
Parent-Child Relation
Between Process Instances

Luise Pufahl(B) and Mathias Weske

Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
{Luise.Pufahl,Mathias.Weske}@hpi.de

Abstract. Business process management systems are well equipped to
support the enactment of business processes. However, relations between
process instances have not sufficiently been taken into account. To
improve the execution of related process instances, batch activities have
been introduced, which are based on jointly executing process activities.
When analyzing real-world business processes, we encountered situations
in which activities of specific process instances do not have to be exe-
cuted at all. To conceptualize these situations, this paper introduces
parent-child relationships between instances of a process. The approach
is implemented in a cloud-based BPMS, and the technical contribution
is embedded in a design methodology. A simulation shows that the cycle
time and process execution costs can be significantly reduced by using
parent-child relationships between process instances.

Keywords: BPMN · Redesign · Relations of process instances ·
Parent-child

1 Introduction

Business process management allows organizations to specify, execute, monitor,
and improve their business operations [15] using business process management
systems (BPMS) [3,6]. In current BPMS, process instances run independently
from each other, disregarding relations between them. To improve the execution
of related process instance, recent works introduce batch activities for synchro-
nized execution of process instances [9,11,12].

When analyzing real-world business processes, we encountered situations in
which activities of specific process instances do not have to be executed at all.
An example is an incident process of a large IT service provider. In case of mass
disruption, many incidents targeting the same issue arrive in a short period of
time. When detected, the first incident of this type becomes a parent incident.
Further incidents, the children, can be assigned to this parent. When the parent
incident is resolved, its assigned child incidents can take over the result. By re-
using results, the assigned children can skip all activities related to solving the
incident. These parent-child relations are often already used, but hard-coded
in IT systems. We propose to make parent-child relations explicit in process
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM Forum 2016, LNBIP 260, pp. 20–37, 2016.
DOI: 10.1007/978-3-319-45468-9 2

Parent-Child Relation Between Process Instances 21

models where they are traceable for all stakeholders and can be updated easily
in comparison to a hard-coded solution.

This paper introduces parent-child relationships between process instances.
As will be shown by a simulation study, this approach leads to an improved
process performance. In this work, requirements are elicited based on an inter-
view with a German IT Outsourcing company for integrating parent-child
relations into business processes whereby four additional control-flow elements
are identified. With these insights, the parent-child relation is integrated into
BPMN process models, the industry-standard. A generalized parent-child BPMN
process model is given which can be applied to any use case. Additionally, the
internal behavior of all introduced activities is described which serves as basis
for implementation. This works provides a functional as well as an effectiveness
evaluation of the concept. For functional evaluation, the generalized parent-
child process is applied to the incident process and its result is implemented in a
cloud-based BPMS. The effectiveness evaluation based on a simulation where the
basic incident process is compared to the parent-child incident process provides
insights in how far a parent-child relation can improve the process efficiency.

The remainder of this paper is structured as follows. Section 2 introduces
the motivating example, the incident process, for requirement analysis. Section 3
provides theoretical foundation, based on which we introduce the concept to
integrate parent-child relation in BPMN processes in Sect. 4. Section 5 discusses
the functional as well as effectiveness evaluation on the incident use case and
describes lessons learned. Section 6 is devoted to related work and Sect. 7 con-
cludes the paper.

2 Motivating Example and Requirements

This section presents a motivating example for the parent-child relation, the
incident process. For requirement elicitation, an interview was conducted. The
interview and the elicited requirements on a process model, which integrates a
parent-child relation are discussed in this section.

The process model of Fig. 1 visualizes a simplified version of the incident
process described by ITIL V3 [4]. An incident can be received via different chan-
nels, e.g. by an email or a call of a user. When an incident is reported, it is
logged (i.e., the important information is captured) and categorized. In the next
step, the incident is prioritized to define its urgency. Then, the first level support
starts with the initial diagnosis. If it is categorized as to be escalated by the first
level support, it is forwarded for further diagnosis to the 2nd and later maybe
also to the 3rd level support. When investigation and diagnosis of the incident
is finalized, it is resolved and communicated to the user. Finally, the incident is
closed.

In case of massive disruption, incidents that target the same issue arrive, e.g.,
100 users call that their email is not working. The handling of massive disruption
is currently not captured by ITIL V3. Therefore, we interviewed a German IT
outsourcing company to capture the requirements. This outsourcing company

22 L. Pufahl and M. Weske

Fig. 1. Simplified incident process as described by ITIL V3.

has hard-coded the incident process in a self-made software for supporting it. If
more than two incidents targeting the same issue are identified, they are han-
dled by the outsourcing company as follows: one of them is selected to be the
master incident to which all others are linked. The master incident is then han-
dled. When it is resolved, the solution is forwarded automatically to all assigned
incidents. With this approach, the outsourcing company makes sure that only
one solution is followed and streamlines the communication to the user. Further,
process performance is improved as the working steps and the solution is only
once documented and can be automatically broadcast to similar ones. Currently,
this approach is hard-coded in an IT system. Since the master assignment app-
roach is not traceable for the process owner and the participants, its settings
cannot be controlled by them and adaptations result in high efforts. We propose
to implement it in a process model where it can be accessed and updated by all
stakeholders. The process model can be then used for implementation.

