Automatic Generation of Ecore Models
for Testing ATL Transformations

Jestis M. Almendros-Jiménez(®™) and Antonio Becerra-Terén

Department of Informatics, University of Almeria, 04120 Almeria, Spain
{jalmen,abecerra}@ual.es

Abstract. Model transformation testing is crucial to detect incorrect
transformations. Buggy transformations can lead to incorrect target
models, either violating target meta-model requirements or more com-
plex target model properties. In this paper we present a tool for testing
ATL transformations. This tool is an extension of a previously developed
tool for testing XML-based languages. With this aim an Ecore to XML
Schema transformation is defined which makes to automatically generate
random Ecore models possible. These randomly generated Ecore mod-
els are used to test ATL transformations. Properties to be tested are
specified by OCL constraints, describing input and output conditions on
source and target models, respectively.

1 Introduction

Model transformation is a key component of Model Driven Engineering (MDE)
[19]. Several transformation languages (ATL, QVT, AGG, VIATRA, Fujaba,
among others) have been proposed to define transformations making the defin-
ition of (M2M) Model to Model and (M2T) Model to Text transformations pos-
sible. Transformation languages work on source and target meta-models estab-
lishing a mapping from source to target models. Transformation programs are
based on rules and range from imperative to declarative software.

Testing [17] is essential for ensuring software quality. The automation of
testing enables the programmer to reduce time of testing and also makes to
repeat testing after each modification to a program possible. A testing tool
should determine whether a test is passed or failed. When failed, the testing tool
should provide evidences of failures, that is, counterexamples of the properties to
be checked. Additionally, a testing tool should generate test cases automatically
[2]. Fully random generation of tests could not be suitable for an effective and
efficient tool. Distribution of test data should be controlled, by providing user-
defined test cases, that is, data distribution should be put under the human
tester’s control.

Testing of model transformations has been studied in several recent works
[3-9,11,12,14,16,18]. The quoted works have basically the same goal: specifica-
tion of properties on transformations and meta-models in order to ensure correct

This work was supported by the EU (FEDER) and the Spanish MINECO Ministry
(Ministerio de Economiay Competitividad) under grant TIN2013-44742-C4-4-R.
© Springer International Publishing Switzerland 2016

L. Bellatreche et al. (Eds.): MEDI 2016, LNCS 9893, pp. 16-30, 2016.
DOI: 10.1007/978-3-319-45547-1_2

Automatic Generation of Ecore Models for Testing ATL Transformations 17

transformations. Properties on transformations range from termination, deter-
minism, rule independence, rule applicability and reachability of states, while
properties on meta-models establish input (respectively, output) properties on
source (respectively, target) meta-models, as well as input-output properties on
both source and target models. Here we will focus on meta-model properties,
and our goal will be to build a testing tool able to detect buggy transformations
from automatically generated test models.

In our research group we have developed a tool [1] to test XML-based applica-
tions. In particular, this tool has been previously used to test XQuery programs
from automatically generated XML data. In this paper, we adapt the tool to
model based transformation languages. In particular, we are able to automat-
ically generate Fcore models, which are the selected format of ATL (ATLAS
transformation language) [13] programs for source/target models. Additionally,
we have extended the tool to test ATL applications, in such a way that given
a source meta-model S, an ATL transformation 7R, a set of input properties
ZP on the source meta-model and a set of output properties OP on the target
meta-model, the tool is able to determine whether the output models of 7R sat-
isfy OP for each randomly generated test model of the meta-model S satisfying
ZP. In case of success, that is, each output model of 7R satisfies the properties
OP, then the tool answers “Ok”, otherwise the tool shows counterexamples, that
is, input test models which do not satisfy OP, together with the result of the
transformation for the counterexamples.

Test models are randomly generated from source meta-models in an auto-
matic way. The input of the testing is an Ecore source meta-model which is
automatically transformed into an XML Schema. The resulting XML Schema
is used by the tool to generate XML data tests. However, the human tester
has to select the XML elements and attributes, and the number and value of
them, for which test cases are randomly generated. In terms of Ecore models, the
human tester has to prune the meta-model (similarly to [15]), selecting classes,
attributes and associations to which generate instances. The idea is to select
the smallest subset of the input meta-model that is relevant for the transforma-
tion (i.e., the classes, attributes and associations accessed by the transformation
code). Thus, even when the generation of test models is fully random, the human
tester can control the size and diversity of test models. The choice depends on
the transformation to be tested as well as the input/output properties to be
checked. Test models are randomly generated as combinations of values and a
number of classes, attributes and associations, enabling a high level of diversity
in test cases. Since the number of test cases can be potentially infinite, the human
tester can select a limit of the size, and moreover, the test cases are generated in
increasing size. In fact, most of ATL programming bugs can be detected from a
small set of test models in a short time. The tool has been designed to interrupt
testing when the output property is not satisfied by a test model, and thus even
when the number of test models selected by the human tester can be bigger, the
tool stops when a counterexample has been found.

