solution
can be to resort to the repeated application of a local method which may or may
not exploit the gradients of the objective function. If the number of local minima
is very high, recourse to a global method is essential: those metaheuristics are then
found which offer an alternative to the traditional methods of global optimization,
those requiring restrictive mathematical properties of the objective function.

e Among the metaheuristics, one can differentiate the metaheuristics of “neighbor-
hood,” which make progress by considering only one solution at a time (simulated
annealing, tabu search, ...), from the “distributed” metaheuristics, which handle
in parallel a complete population of solutions (genetic algorithms, ...).
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Fig. 1.11 General classification of mono-objective optimization methods

e Finally, hybrid methods often associate a metaheuristic with a local method. This
cooperation can take the simple form of relaying between the metaheuristic and the
local technique, with the objective of refining the solution. But the two approaches
can also be intermingled in a more complex way.

1.6 Applications of Metaheuristics

Metaheuristics are now regularly employed in all sectors of engineering, to such an
extent that it is not possible to draw up a complete inventory of the applications here.
Several examples will be described in the chapters devoted to various metaheuristics.
The last part of this book is devoted to a detailed presentation of three case studies,
in the fields of logistics systems, air traffic, and vehicle routing.
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1.7 An Open Question: The Choice of a Metaheuristic

This presentation must not ignore the principal difficulty with which an engineer is
confronted in the presence of a concrete optimization problem: that of the choice of
an “efficient” method, able to produce an “optimal” solution—or one of acceptable
quality—in “reasonable” computing time. In relation to this pragmatic concern of
the user, the theory is not yet of great help, because convergence theorems are often
nonexistent or applicable only under very restrictive assumptions. Moreover, the
“optimal” adjustment of the various parameters of a metaheuristic that might be
recommended theoretically is often inapplicable in practice, because it induces a
prohibitive computing cost. Consequently, the choice of a “good” method, and the
adjustment of the parameters of that method, generally calls upon the know-how and
“experience” of the user, rather than the faithful application of well-laid-down rules.
The research efforts in progress, for example the analysis of the “energy landscape”
or the development of a taxonomy of hybrid methods, are aimed at rectifying this
situation, which is perilous in the long term for the credibility of metaheuristics.
Nevertheless, we will try to outline, in Chap. 13 of this book, a technique that may
be of assistance in the selection of a metaheuristic.

1.8 Outline of the Book

This book comprises three parts.
The first part is devoted to a detailed presentation of the more widely known
metaheuristics:

e the simulated annealing method (Chap. 2);
tabu search (Chap. 3);

variable neighborhood search (Chap. 4);
the GRASP method (Chap.5);
evolutionary algorithms (Chap. 6);

ant colony algorithms (Chap. 7);

particle swarm optimization (Chap. 8).

Each one of these metaheuristics is actually a family of methods, the essential ele-
ments of which we try to discuss.

In the second part (Chaps. 9—13) we present some other metaheuristics, which are
less widespread or still emergent. Then we describe some extensions of metaheuris-
tics (constrained optimization, multiobjective optimization, ...) and some ways of
searching.

Lastly, we consider the problem of the choice of a metaheuristic, and we describe
two unifying methods which may help to reduce the difficulty of this choice.

The last part concentrates on three case studies:
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e hybrid metaheuristics designed for optimization of logistics systems (Chap. 14);
e metaheuristics aimed at solving vehicle routing problems (Chap. 15);
e applications in air traffic management (Chap. 16).
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