From a control flow view point, the described approach requires that the
master incident follows the normal flow, but a subset of incidents can skip by
re-using the solution of the master all steps after the categorization until sending
the message to the user. It has to be ensured that the re-usage of the master
solution by the assigned instances only takes place when the master is in a
state where its solution is available. For example, the closed -state ensures that
a solution is available which is not updated anymore. Realizing the parent-child
relation for the given example, the process model in Fig. 1 has to be extended
with the following four aspects:

(1) An additional activity which checks the existence of a potential master (the
parent) after the categorization of the incident

(2) An alternative flow where
(3) child-incidents are assigned to the identified master and can skip all following

activities until the solution is communicated to the user
(4) An activity on the alternative flow which applies the result of the master

incident and is only enabled, if the master is in state closed

In the remainder of this paper, we will present a BPMN diagram serving as
template to realize parent-child relations. Thereby, the template will consider

Parent-Child Relation Between Process Instances 23

the just listed requirements. The following section introduces the foundations
for our concept.

3 Foundation

We propose to set up a parent-child relation by means of process data whereby
the child instance data references the data of the parent. Therefore, we proceed
with introducing formalisms for process and data modeling. Starting with a
generic process model definition, we require it to be syntactically correct with
respect to the used modeling notation. Behaviorally, we require that it terminates
for all execution paths of the model in exactly one of probable multiple end events
and that every node participates in at least one execution path, i.e., the process
model must be lifelock and deadlock free. Formally, a process model is defined
as follows.

Definition 1 (Process Model). A process model m = (N,D,DS, C,F ,D,
A, type) consists of a finite non-empty set N ⊆ A ∪ E ∪ G of control flow nodes
being activities A, events E, and gateways G (A, E, and G are pairwise disjoint),
a finite non-empty set D of data nodes and the finite set DS of data stores used
for persistence of data objects (N,D,DS are pairwise disjoint). C ⊆ N × N is
the control flow and F ⊆ (A × D) ∪ (D × A) is the data flow relation specifying
input/output data dependencies of activities. D ⊆ (D × DS) ∪ (DS × D) is the
data persistence of data objects and A ⊆ (A×DS)∪(DS ×A) is the data access
relation of activities. Function type : G → {AND,XOR} gives each gateway a
type. ♦

We refer to a data node d ∈ D being read by an activity a ∈ A, i.e., (d, a) ∈ F ,
as input data node and to a data node d being written by an activity a, i.e.,
(a, d) ∈ F , as output data node. Figure 1 shows a process model in BPMN nota-
tion [10] with one start event, one end event, eight activities (one of them with
internal behavior – a sub-process), two XOR-gateways, one intermediate message
event and multiple data nodes read and written by activities. Each data node
has a name, e.g., Incident, and a specific data state, e.g., logged or categorized
(can be represented by a short form Incident[logged]). An activity a ∈ A can
have several input and output data nodes, grouped into input sets and output
sets. Different input/output sets represent alternative pre-/post conditions for
a ∈ A. For example, activity Conduct initial diagnosis has two output nodes:
Incident[escalated] and Incident[solvable], each part of an own output set such
that only one of them has to be fulfilled. A data store represents any information
system or database. A data node d ∈ D which is connected with a data store
ds ∈ DS, i.e., (d, ds) ∈ D indicates that all information of it is stored in this
location. In contrast, an activity a ∈ A connected with a data store ds ∈ DS,
i.e., (a, ds) or (ds, a) ∈ A indicates that the activity requests or updates the data
store. Each data node refers to a data class; here: Incident.

Definition 2 (Data Class). A data class c = (J, S) consists of a finite set J of
attributes and a finite non-empty set S of data states (J and S are disjoint). ♦

24 L. Pufahl and M. Weske

A data class describes the structure of data nodes in terms of attributes and
possible data states which are in a logical and temporal order. The function
χ : D → C returns for data node d the corresponding data class c. If we want
to express that a data node can be in any state, then the corresponding node
gets assigned an asterisks as data state acting as placeholder for each possible
state described by the data class. On the execution level, an arbitrary set of data
objects exits.

Definition 3 (Data Object and Data State). A data object o = (c, so)
references a data class c describing its structure and allowed data states. Let V
be a universe of data attribute values. Then, the data state so : Jc → V is a
function which assigns each attribute j ∈ Jc a value v ∈ V that holds in the
current state of data object o. ♦

At any point in time, each data attribute of an object can get assigned a value.
If it is not defined, the value is set to ⊥.

Executions of process models are represented by process instances with each
instance belonging to exactly one process model m. Each instance contains a
set of data objects being tied to the life cycle of the process instance and being
disposed as soon as the instance terminates [10] (i.e., case data [13]). Data objects
can be made persistent if corresponding data nodes are connected via a data
persistent relation to a data store (i.e., work-flow data [13]). We assume that
data objects referencing the same data class are stored in one data store ds. If
an activity a of a process model has reading access to a data store ds, the process
instance can access all stored data objects even if they were not created by it.
The function δ : I × DS �→ P(O) returns for an instance i a set of data objects
Oi stored in a data store ds on which it is working. Thereby, P(O) is the power
set of data object set O.