18 J.M. Almendros-Jiménez and A. Becerra-Terén

The tool (i.e., Ecore to XML Schema transformation, test models generation,
and property-based testing) has been implemented in the XQuery language. We
use the BaseX XQuery interpreter to test ATL transformations. We have inte-
grated the ATL EMFTVM virtual machine in XQuery, using the Java binding
mechanism, in order to execute ATL transformations from XQuery and to test
input/output properties.

The structure of the paper is as follows. Section 2 will define the transforma-
tion of Ecore meta-models to XML Schemas and will show examples of randomly
generated test models. Section 3 will report several examples of ATL transfor-
mation testing. Section 4 will describe related work. Finally, Sect.5 will present
conclusions and future work.

2 Automatic Generation of Ecore Models

The process of automatic generation of Ecore test models is as follows. Firstly,
the Ecore meta-model is transformed into an XML Schema. Next, the human
tester selects items (elements and attributes) and number of items of the XML
Schema (setting values for minOccurs/maxOccurs of elements, and values option-
al/required in use of attributes), and provides values for each type of the XML
Schema (adding values to the enumeration section of each type). Finally, the
test case generator reports random combinations of values and items.

With this aim, an Ecore to XML Schema transformation has been defined.
Basically, EClass elements are mapped to XML elements, and EAttribute ele-
ments are mapped to XML attributes. Moreover, EReference elements are
mapped to XML elements and XML Attributes. In the case of EReference ele-
ments with containment set to true the are mapped to XML elements, otherwise
to XML attributes. In the second case, XML Attributes of XML Schemas have
been modified enabling minOccurs and mazOccurs attributes. A similar solution
was previously adopted in other works'. Thus XML Schemas have been extended
to cover with Ecore references. Additionally, Ecore lowerBound and upperBound
have been mapped to XML Schema minOccurs and mazOccurs, respectively.
Finally, Ecore datatypes are mapped to XML datatypes.

For example, the class meta-model of the well-known Class2Relational trans-
formation? of the ATL Zoo, is translated into the XML Schema of Fig. 1.

There are two types of XML attributes. The first one is the standard
XML attribute: <xs:attribute name="name" type="nameType" use= "required"/> and the sec-
ond one is a reference to an element: <xs:attribute name="super" type="Class" class="yes"
minOccurs="1" maxOccurs="unbounded"/> in Wthh CZCLSS = “yes” means that type iS a refer—
ence to an XML element (in the example, the XML element Class), and minOc-
curs and mazOccurs represent the number of allowed references. The test case
generator will generate values //@QClass.1, //@Class.2, etc., of references to
elements. For instance, this is an example of test model generated by the tool:

! https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMap

ping.pdf.
2 http://www.eclipse.org/atl/at]Transformations/#Class2Relational.

https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
https://www.eclipse.org/modeling/emf/docs/overviews/XMLSchemaToEcoreMapping.pdf
http://www.eclipse.org/atl/atlTransformations/#Class2Relational

Automatic Generation of Ecore Models for Testing ATL Transformations 19

<xs:complexType name="attr">
<xs:attribute name="name" type="nameType" use="required"/>
<xs:attribute name="type" type="Classifier" class="yes"
minOccurs="1" maxOccurs="1"/>
<xs:attribute name="multiValued" type="multiValuedType" use="required"/>
</xs:complexType>
<xs:element name="xmi:XMI">
<xs:complexType><xs:sequence>
<xs:element name="Classifier" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="nameType" use="required"/>
</xs:complexType></xs:element >
<xs:element name="DataType" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="nameType" use="required"/>
</xs:complexType></xs:element>
<xs:element name="Class" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="name" type="nameType" use="required"/>
<xs:attribute name="super" type="Class" class="yes"
minOccurs="1" maxOccurs="unbounded"/>
<xs:attribute name="isAbstract" type="isAbstractType" use="required"/>
<xs:sequence>
<xs:element ref="attr" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType></xs:element >
</xs:sequence></xs:complexType>
</xs:element>

Fig. 1. XML Schema of class meta-model

<xmi:XMI>
<Classifier name="Default"/>
<Class super="//@Class.1" isAbstract="true" name="Default"/>
<Class isAbstract="true" name="Default">
<attr type="//@Classifier.0" multiValued="true" name="Default"/>
</Class>
</xmi:XMI>

