Introduction

This book is not about harmonics, analysis or synthesis of sound. It deals with
harmonic analysis but in the abstract realm of musical structures: scales, chords,
rhythms, etc. It was but recently discovered that this kind of analysis can be per-
formed on such abstract objects, and furthermore the results carry impressively
meaningful significance in terms of already well-known musical concepts. Indeed
in the last decade, the Discrete Fourier Transform (DFT for short) of musical struc-
tures has come to the fore in several domains and appears to be one of the most
promising tools available to researchers in music theory. The DFT of a set (say a
pitch-class set) is a list of complex numbers, called Fourier coefficients. They can
be seen alternatively as pairs of real numbers, or vectors in a plane; each coefficient
provides decisive information about some musical dimensions of the pitch-class set
in question.
For instance, the DFT of C{EGBD is

(4,0,0,0,4e47/3 0,0,0,4e%7/30,0,0)

where all the 0’s show the periodic character of the chord, the sizes of the non-nil
coefficients mean that the chord divides the octave equally in four parts, and the
angles (2irr/3,4im/3) specify which of the three diminished sevenths we are looking
at.

From David Lewin’s very first paper (1959) and its revival by Ian Quinn (2005),
it came to be known that the magnitude of Fourier coefficients, i.e. the length of
these vectors, tells us much about the shape of a musical structure, be it a scale,
chord, or (periodic) rhythm. More precisely, two objects whose Fourier coefficients
have equal magnitude are homometric, i.e. they share the same interval distribution;
this generalization of isometry was initially studied in crystallography. Saliency, i.e.
a large size of some Fourier coefficients, characterises very special scales, such as
the diatonic, pentatonic, whole-tone scales. On the other hand, flat distributions of
these magnitudes can be shown to correspond with uniform intervallic distributions,
showing that these magnitudes yield a very concrete and perceptible musical mean-
ing. Furthermore, nil Fourier coefficients are highly organised and play a vital role
in the theory of tilings of the line, better known as “rhythmic canons.”
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Finally, the cutting-edge research is currently focused on the other component of
Fourier coefficients, their directions (called phases). These phases appear to model
some aspects of tonal music with unforeseen accuracy. Most of these aspects can be
extended from the discrete to the continuous domain, allowing the consideration of
microtonal music or arbitrary pitch, and interesting links with voice-leading theory.
This type of analysis can also be defined for ordered collections of non-discrete pitch
classes, enabling, for instance, comparisons of tunings.

Historical Survey and Contents

Historically, the Discrete Fourier Transform appeared in D. Lewin’s very first paper
in 1959 [62]. Its mention at the very end of the paper was as discreet as possible,
anticipating an outraged reaction at the introduction of “high-level” mathematics in
a music journal — a reaction which duly occurred. The paper was devoted to the inter-
esting new notion of the Intervallic Relationship between two pc-sets!, and its main
result was that retrieval of A knowing a fixed set B and IFunc(A, B) was possible,
provided B did not fall into a hodgepodge of so-called special cases — actually just
those cases when at least one of the Fourier coefficients of B is 0. These were the
times when Milton Babbitt proved his famous hexachordal theorem, probably with
young Lewin’s help. As we will see, its expression in terms of Fourier coefficients
allows one to surmise that the perception of missing notes (or accents, in a thythm)
completely defines the motif’s intervallic structure. These questions, together with
any relevant definitions and properties (with some modern solutions to Lewin’s and
others’ problems), are studied in Chapter 1.

Lewin himself returned to this notion in some of his last papers [63], which in-
fluenced the brilliant PhD research of 1. Quinn, who encountered DFT and espe-
cially large Fourier coefficients as characteristic features of the prominent points of
his “landscape of chords” [72], see Fig. 4.1. Since he had voluntarily left aside for
readers of the Journal of Music Theory the ‘stultifying” mathematical work involved
in the proof of one of his nicer results, connecting Maximally Even Sets and large
Fourier coefficients, I did it in [10], along with a complete discussion of all maxima
of Fourier coefficients of all pc-sets, which is summarised and extended in Chapter
4. Lacklustre Fourier coefficients, with none showing particular saliency, are also
studied in that chapter.