Process instance can be grouped based on data characteristics as introduced
in [11] by using the concept of data views. In the scope of this paper, we ease this
concept such that a data view DV is a projection on the values of a data object
for a list of logically combined data attributes contained by a single data class.
This list of fully qualified data attributes is called data view definition DV D
and is provided by the process designer.

4 Formalizing Parent-Child Relations Based on BPMN

This section presents a concept to integrate parent-child relations into BPMN
processes. BPMN [10], a rich and expressive modeling notation, is the industry
standard for BPM.

We define a parent-child relation depicted in a process model as a dependency
between instances of a process where a set of similar instances is assigned to a
so-called parent instance. Process instances having similar data characteristics,
carrying the same data for certain attributes, are considered as being similar. The
assigned instances, the children, are allowed to skip a set of connected activities
by re-using the result of the parent instance as soon as it is in a certain state

Parent-Child Relation Between Process Instances 25

in which relevant results for the children are available. Thereby, the goal of the
parent-child relation is to save processing time and resource cost by avoiding
redundant work. We propose to set up a parent child relation by means of case-
to-case data interaction (see pattern 13 in [13]) aiming at passing the parent’s
data to the child instances during their execution.

In Sect. 4.1, we specify how to model a parent-child relation as BPMN tem-
plate which can be applied to any use case. In Sect. 4.2, it is described how to
implement a parent-child relation by documenting the internal activities’ behav-
ior of the template.

4.1 Modeling Parent-Child Relation

In Sect. 2, the motivating example shows that the following elements are needed
to realize a parent-child relation: (1) an activity checking whether a parent exists,
(2) a skipping flow on which (3) an activity assigns the children to the parent
and (4) an activity being enabled when the parent is in a defined state to apply
the result of the parent. Based on these insights, a BPMN template to estab-
lish a parent-child relation is developed given in Fig. 2. All activities with three
dots represent activities which can be adapted or extended to a specific business
use case. Basically, a parent-child relation is realized by three additional activ-
ities (see Fig. 2, all starting with a) and a flow for skipping certain activities
of the usual flow. This is called the parent-child BPMN fragment. The frag-
ment includes also required data nodes and stores to realize the case-to-case
data interaction (see pattern 13 in [13]) for passing data of the parent to its
child instances. The three additional activities are service activities such that
parent-child relation is realized during process execution automatically with no
additional effort for the process participants. We could also hide these service
activities in a sub-process to abstract from the details of a parent-child imple-
mentation. However, this paper will show the details for explanation purposes.
In the following, the parent-child process template is presented in more detail.

For realizing a potential parent-child relation, first the activity
acheckForParent is needed on the normal flow. This service activity checks for
all instances whether a parent exists. If not, the instance follows the normal
flow. If yes, it uses the skipping flow on which it is assigned to the parent and
waits for the parent’s result. The service activity acheckForParent has one input
set consisting of the data node d[s] being from type cd for which a corresponding
parent should be identified. By defining the input data node for this activity, the
process designer decides based on which data type the parent-child relation is
established. Additionally, the activity has access to a data store ds, the central
storage for every produced objects of type cd to realize the access on other case
data.

The activity can produce one of the following output sets: outputset1 = {d[s]}
and outputset2 = {d[s], parentd[∗]}. As introduced in the foundation, input and
output sets represent alternative pre-/post conditions for an activity a ∈ A.
The output sets of an activity a are represented by outA = {{..}, {..}}, a set of
sets where each element set contains data nodes in specific states presenting an

26 L. Pufahl and M. Weske

Fig. 2. BPMN process template for a parent-child relation realized by three service
activities and a skipping flow.

alternative which can be produced by the activity a. The same applies for input
sets of an activity a represented by inA = {{..}, {..}} where one of the element
sets have to be available to enable the activity.

The second output set is only provided if a parentd – also an object of the data
class cd – was found in the data store ds. The asterisk-state of the parent data
object indicates that its state is unknown. For being able to identify the parent
data object, every data object d of type cd has to be available in the data store
ds. We assume that previously to or shortly after the activity acheckForParent

the data node d is an output data node of any activity and is connected to the
data store ds expressing a data persistence relation. In Fig. 2, for example, d[s]
is output of the first activity and connected to the data store ds. Further, a data
view definition DV D has to be provided by the process designer as grouping
characteristic to identify a potential parent. As defined in Sect. 3, a data view
definition DV D consists of a qualified set of data attributes of one data class.
A parent is identified, if the projection using the attributes of the data view
definition on a data object from type cd, the so-called data view, is equal to the
data view of the data object oi of the currently active process instance i. Here,
we assume that the grouping characteristic is designed in a way that the result
is in at most one potential parent. If this is not possible, the selection of a parent
can be supported by a user decision which can be easily integrated by adding a
user activity after this service activity. This user activity presents in its form a
list of potential parents and the user can select then either one or no parent.