The test case generator of [1] has been modified to include the second kind
of attributes, and values of references to elements. The tool generates Ecore
models of increasing size. Basically, starting from an initial step (step 0) with
minimal models according to minOccurs values for elements and optional/re-
quired for attributes, it generates new models in each step (step n+ 1) adding
new attributes and elements to models of step n, up to mazOccurs for elements
and required for attributes is reached. In other words, the test case generator
adds new classes, attributes and associations in each step, increasing the size
of Ecore models. Additionally, it randomly takes values for attributes from the
enumeration section. These values are manually added by the human tester, and
the test case generator randomly combines values to produce different models.
In the case a certain type is not defined in the enumeration section, the test case
generator assigns as values “Default” for strings, “0” for numbers and “¢rue” for
Boolean. The number of steps n is a parameter of the tester, in order to limit the
size of test models. The human tester can play with this parameter generating a
large number of models. Also, the human tester can play with minOccurs (and
maxOccurs) values for XML elements/XML Attributes, in order to generate a
large number of classes and associations for each model. Playing with steps and

20 J.M. Almendros-Jiménez and A. Becerra-Terén

module Book2Publication;
create 0UT : Publication from IN : Book;

rule Book2Publicationl {

from

b : Book!Book (b.getSumPages() > 100 and b.keyword=’Biology’)
to

out : Publication!Publication (

title <- b.title,
authors <- b.getAuthors(),
nbPages <- b.getSumPages()
keyword <- b.keyword)
}
rule Book2Publication2 {
from
b : Book!Book (b.getSumPages() < 100 and b.keyword=’Romance’)
to
out : Publication!Publication (
title <- b.title,
authors <- b.getAuthors(),
nbPages <- b.getSumPages(),
keyword <- b.keyword)

Fig. 2. Book2Publication transformation

minQOccurs, the human tester can have a stronger confidence about the soundness
of the program.

3 Testing of ATL Transformations

Let us consider the following (buggy) transformation Book2Publication defined
by the code of Fig.2. The transformation tries to map book into publication
classes with two rules for Biology and Romance books, respectively. Book class
is defined as a set of chapters each one with a title, an author and a number of
pages nbPages. The transformation summarizes books as a publication in which
title is the same, authors of chapters are concatenated and the total number of
pages is computed. ATL helpers getAuthors and getSumPages have been defined
with this end (omitted in the Figure). However, the mapping is only required
for a total number of pages greater than 100.

The human tester can now define OCL constraints for the transformation (see
Fig.3). The OCL constraints on the source meta-model describe the required
properties on the source model. In this case, source model constraints require
that all the books and chapters have a title, and all the books have a keyword.
The target meta-model OCL constraints describe the required properties on
the target model. They require that the title of publications is not empty, all
the publications are Biology or Romance publications, and finally, the number
of pages nbPages is greater than 100. The Ecore source meta-model and the
corresponding XML Schema are shown in Figs.4 and 5, respectively.

The human tester can now edit the XML Schema in order to select relevant
elements (XML elements and attributes) and values for the transformation and
testing. In the Book2Publication transformation, the elements book and chapters

Automatic Generation of Ecore Models for Testing ATL Transformations 21

(1) Book!Book->alllnstances()->select(b | b.title->size ()=0)->isEmpty ()
(2) Book!Chapter->alllnstances()->select(ch | ch.title->size ()=0)->isEmpty ()
(3) Book!Book->alllnstances()->select(b | b.keyword->size ()=0)->isEmpty ()
(4) Publication!Publication->alllnstances()->

select(p | p.title->size ()=0)->isEmpty ()
(5) Publication!Publication->alllnstances()->

select (p | not(p.keyword=’Biology’ or p.keyword=’Romance’))->isEmpty ()

(6) Publication!Publication->alllnstances()->

select (p | not(p.nbPages>100)) ->isEmpty ()

Fig. 3. Input and output properties of Book2Publication transformation

<eClassifiers xsi:type="Ecore:EClass" name="Book">
<eStructuralFeatures

xsi:type="Ecore:EAttribute" name="title" lowerBound="1" eType="EString"/>
<eStructuralFeatures

xsi:type="Ecore:EAttribute" name="keyword" eType="EString"/>
<eStructuralFeatures

xsi:type="Ecore:EReference" name="chapters" upperBound="-1"

eType="#//Chapter" containment="true" eOpposite="#//Chapter/book"/>
</eClassifiers>
<eClassifiers xsi:type="Ecore:EClass" name="Chapter">
<eStructuralFeatures

xsi:type="Ecore:EAttribute" name="title" lowerBound="1" eType="EString"/>
<eStructuralFeatures

xsi:type="Ecore:EAttribute" name="nbPages" lowerBound="1" eType="EInt"/>
<eStructuralFeatures

xsi:type="Ecore:EAttribute" name="author" lowerBound="1" eType="EString"/>
<eStructuralFeatures

xsi:type="Ecore:EReference" name="book" lowerBound="1"

eType="#//Book" eOpposite="#//Book/chapters"/>
</eClassifiers>

Fig. 4. Source meta-model of Book2Publication transformation

are relevant, and the same can be said for attributes title, author, keyword and
nbPages. In order to force the generation of books with at least one chapter the
human tester can set minOccurs to 1:

<xs:element ref="chapters" minOccurs="1" maxOccurs="unbounded"/>

Next, the human tester selects relevant values for the transformation. In
this case, the idea is to generate test models in which books have as keyword
“Biology” and “Romance”, and some other value (for instance “Computers”) in
order to validate (3) and (5) of the OCL constraints. Additionally, it would be
useful to have chapters with different number of pages, greater than 100, and
smaller than 100, in order to validate (6). A good choice would be to generate
test models with chapters of size 50, 100, 150, etc. Thus the values for nbPages
will be selected to be “50” and “150”. With regard to title, and the validation
of (1), (2) and (4), it is only required to have at least one value, for instance
“a”. Author element is not required by the OCL constraints, but required by the
transformation, thus we can add just one value “b”. Values for attributes and
elements are added to the XML Schema in the enumeration section as shown in
Fig. 6. The tester call is as follows:

22 J.M. Almendros-Jiménez and A. Becerra-Terén

<xs:complexType name="chapters">
<xs:attribute name="title" type="titleType" use="required"/>
<xs:attribute name="nbPages" type="nbPagesType" use="required"/>
<xs:attribute name="author" type="authorType" use="required"/>
</xs:complexType>
<xs:element name="xmi:XMI">
<xs:complexType><xs:sequence>
<xs:element name="Book" minOccurs="1" maxOccurs="unbounded">
<xs:complexType><xs:sequence>
<xs:element ref="chapters" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="title" type="titleType" use="required"/>
<xs:attribute name="keyword" type="keywordType" use="required"/>
</xs:complexType></xs:element>
</xs:sequence></xs:complexType>
</xs:element>

Fig. 5. Source XML Schema of Book2Publication transformation

<xs:simpleType name="titleType">
<xs:restriction base="xs:string">
<xs:enumeration value="a"/>
</xs:restriction></xs:simpleType>
<xs:simpleType name="keywordType">
<xs:restriction base="xs:string">
<xs:enumeration value="Biology"/>
<xs:enumeration value="Romance"/>
<xs:enumeration value="Computers"/>
</xs:restriction></xs:simpleType>
<xs:simpleType name="nbPagesType">
<xs:restriction base="xs:integer">
<xs:enumeration value="50"/>
<xs:enumeration value="150"/>
</xs:restriction></xs:simpleType>
<xs:simpleType name="authorType">
<xs:restriction base="xs:string">
<xs:enumeration value="Db"/>
</xs:restriction>
</xs:simpleType>

Fig. 6. Values for source model of Book2Publication transformation

atl:tester ("Schema.xsd","Book.Ecore","Book","Publication.Ecore",
"Publication","MyPath","Book2Publication","Input_prop","Output_prop
" ’1)

where the number “7”is the number of steps, and Input_prop and Output_prop
are selected to be (3) and (6), respectively, of Fig. 3. The ATL tester reports in
639 ms the following answer:

Output Property Falsifiable after 2 tests.
Counterexample:

<xmi:XMI>
<Book keyword="Romance" title="a">
<chapters author="b" nbPages="50" title="a"/>
</Book>
</xmi:XMI>

Result:

<publication:Publication title="a" authors="b" nbPages="50"
keyword="Romance"/>

Automatic Generation of Ecore Models for Testing ATL Transformations 23

which means that after two test models, the ATL tester found that the out-
put property cannot be satisfied. The tester shows a counterexample, that is, a
test model fulfilling the input properties, but violating the output property. In
addition, the tester shows the result of the transformation for the test model. In
the counterexample, we can see that given as source model an Romance book
with one chapter of 50 pages, the target model does not satisfy the output prop-
erty. This is due to the (intentionally added) bug in the transformation: Romace
books are transformed when the number of pages is smaller than 100. Once the
bug is removed, the ATL tester answers (in 8,722 ms) as follows: Ok: passed
54 tests, 54 valid. Which means that 54 models have been proven, and all
of them satisfy the output property, and in addition, it reports the number of
models that satisfy the input property (i.e., valid models). When the number of
models satisfying the input property is zero, the ATL tester answers: Unable to
test the property.