After identifying whether a parent exists, a splitting OR-gateway is added.
It is the decision point between the normal flow and the skipping flow. All child
process instances for which a parent was identified, follow the skipping flow. On
the skipping flow, the first service activity is aassignToParent. It assigns the data

Parent-Child Relation Between Process Instances 27

object oi to the parent object oparent by storing a reference to the parent object in
the current object and transferring it into the assignedToParent-state. Further,
it has one input set consisting of the data nodes d[s] and parentd[∗] and produces
the following output set with data node d in a new state assignedToParent which
is in a persistent relation to the data store ds. The persistent relation ensures
that the corresponding object can be identified by other new arriving instances
as a child object being excluded from the set of potential parents.

Skipping of certain activities by the child instances is only possible, because
they apply certain results of the parent. The service activity aapplyResult is
responsible for this step. It has one input set consisting of the data nodes
d[assignedToParent] and parentd[accomplished]. The state accomplished of the
parent data node is a placeholder and represents the state where a result reusable
by the children is available. We assume that each data object is stored in this
state such that the parent is accessible in corresponding state. To ensure this,
a data node in the state accomplished should be output of an activity on the
normal process flow – being executed in each case– and should be in a persistent
relation to a data store in the process model. For example in Fig. 2, data object
d in state accomplished is output of the last activity and connected to the data
store ds. The corresponding data store ds where the parent data object is stored,
has to be requested until the corresponding object oparent has the required state.
An implementation of data input conditions is shown for example in the work
by Meyer et al. [8]. Further, the activity has one output set consisting of the
data node d in the new state processed. This output data node indicates that
the child object was updated with the values of the parent data object oparent
for a set of defined data attributes by the process designer (see text annotation
of activity aapplyResult in Fig. 2). With termination of this service activity, the
child instance can return with the help of a XOR-join gateway to the normal
process flow and can follow the process path to the process end.

4.2 Execution Semantics of Parent-Child Relation

In this subsection, the internal behavior of the service activities is described. It
serves as implementation support of processes with a parent-child relation. For
the description of the internal behavior, pseudo code is used. We start with the
first service activity acheckForParent in Algorithm 1.

Algorithm 1 requires a specified data view definition DV D by the process
designer, the current process instance i, the input data node d[s] and the data
store ds. At first, all data objects being of the same data class as the data node
d[s] are retrieved from the data store ds with the help of the auxiliary function
select : DS ×D �→ P(O). Thereby, the select-function uses χ of the foundations
returning for a data node d the corresponding data class c. Further, the local
object oi of the process instance i for the data node d[s] is fetched. Then, for each
data object in the set Od, it is checked whether its data view is equal to the data
view of the data object of the current running process instance. Thereby, the
auxiliary function dataV iew : DV D × O → V returns the values for the given
attributes in DV D for a data object o. In case of equality, the parent oparent is

28 L. Pufahl and M. Weske

Algorithm 1. Algorithm of the service activity acheckForParent.
Require: DV D; // is specified by the process designer
Require: i; // current process instance
Require: d[s]; ds; // the input data node and the data store
1. Od ← select(ds, d[s]); // auxiliary function to retrieve all data objects from ds

referencing the same data class as the data node d[s]
2. oi ← i.d[s]; // get local object for given data node d[s] of the process

instance i
3. for all o ∈ Od do
4. if dataV iew(DV D, oi) = dataV iew(DV D, o) &oi.id �= o.id then
5. // auxilary function dataView returns the projection for the attributes

given in DV D on a data object
6. oparent = o; // if data view of current data object is equal to one of the

data objects, then the parent is identified
7. i.parentd = oparent; // the parent data object is stored as local object of

instance i
8. δ(i, ds) = δ(i, ds).add(oparent); // add the identified parent to the set of

persistent data objects accessed by the current instance i
9. break; // if parent was identified, loop is stopped

10. end if
11. end for

identified. By additional checking that the ids of the two objects are not same,
it is ensured that the parent is never the persistent version of the current object.
The parent oparent is added to the local data objects of instance i and to the
set of persistent data objects δ(i, ds) in the data store ds on which the process
instance i is working by the help of the delta-function (see foundation section).
In case of successful identification, the loop is terminated.

Algorithm 2. Algorithm of the service activity aassignToParent.
Require: i; // current process instance
Require: d[s]; parentd[∗]; // input data nodes consisting of the child and parent
Require: d[assignedToParent] ; // output data node
1. oi ← i.d[s];
2. oparent ← i.parentd[∗];
3. oi.parentId = oparent.id; // update current object oi with a reference to the

parent
4. oi.state ← d[assignedToParent].state; // update state to the output data

node state

If a parent was identified, the activity aassignToParent is executed. Its
internal behavior is described in Algorithm 2. It needs the current process
instance i, the input data nodes d[s] and parentd[∗] and the output data node

Parent-Child Relation Between Process Instances 29

d[assignedToParent] of the activity. First the local object oi and the local par-
ent object oparent are retrieved from the process instance. Then, a reference to
the parent object oparent is set in oi, here represented by the attribute parentId.
Finally, the child object state is changed to assignedToParent – the state of the
output data node.

After assigning the child to the parent, the solution of the parent is taken
over. The service activity aapplyResult is enabled only if the parent is in a certain
state and uses the algorithm shown in Algorithm3.

Algorithm 3. Algorithm of the service activity aapplyResult.
Require: i; // current process instance
Require: d[assignedToParent]; parentd[accomplished]; // input data nodes

consisting of the child and parent
Require: d[processed]; // output data node
Require: ATT; // set of attributes defined by the process designer
1. oi ← i.d[assignedToParent];
2. Oi ← δ(i, ds); // get all stored data object of the instance i in ds with the

δ-function
3. oparent ← Oi.parentd[accomplished]// get parent object from the set of stored

objects of i
4. for all att ∈ ATT do
5. oi.att ← oparent.att; // update the current object oi with the results of the

parent object
6. end for
7. oi.state ← d[processed].state;

Algorithm 3 needs the current process instance i, the input data nodes
d[assignedToParent] and parentd[accomplished], the output data node
d[processed] of the activity and a set of attributes ATT provided by the process
designer describing which attributes values are taken over from the parent. With
the delta-function, all persistent data objects in ds, in which the process instance
i is interested, can be retrieved. From this set the parent data object oparent is
fetched. For each attribute of the given attribute set ATT , the value is written
to the child object oi. Finally, the child object state is changed to processed –
the state of the output data node.

5 Evaluation

In this section, the generalized parent-child BPMN process is evaluated by a
functional evaluation and an effectiveness evaluation. For the functional eval-
uation, the parent-child BPMN process is applied to the incident process, dis-
cussed in Sect. 5.1 whereby a methodology for the application is deduced and
presented. The result is implemented in effektif.com, a cloud-based BPMN, dis-
cussed in Sect. 5.2. In Sect. 5.3, the comparison between a simulation of the basic

http://www.effektif.com

30 L. Pufahl and M. Weske

and parent-child incident process is discussed with regards to cycle times and
resource costs. In Sect. 5.4, lessons learned of the evaluation are discussed.

5.1 Application of the Concept to the Incident Process

The presented formalization of the parent-child relation in BPMN shown in
Fig. 2 is applied for a functional evaluation to the motivating use case, the inci-
dent process shown in Fig. 1. During application, five steps1 were conducted to
apply the parent-child BPMN template. The steps are described in detail in the
following.

In step (1), it had to be decided where in the process the parent-child tem-
plate starting with the service activity acheckForParent and ending with the join
XOR-gateway should be added. In the incident process, after logging and cat-
egorization the most important data for an incident are available. Prioritiza-
tion information are only important for the actual diagnosis phase, but not for
identifying a potential master incident, the parent. Therefore, the parent-child
template was added after incident categorization. Next, it has to be decided how
many activities can be skipped. In the incident processes, the idea is to apply
the diagnosis and the solution of the master incident and to communicate the
solution to each user individually. Therefore, the join-gateway for the normal
and splitting flow had to be added after the activity Resolve incident and before
the send-event. The result is shown in Fig. 3.

Fig. 3. Incident process extended by the parent-child relation based on the BPMN
process template which is adapted to the incident use case.

In step (2), all labels of the template were adapted such that it fits to the use
case. Thereby, the service activities, the data nodes with its states and the data
stores were relabeled. The service activities were renamed such that the termmas-
ter used by the practitioners is used. For the data nodes, the data class establishing
1 The documented steps are available at http://bpt.hpi.uni-potsdam.de/Public/

ParentChild.

http://bpt.hpi.uni-potsdam.de/Public/ParentChild
http://bpt.hpi.uni-potsdam.de/Public/ParentChild

Parent-Child Relation Between Process Instances 31

the parent-child relation at runtime had to be chosen. Here, the incident data class
was selected such that the data node d in the fragment is called incident and the
parent node parentd is called master incident. Also, the states of the data nodes
have to be partly adapted. For example, the input state s of d in the fragment, we
relabeled to the output state categorized of the categorization activity after which
the fragment was added. Similarly, the output state of the fragment processed is
renamed to the output of the activity resolve incident after which normal and split-
ting flow are joined that is incident in state resolved. Further, the state of the par-
ent – in the fragment given as parentd[accomplished] – in which the results can
be taken over has to be defined. As shown in Fig. 3, we selected the closed -state
of the master incident. It assures that incidents can apply the result although the
master was already closed. We assume that the incidents are set later in a follow-
up process to archived indicating that they are not relevant as a master anymore.
The data store for the incidents is the Central incident DB such that data store
ds is adapted accordingly.

In step (3), the grouping characteristic for selecting the right parent and the
set of attributes which are taken over by the parent – annotations of the first
and last service activity – were adapted. The data view definition consisting of
the following incident attributes category & item & masterId was used as group-
ing characteristic such that the parent is identified based on the categorization
information. The attribute masterId is also included to make sure that no child
instances is selected as master. For an incident, it is important to have finally
a description of the symptoms and a resolution. Therefore, symptoms and res-
olution are defined as the attributes taken over by the master incident in the
annotation of the activity Apply result.