module ER2RL;
create 0UT : REL from IN : ER;

rule 52S { from s : ER!ERSchema
to t : REL!RELSchema (name<-s.name,relations <- s.entities,
relations <- s.relships)}
rule E2R { from s : ER!Entity
to t : REL!Relation (name <- s.name) }

rule R2R { from s : ER!Relship
to t : REL!Relation (name <- s.name) }

rule EA2A { from att : ER!ERAttribute, ent : ER!Entity (att.entity = ent)
to t : REL!RELAttribute (name <- att.name, isKey <- att.isKey,
relation <- ent) 1}

rule RA2A { from att : ER!ERAttribute, rs : ER!Relship (att.relship = rs)
to t : REL!RELAttribute (name <- att.name, isKey <- att.isKey,
relation <- rs) }

rule RA2AK { from att : ER!ERAttribute, rse : ER!RelshipEnd
(att.entity = rse.entity and att.isKey = true)
to t : REL!RELAttribute (name <- att.name, isKey <- att.isKey,
relation <- rse.relship)}

Fig. 7. Class2Relational transformation

Let us now consider the Class2Relational transformation defined in Fig. 7.
This ATL program transforms entity-relationship (EFRSchema) schemas into
relational (RELSchema) ones, in which each Entity and relationship (Relship)
is transformed into a Relation. Additionally, attributes (ERAttribute) of entities
and relationships are transformed into attributes (RELAttribute) of relations.
Finally, key attributes of entities (isKey is set to true) become attributes of the
relations in which entities participate (RelshipEnd). This is a simplified version
of the Class2Relational transformation of the ATL Zoo?, but enough for showing
several examples of testing.

3 http://www.eclipse.org/atl/at]Transformations/#Class2Relational.

http://www.eclipse.org/atl/atlTransformations/#Class2Relational

24 J.M. Almendros-Jiménez and A. Becerra-Terén

(1) ER!Entity->alllnstances()->forAll(e | e.attrs->forAll(al,a2 | al.name=
a2.name implies al=a2));

(2) ER!'Relship->alllnstances()->forAll(r | r.attrs->forAll(al,a2 | al.name =

a2.name implies al=a2));

(3) ER!Relship.alllnstances()->forAll(e | e.attrs->collect(a | a.isKey)->
size ()=1) and ER!Entity.allInstances()->forAll(e | e.attrs->collect(a |
a.isKey)->size ()=1);

(4) REL!Relation->alllnstances()->forAll(r | r.attrs->forAll(al,a2 | al.name
=a2.name implies al=a2));

(5) REL!Relation->allInstances()->forAll(r | r.attrs->collect(a | a.isKey)->
size()=3 or r.attrs->collect(a | a.isKey)->size()=1);

Fig. 8. Input and output properties of Class2Relational transformation

Let us also consider the following set of input and output properties defined
as OCL constraints (see Fig. 8). The OCL constraints on the source model estab-
lish that (1) all entities have attributes with distinct names, (2) all relationships
have attributes with distinct names and (3) all entities and relationships have
exactly one key. The OCL constraints on the target model establish that (4) all
attributes of a relation have distinct names and (5) all relations have one or three
keys (one for relations coming from entities, and three for relations coming from
relationships). Let us suppose the human tester uses our tool to test the previ-
ous OCL constraints. Firstly, the human tester can select (1) and (2) as input
properties and try to test (4) as output property. For the selected properties, the
XML Schema should be modified in order to ensure that each entity and rela-
tionship have at least one attribute (setting minOccurs in attrs of entities and
relships to one). Otherwise, entities and relationships will be generated without
attributes, and the tester could not be able to test the properties (see example
bellow). Now, the human tester calls the tester adding a couple of values for
attribute names (“a” and “b”) to enumeration section of the XML Schema in
the nameType simpleType. The tester answers (in 5,249 ms) as follows:

Output Property Falsifiable after 33 tests.
Counterexample:

<xmi:XMI>
<ERSchema name="a">
<entities name="a">
<attrs isKey="true" name="a"/>
</entities>
<relships name="a">
<attrs isKey="true" name="a"/>
<ends entity="//Q@ERSchema.0/Q@entities.0" name="a"/>
<ends entity="//Q@ERSchema.0/Q@entities.0" name="a"/>
</relships>
</ERSchema>
</xmi:XMI>

Result:

<xmi:XMI>
<rel:RELSchema name="a">
<relations name="a">
<attrs isKey="true" name="a"/>
<attrs isKey="true" name="a"/>
<attrs isKey="true" name="a"/>

Automatic Generation of Ecore Models for Testing ATL Transformations 25

</relations>
</rel:RELSchema>
<rel:Relation name="a">
<attrs isKey="true" name="a"/>
</rel:Relation>
</xmi:XMI>
The test model illustrates that when entities and relationships share an
attribute with the same name, the output property is violated. Thus, a stronger
condition than (1) and (2) is required. Let us focus now on properties (3) and (5).
In this case, names are not relevant and thus the human tester can use a different
version of the XML Schema, in which he or she introduces two values (true and
false) for isKey, adding them to enumeration section of the XML Schema, in the
isKeyType simpleType. Additionally, minOccurs of attrs in entities and relships
is set to one. In this case, the ATL tester answers (in 15,233 ms and number of
steps 2):
Output Property Falsifiable after 109 tests.
Counterexample:

<xmi:XMI>
<ERSchema name="a">
<entities name="a">
<attrs isKey="true" name="a"/>
</entities>
<relships name="a">
<attrs isKey="true" name="a"/>
<ends entity="//Q@ERSchema.0/@entities.0" name="a"/>
<ends entity="//Q@ERSchema.0/Qentities.O" name="a"/>
<ends entity="//Q@ERSchema.0/Q@entities.0" name="a"/>
</relships>
</ERSchema>
</xmi:XMI>

which means that the output property is violated after 109 tests when the
number of relationship ends is three. Thus, the human tester should restrict the
number of relationship ends to ensure the output property. Setting mazOccurs
of ends in relships to two, the following answer (in 170,740 ms and number of
steps 3) is reported: Ok: passed 1296 tests, 464 valid. which means that
464 models satisfy the input and output properties from 1,296 randomly gener-
ated examples.

Let us now suppose that attrs is set to zero in entities and relships, and the
number of steps is set to zero. In this case the ATL tester answers as follows:
Unable to check the property, which means that from the models generated
none of them satisfies the input property. This kind of answer is in most of cases
reported when the selected number of steps is not enough to get valid source
models. In this case, the solution is to increase the number of steps, or more
appropriately and efficiently, to increase the number of elements, by setting a
greater value of minOccurs. Sometimes, it can be solved by adding more values
to types. For instance, in case of checking distinct values of a certain attribute
at least two values are required. On the other hand, in the case of a buggy rule
(of Fig.7) is defined as follows:
rule RA2A { from att : ER!ERAttribute, rs : ER!Relship

to t : REL!RELAttribute
(name <- att.name, isKey <- att.isKey, relation <- rs) }

26 J.M. Almendros-Jiménez and A. Becerra-Terén

in which the condition att.relship = rs is omitted, the ATL tester answers
(in 528 ms and number of steps 1) as follows:

Output Property Falsifiable after 5 tests.
Counterexample:

<xmi:XMI>
<ERSchema name="a">
<entities name="a">
<attrs isKey="true" name="a"/>
</entities>
<relships name="a">
<attrs isKey="true" name="a"/>
<ends entity="//Q@ERSchema.0/Qentities.O" name="a"/>
<ends entity="//Q@ERSchema.0/Qentities.0" name="a"/>
</relships>
</ERSchema>
</xmi:XMI>

3.1 Benchmarks

Finally, we would like to show the benchmarks of ATL testing for several
examples. Table1 shows the execution time of the testing for four examples:
Book2Publication (B2P), Families2Persons (F2P), Composed2Simple (CSP) and
ER2RL transformation. Code of transformations is omitted. The execution times
have been measured (in milliseconds, ms) for different number of steps (2, 3, 4
and 5). Additionally, the table shows the number of test models (m), and which
of them are valid (v). We have not modified the XML Schema generated from
the Ecore model, except in the XML Schema of Entity Relationship meta-model
in which mazOccurs of ends is set to two (in order to satisfy source OCL con-
straints). We can see in this table that the ATL tester is able to generate up to
5,998 models in reasonable time (ER2RL transformation), and test input and
output properties of 1,202 models in short time (F2P transformation). Let us
remark that modifying XML Schema elements (i.e., minOccurs, mazOccurs and
values of types of enumerations) execution time can be drastically altered. To
take the original XML Schema is not usually recommended, but for validating
the performance of our test model generator we have decided to leave XML
Schema unchangeable. Usually, XML Schema should be modified to avoid large
and useless models (non valid models). Obviously, when the output property is
not satisfied the ATL tester is faster.

Table 1. Benchmarks

Transformation |Steps = 2 Steps =3 Steps =4 Steps =5

B2P 7m. 7 v.1,068ms. |16 m. 16 v. 1,331 ms. |38 m. 38 v. 3,363 ms. 97 m. 97 v. 14,631 ms.

F2pP 7 m. 7 v. 553 ms. 32 m. 32 v. 2,585 ms. [177 m. 177 v. 18,382 ms.[1202 m. 1202 v. 207,670 ms.
c2s 14 m. 4 v. 1,945ms. |61 m. 9 v. 4,360 ms. 274 m. 23 v. 19,024 ms. |[1374 m. 69 v. 95,741 ms.
ER2RL 16 m. O v. 4,205ms.|144 m. 4 v. 15,567 ms.|841 m. 22 v. 106,848 ms. 5998 m. 306 v. 1,089,177 ms.