In step (4), it had to be assured that data is made persistent at the right spots
in the process such that the master can be identified and later the results can be
applied. This had to be done at two points: before or right after the check for the
potential parent in order to make sure that the parent is available and as soon
as the data object is written into the state in which the parent is required. As
the most important data is available for an incident after its categorization, the
incident output data node is connected to the Central incident DB. Additionally,
the incident data node in state closed is connected to the data base because the
child instances require the master in this state (Fig. 3). These are all steps which
are needed to design the model with the parent-child relation. In order to execute
the model, the internal behavior of the service activities has to be adapted as
well in a last step (step (5)). This is discussed in the next sub-section.

The application of the parent-child BPMN process template shows that it is
useful to adapt a process easily with a few steps and to make sure that all impor-
tant elements are included. Based on it, we can summarized that the following
important steps:

1. Add the parent-child template at the correct spots in the process,
2. Relabel service activities, data nodes and stores such that it fits to the use

case,

32 L. Pufahl and M. Weske

3. Adapt annotations of service activities to define a grouping characteristic and
the set of attributes taken over by the children,

4. Assure data persistence to enable parent identification and re-usage of results,
5. Adapt internal behavior of service activities for implementation purpose.

5.2 Implementation of Incident Process

The goal of the concept is to provide a parent-child process template which can
be used for process design and implementation. Now focusing on the implemen-
tation part, we used the incident model of the former subsection and imple-
mented it in effektif.com2, a cloud-based workflow engine. This workflow engine
was selected, because it offers a user-friendly environment where processes can
be quickly implemented. effektif.com does not handle data nodes annotated in
process models as all current standard BPMS [8], only process variables are
supported. Therefore, data relations had to be handled manually.

Fig. 4. Implemented incident process in effektif.com with the parent-child relation.

The implemented process is very similar to the incident process of Fig. 3.
Minor differences are highlighted in Fig. 4 with a gray boarder. They are mainly
due to the missing data support: For the implementation, we eased the process
by leaving out the escalation of incidents to focus on the parent-child relation. By
default, effektif.com does not provide a connection to a database system, but has
Java Script service activities. Therefore, we implemented a web service storage
accessible via REST (Representational State Transfer) calls. Due to it, some
additional activities were added in the process implementation, e.g., Initialize
incident DB for setting up the data store, if it does not exist or Load incident
DB for selecting all data entries. The data input relations for an activity can

2 Please see http://bpt.hpi.uni-potsdam.de/Public/ParentChild for more information.

http://www.effektif.com
http://www.effektif.com
http://www.effektif.com
http://www.effektif.com
http://bpt.hpi.uni-potsdam.de/Public/ParentChild

Parent-Child Relation Between Process Instances 33

not be checked automatically with effektif.com. Thus, a loop was implemented
where all incidents are loaded from the store and then the activity Use solution
of master is executed. If the required variables symptoms and resolution could
be not filled because the master incident object is still not closed, a user activity
is activated which can restart another try. As soon as the variables are filled,
the child instance returns to the normal flow and the user is informed, here by
an email activity.

The implementation shows that even if the data nodes concept is not sup-
ported by a BPMS, the parent-child relation model served as important orien-
tation for the implementation, i.e., which data has to be accessed and where
an access to the data store is needed. The pseudo code given in Sect. 4.2 for
the three service activities provided support in how to implement the main java
script activities to provide a correct execution of the parent-child relation. Small
differences were mainly due to the missing support for data annotations and are
documented in their comments. Despite the implementation template, it is still
some manual work required from an IT specialist. If the methodology of the
previous section is detailed further, the adaption of the service activities to the
use case could be partly automized.

5.3 Simulation of the Incident Process

In this sub-section, we evaluate the impact of the parent-child relation on the
process performance by a single case. Thereby, the simulation results of the
basic incident process (see Fig. 1) are compared to the simulation results of the
parent-child incident process (see Fig. 3) with regards to cycle times and resource
costs. The interview with the German IT Outsourcing company provided us the
average number of cases per day, the average processing times of each activity,
the probabilities of decisions and information about the resource number and
costs. All information can be found in Table 1.

For our evaluation we used the BIMP simulator3. The BIMP simulator offers
quick creation of multi-instance simulations by importing a BPMN XML file.
This is extended by information regarding the inter-arrival times of instances
and activity duration distributions. For the inter-arrival time, an exponential
distribution with a mean of one minute was selected. We assume here that inci-
dents only arrive between 9:00 am and 5:00 pm (in sum around 500 cases per
day). In reality, also incidents outside of this time with other distributions could
be received. However, this is not further considered, because it has no huge
impact on the comparison between the basic and the parent-child process. For
the activity processing times, a normal distribution was selected for activities
which are governed by choice fields, e.g., the categorization or prioritization.
An exponential distribution was used for activities where open text fields are
included and difficult cases can lead to longer processing times, e.g., the initial
diagnosis or investigation and diagnosis. The simulation is eased in this regards

3 http://bimp.cs.ut.ee/. The BPMN XML files used for the simulation can be found
at http://bpt.hpi.uni-potsdam.de/Public/ParentChild.

http://www.effektif.com
http://bimp.cs.ut.ee/
http://bpt.hpi.uni-potsdam.de/Public/ParentChild

34 L. Pufahl and M. Weske

Table 1. Average process measures for the incident use case provided in the interview
with the German IT Outsourcing company.