Automatic Generation of Ecore Models for Testing ATL Transformations 27

4 Related Work

From related works about test modeling we can distinguish two main lines of
research. Those ones generating source test models using black-box techniques,
and others using white-box techniques. Black box techniques do not use the
transformation code or the specification (i.e., properties) to generate source test
models. White box techniques use the transformation code or the specification
to generate source test models. Most of white box techniques are based on OCL
analysis and use constraint solvers.

In case of black-box approach, the authors of [18] use tracts to certify that a
transformation works for some source test models generated from a script defined
with the ASSL language. Tracts are pieces of specification focused on a particular
scenario and each transformation can be specified by a set of tracts, enabling the
partition of the full input space into smaller units. Tracts are specified by OCL
constraints. The authors of [6] introduce model transformation testing in which
an expected target model is used to validate transformations in which testing
results are difference models. MANTra tool has been proposed in [4] to define test
models for QVTO (QVT Operational) in terms of a transformation. The testing
report is therefore also a model. MANTra checks output properties on target
models. Test models are manually defined for each transformation, and they are
used to show testing results. The authors of [8] adapt the classical category-
partition method to qualify source models of transformations. They established
partitions on meta-models in order to automatically generate test models. The
specification language PAMOMO is used in [11] to express contracts: input,
output properties as well as input-output properties (called invariants). These
contracts are compiled into executable QVT transformations which are run to
certify transformations. In case of properties are violated, detailed information
(parts of the model in which a contract fails) is given to the user.

Our approach follows the same proposal as [18]: that is, it is able to partially
validate a transformation concentrating on specific input and output properties.
Due to the automation of our approach, the human tester can play with several
combinations of input and output properties. The difference of our approach
with this work is that we are able to automatically generate test models from
the meta-model, while in [18] the human tester has to program a test model gen-
erator for each transformation using the ASSL language. Even more, the human
tester in our approach can play with several sizes and values for model elements
enabling the definition of a high diversity of test models. Properties on target
models are specified in our approach by OCL constraints instead of using an
expected output model like in [6]. Nevertheless, we plan to study the possibility
of providing other techniques for checking output properties. Source test models
are, in our approach, automatically generated from the source meta-model, but
we plan to consider the testing procedure as a transformation, similarly to [4].
In our approach the human tester is responsible of the customization of test
models, selecting from the source meta-model the elements and number of ele-
ments required to test the transformation. Thus, the partition is defined by the
human tester, compared to the work [8]. This is an advantage given that the

28 J.M. Almendros-Jiménez and A. Becerra-Terén

partition can be more precise and suitable in some examples. We use OCL to
express properties, and we are able to certify ATL transformations for the test
models automatically generated. So far, the information provided to the human
tester is limited to “Ok” and in the case of fail, the tool shows counterexamples,
which are source models, together with the result of the transformation for the
counterexamples. The human tester uses the counterexamples in order to detect
the bugs in the transformation, enough in most of cases. However, we plan to
study the possibility of extending our work in the same line as [11], providing
richer information to the human tester about rules and parts of the target model
in which properties are not satisfied.

With regard to white box approaches, the authors of [7] use a constraint
solver to generate test models from the source meta-model OCL constraints,
and similarly the proposal of [9], using also the dependence graph of ATL trans-
formation. The authors of [10] use a category-partition based method adapted
to OCL and an EMFtoCSP tool to generate test models. Generation of test
models using SAT-solving techniques to complete hand-crafted partial models
from the source meta-model is proposed in [16]. The authors of [12] derive test
models from the transformation. The source test models are computed using
SAT-solving techniques on OCL expressions generated from the specification.
Typing errors of ATL transformations are studied in [5], and the authors are
able analyzing ATL code to generate test cases for most common typing errors.
OCL constraints are used to generate test cases from constraint solving. Finally,
fault analysis in ATL rules is carried out in [3] by using OCL constraints. Our
approach is black box, but we would like to extend our work in the future to white
box techniques. In our case, white box testing means to be able to automatically
select the number and value of elements (classes, attributes and associations) to
which test models are generated. In other words, automatize the selection made
by the human tester. It involves to analyze ATL code and OCL constraints like
in the quoted approaches.

5 Conclusions and Future Work

In this paper we have presented how to automatically generate random Ecore
models for testing ATL transformations. We have described an Ecore to XML
Schema transformation that makes to generate Ecore models according to human
tester’s choices possible. We have showed how the developed ATL tester is able
to show counterexamples of OCL constraints on target models, when the testing
fails, and to certify ATL transformations when OCL constraints on source and
target models are satisfied. As future work, we would like to extend our approach
as follows. Firstly, we would like to extend our tool with input-output properties
(called invariants in the context of model transformation). Input-output property
testing is of great interest since transformations can fulfill input and output
properties but fail in source and target model mapping, which is only detected
from input-output properties. Secondly, we plan to work in the improvement of
the ATL tester, showing better results of tests: which property is not satisfied,

Automatic Generation of Ecore Models for Testing ATL Transformations 29

and which part of the model is involved. Thirdly, we would like to work on
white box testing, using ATL code to automatically generate a pruned XML
Schema with values taken from the transformation code. Our approach is black-
box, and the human tester designs the test models by selecting items, number
of them and values. Thus, test coverage, for instance, is decided by the human
tester. In white-box testing, we will study test coverage. Finally, we would like
to implement a Web tool to test ATL programs.

References

10.

11.

12.

13.

14.

Almendros-Jiménez, J.M., Becerra-Ter6n, A.: XQuery testing from XML schema
based random test cases. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R.,
Decker, H. (eds.) DEXA 2015. LNCS, vol. 9262, pp. 268-282. Springer, Heidelberg
(2015)

Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P., et al.: An orchestrated survey of method-
ologies for automated software test case generation. J. Syst. Softw. 86(8), 1978—
2001 (2013)

Burgueno, L., Troya, J., Wimmer, M., Vallecillo, A.: Static fault localization in
model transformations. IEEE Trans. Softw. Eng. 41(5), 490-506 (2015)
Ciancone, A., Filieri, A., Mirandola, R.: Testing operational transformations in
model-driven engineering. Innovations Syst. Softw. Eng. 10(1), 19-32 (2014)
Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transfor-
mations using static analysis and constraint solving. In: 2014 IEEE 25th Interna-
tional Symposium on Software Reliability Engineering, pp. 34-44. IEEE (2014)
Finot, O., Mottu, J.-M., Sunyé, G., Attioghé, C.: Partial test oracle in model
transformation testing. In: Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol.
7909, pp. 189-204. Springer, Heidelberg (2013)

Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A constructive app-
roach to testing model transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT
2010. LNCS, vol. 6142, pp. 77-92. Springer, Heidelberg (2010)

Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y.: Qualifying input test data for
model transformations. Softw. Syst. Model. 8(2), 185-203 (2009)

Gonzélez, C.A., Cabot, J.: ATLTest: a white-box test generation approach for
ATL transformations. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 449-464. Springer, Heidelberg (2012)
Gonzélez, C.A., Cabot, J.: Test data generation for model transformations com-
bining partition and constraint analysis. In: Di Ruscio, D., Varré, D. (eds.) ICMT
2014. LNCS, vol. 8568, pp. 25—41. Springer, Heidelberg (2014)

Guerra, E.; de Lara, J., Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schénbock, J., Schwinger, W.: Automated verification of model transformations
based on visual contracts. Autom. Softw. Eng. 20(1), 5-46 (2013)

Guerra, E., Soeken, M.: Specification-driven model transformation testing. Softw.
Syst. Model. 14(2), 623-644 (2015)

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1), 31-39 (2008)

Selim, G.M.K., Cordy, J.R., Dingel, J.: Model transformation testing: the state of
the art. In: Proceedings of the First Workshop on the Analysis of Model Transfor-
mations, pp. 21-26. ACM (2012)

30

15.

16.

17.

18.

19.

J.M. Almendros-Jiménez and A. Becerra-Terén

Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model pruning. In: Schiirr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 32-46. Springer, Heidelberg
(2009)

Sen, S., Mottu, J.-M., Tisi, M., Cabot, J.: Using models of partial knowledge to
test model transformations. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol.
7307, pp. 24-39. Springer, Heidelberg (2012)

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verification Reliab. 22(5), 297-312 (2012)

Vallecillo, A., Gogolla, M., Burgueno, L., Wimmer, M., Hamann, L.: Formal spec-
ification and testing of model transformations. In: Bernardo, M., Cortellessa,
V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 399-437. Springer,
Heidelberg (2012)

Volter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Chichester (2013)

2 Springer
http://www.springer.com/978-3-319-45546-4

Model and Data Engineering

&th International Conference, MEDI 2016, Almeria,
Spain, September 21-23, 2016, Proceedings
Bellatreche, L.; Pastor, 0.; Almendros Jiménez, |.M.;
Ajt-Ameur, Y, (Eds.)

2016, XV, 360 p. 121 illus., Softcover

ISBM: 978-3-319-45546-4

	Automatic Generation of Ecore Models for Testing ATL Transformations
	1 Introduction
	2 Automatic Generation of Ecore Models
	3 Testing of ATL Transformations
	3.1 Benchmarks

	4 Related Work
	5 Conclusions and Future Work
	References