Process measures

of cases per day 500

Activity processing time Log incident 4 min

Categorize incident/prioritize incident 2 min

Do initial diagnosis 30 min

Escalate to 2nd level support 3 min

Investigate and diagnose incident 21 min

Resolve incident 12 min

Probabilities of decisions Solvable\escalated incidents 80 %\20 %

Master available\not available 20 %\80 %

Resource information # of resources\cost in 1st level support 90\20 Euro per hour

of resources\cost in 2nd level support 20\35 Euro per hour

that an incident is only escalated to the second level support, but not further.
For the parent-child incident process, assumptions about the processing times of
the service activities has to be made. In general, it is assumed that service times
are conducted in a few seconds, but sometimes the service might take longer
due to server loads. An exponential distribution with a mean of 5 s was selected.
The activity Apply result is highly influenced by the time when the master is
resolved. As this relation cannot be integrated into the BIMP simulator, the
distribution of the activity duration has to reflect the waiting time for the mas-
ter. Therefore, a simulation of the basic incident process was conducted for all
activities from incident prioritization until closing to find the average duration
a parent needs until it is closed. As a child arrives some time after the parent,
we assume that the child waits on average half of the needed time. A normal
distribution of 25.5 min (51 min\2) with a deviation of 10 min for providing a
high variation in the values was taken.

Table 2. Results of one simulation run of the basic incident process and one simulation
run of incident process the parent-child relation.

Cycle time Process costs

Min Avg Max Average case costs Total costs

(1) Basic process 11.3 min 57.1 min 5.5 h 20.1 EUR 200719.7 EUR

(2) Parent-child process 2.5 min 50.6 min 5.2 h 15.5 EUR 155485.1 EUR

Difference of (2) to (1) in % 77.9 % 11.4 % 5.4 % 22.8 % 22.5 %

Both simulation were conducted for 10000 instance. The results consisting
of cycle time and cost information are represented in Table 2. The results show
that the average cycle time is reduced by some minutes, a minor improvement of

Parent-Child Relation Between Process Instances 35

11.4 %. The main reason is that child incidents have to wait for the result of the
parent incident. Further, the portion of probable child incidents is 20 % in this use
case. If the portion is greater, the advantage would be even higher. The minimum
cycle time has reduced by 77.9 % to 2.5 min, because if an instance is assigned
to a parent which is already in state closed, the service activities are conducted
in a few seconds. In comparison to the cycle time, the parent-child relation has a
higher impact on costs. The average costs could be reduced by 22.8 %, similar to
the total costs, because the child instances are handled automatically and does
not generate any resource costs. To summarize, the single-case simulation shows
that the parent-child relation has a minor impact in reduction of cycle time, but
a high impact on reducing process costs, because the children bypass a set of
user activities.

5.4 Lessons Learned and Limitations

We will now discuss the lessons leaned from the evaluation and its limitations.
The effectiveness evaluation based on the simulation implicates that parent-child
relations are useful: They can offer time and costs saving, although the costs sav-
ing are higher, because the child instances have still to wait for parent instance.
Currently, the results are based on one use case. This should be extended to
a validation of further use cases, e.g., complaint management where a set of
similar complaints targeting the same issue can reuse the result of a already
handled complaint. The application of our proposed concept for the integration
of parent-child relations – the parent-child relation BPMN process template –
shows that it offers support in integrating a parent-child relation correctly in a
business process model in a few steps. The most important advantages of inte-
grating parent-child relations in process models are that a parent-child relation
is traceable for the process stakeholders, can be easily adapted and can be used
for process validation (e.g. simulation) and implementation. Nevertheless, some
manual work by the process designer to adapt the fragment to a concrete use case
is still needed. Similar results shows the process implementation: The resulted
parent-child process model and the pseudo code description provide an orienta-
tion for a correct implementation despite missing support for data annotation
in BPMS, but manual work is still needed. However, the proposed methodology,
the 5-step approach, deduced from application to the incident use case can be
used as a prerequisite for (semi) automation of our concept. An automatized
approach could use a basic process model as input and some user inputs to gen-
erate a process model extended with the parent-child relation based on them. In
future, the first deduced methodology should be detailed and further evaluated.

6 Related Work

The workflow control-flow patterns of [1] are an important standard that describe
workflow functionalities with regard to the control-flow as patterns. However,
patterns for interrelations between process instances are not considered. A first

36 L. Pufahl and M. Weske

step in this regard are the multi-instances patterns, but for them it is assumed
that multiple instances are created and terminated during the execution of one
process instance and does not consider relations between instances in general.

In BPMN, the signal event can be used for intra- and inter-process commu-
nication [10]. However, a signal is “like a shot into the sky” where each instance
reacts which has subscribed for this signal type. A signal is not instance-specific.
Therefore, we realized the parent-child relation between process instances based
on the instance data.

Whereas the parent-child relation between instances of a process model
received little attention in the BPM research, the batch relation, was discussed in
several works e.g., in [2,7,14] and also recently e.g., in [9,11,12]. In a batch rela-
tion, instances of a batch are processed together in one step (e.g. the instances’
attributes are shown in one user view) whereas in a parent-child relation, the
parent executes the normal flow; the children can skip certain activities by using
the result of it. In both relations, similar instances have to be identified which
can be in a batch or parent-child relation. The process designer has to define on
which data attributes process instances can be grouped.

In PHILharmonicFlows [5], a data-oriented modeling approach, it is possible
that the user enters form values in one go for multiple data objects. This requires
that the set of children is known before the parent can be processed further such
that the results can be applied. In our approach, child instances can also use the
result of the parent, if it is already terminated. PHILharmonicFlows considers
also execution dependencies where certain object instances have to be available
for process continuation, but parent-child relation are not discussed in their
work.

7 Conclusion

In this paper, parent-child relation of process instances where a set of instances
can skip certain activities by reusing results of a parent instance is investigated
for the first time. The explicit representation of parent-child relations in process
models enables the traceability, validation, optimization and correct implementa-
tion of the parent-child relation for the process stakeholders. This work provides
requirements for the integration, and further a definition and formalization of the
parent-child relation in BPMN, the industry standard. Our contribution consists
of a parent-child BPMN process template with all necessary elements to model
a parent child-relation and the internal activity specification as prerequisite for
implementation. Activities of the parent-child template are all service activities
to avoid additional effort for process participants.

The functional evaluation where the parent-child template is applied to a use
case shows that the concept helps to adapt a process in a few steps which is then
able to correctly execute a parent-child relation. The application identified a five
step methodology, a first step in the direction to make the integration of parent-
child relations in business processes (semi) automatized. It can be generalized
by applying it to other use cases, e.g., the complaint management, to use it for

Parent-Child Relation Between Process Instances 37

an automatic integration approach. Implementation of the resulted parent-child
process shows that despite of missing data support in existing BPMS, the model
and the internal behavior provide an important support for a correct parent-
child implementation. The results of the effectiveness evaluation by simulating
a single use case indicate significant savings in cycle time and costs by a parent-
child relation. This single case simulation should be extended in future. Further,
we aim to evaluate the usability of our approach in a user study.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

2. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: a frame-
work for lightweight interacting workflow processes. Int. J. Coop. Inf. Syst. 10(4),
443–481 (2001)

3. Camunda: camunda BPM platform. https://www.camunda.org/
4. Großbritannien Office of Government Commerce: Service operation (SO): ITIL.

TSO (The Stationery Office) (2007)
5. Künzle, V., Reichert, M.: PHILharmonicFlows: towards a framework for object-

aware process management. J. Softw. Maint. 23(4), 205–244 (2011)
6. Lanz, A., Reichert, M., Dadam, P.: Robust and flexible error handling in the

aristaflow BPM suite. In: Proper, E., Soffer, P. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 174–189. Springer, Heidelberg (2011)

7. Liu, J., Hu, J.: Dynamic batch processing in workflows: model and implementation.
Future Gener. Comput. Syst. 23(3), 338–347 (2007)

8. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 171–186. Springer, Heidelberg (2013)

9. Natschläger, C., Bögl, A., Geist, V.: Optimizing resource utilization by combining
running business process instances. In: Toumani, F., et al. (eds.) ICSOC 2014.
LNCS, vol. 8954, pp. 120–126. Springer, Heidelberg (2015)

10. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011
11. Pufahl, L., Meyer, A., Weske, M.: Batch regions: process instance synchronization

based on data. In: EDOC, pp. 150–159. IEEE (2014)
12. Pufahl, L., Weske, M.: Batch activities in process modeling and execution. In:

Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
283–297. Springer, Heidelberg (2013)

13. Russell, N., Hofstede, A.H.M., Edmond, D., Aalst, W.M.P.: Workflow data pat-
terns. Queensland University of Technology, Tech. rep. (2004)

14. Sadiq, S., Orlowska, M., Sadiq, W., Schulz, K.: When workflows will not deliver:
the case of contradicting work practice. In: BIS, pp. 69–84 (2005)

15. Weske, M.: Business Process Management: Concepts, Languages, Architectures, p.
404, Second Edition. Springer, Heidelberg (2012)

https://www.camunda.org/

http://www.springer.com/978-3-319-45467-2

	Parent-Child Relation Between Process Instances
	1 Introduction
	2 Motivating Example and Requirements
	3 Foundation
	4 Formalizing Parent-Child Relations Based on BPMN
	4.1 Modeling Parent-Child Relation
	4.2 Execution Semantics of Parent-Child Relation

	5 Evaluation
	5.1 Application of the Concept to the Incident Process
	5.2 Implementation of Incident Process
	5.3 Simulation of the Incident Process
	5.4 Lessons Learned and Limitations

	6 Related Work
	7 Conclusion
	References