Meanwhile, two apparently extraneous topics involved a number of researchers
in using the very same notion of DFT: homometry which is covered in Chapter 2
(see the state of the art in [2, 64] and Tom Johnson’s recent compositions Intervals
or Trichords et tetrachords); and rhythmic canons in Chapter 3 — which are really
algebraic decompositions of cyclic groups as direct sums of subsets. The latter can be
used either in the domain of periodic rhythms or pitches modulo some ‘octave,” and
were first extensively studied by Dan Tudor Vuza [94]2, then connected to the general

I'T use the modern concept, though the term ‘pitch-class set’ had not yet been coined at the
time. IFunc(A, B) is the histogram of the different possible intervals from A to B.
2 At the time, probably the only theorist to mention Lewin’s use of DFT.
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theory of tiling by [19, 17] and developed in numerous publications [8, 18, 73] which
managed to interest some leading pure mathematician theorists in the field (Matolcsi,
Kolountzakis, Szabd) in musical notions such as Vuza canons.’

There were also improbable cross-overs, like looking for algebraic decomposi-
tions of pc-collections (is a minor scale a sum and difference of major scales?) [13],
or an incursion into paleo-musicology, quantifying a quality of temperaments in the
search for the tuning favoured by J.S. Bach [16], which unexpectedly warranted the
use of DFT.

Aware of the intrinsic value of DFT, several researchers commented on it, trying
to extend it to continuous pitch-classes [25] and/or to connect its values to voice-
leadings [89, 88]. These and other generalisations to continuous spaces are studied
in Chapter 5. Another very original development is the study of all Fourier coeffi-
cients with a given index of all pc-sets [50], also oriented towards questions of voice-
leadings. On the other hand, consideration of the profile of the DFT enables charac-
terisation of pc-sets in diverse voices or regions of tonal and atonal pieces [98, 99] as
we will see in Chapter 6, which takes up the dimension that Quinn had left aside, the
phase (or direction) of Fourier coefficients. The position of pairs of phases (angles)
on a torus was only recently introduced in [15] but has known tremendously inter-
esting developments since, for early romantic music analysis [96, 97] but also atonal
compositions [98, 99]. Published analyses involve Debussy, Schubert, Beethoven,
Bartok, Satie, Stravinsky, Webern, and many others. Other developments include,
for instance, comparison of intervals inside chromatic clusters in Lutoslawski and
Carter, using DFT of pitches (not pitch classes) by Cliff Callender [25].

A Couple of Examples

I must insist on the fact that DFT analysis is no longer some abstract considera-
tion, but is done on actual music: consider for instance Chopin’s Etude op. 10, N°5,
wherein the pentatonic (black keys) played by the right hand is a subset of G b ma-
jor played by the left hand; but so are many other subsets (or oversets). I previously
pointed out in [10] that, because the pentatonic and diatonic scales are complemen-
tary Maximally Even Sets, one is included in the other up to transposition (warrant-
ing the name ‘Chopin’s Theorem’ for this property of ME sets); however, it is much
more significant to observe that these two scales have identical Fourier coefficients
with odd indexes*, which reflects spectacularly their kinship (see Chapter 6 and Fig.
4.7). I cannot wait to exhibit another spectacular example of the ‘unreasonable effi-
ciency’ of DFT: Jason Yust’s discovery [98] that in Bartok’s String Quartet 4 (iv),
the accompaniment concentrates its energy in the second Fourier component while
this component vanishes for the melody, and conversely for the sixth component
(associated with the whole-tone character). This is again vastly superior to classic

3 The musical aspect lies in the idea that a listener does not hear any repetition either in the
motif nor in the pattern of entries of a Vuza canon.
4 The other coefficients, with even indexes, have the same magnitude, but different directions.
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‘Set-Theory’ subset-relationships (parts of this analysis and others are reproduced in
this book), cf. Fig. 0.1 (further commented on in Chapters 4 and 6).

5Ly mmmmmees {0,2,3,5,6,8,10}
{2,3,7,8}

Fig. 0.1. DFT magnitudes of melody and accompaniment in Bartok

One explanation of the efficiency of DFT in music theory may well be Theorem
1.11. As we will see throughout this book, many music theory operations can be
expressed in terms of convolution products. Not only is this product significantly
simpler in Fourier space (i.e. after Fourier transform, cf. Theorem 1.10), but the
aforementioned theorem proves that Fourier space is the only one where such a
simplification occurs. This means that, for instance, interval functions or vectors,
which are essential in the perception of the shape of musical objects, are more easily
constructed and even perceived in Fourier space. Idem for the property of tiling —
filling the space with one motif according to another — which is completely obvious
when glancing at nil Fourier coefficients. Furthermore, we will see and understand
how each and every polar coordinate in Fourier space carries rich musical meaning,
not requiring any further computation.

Public

This book aims at being self-contained, providing coherent definitions and proper-
ties of DFT for the use of musicians (theorists and practitioners alike). A wealth of
examples will also be given, and I have chosen the simplest ones since my purpose is
clarity of exposition. More sophisticated examples can be found in the already abun-
dant bibliography. I have also added a number of exercises, some with solutions,
because the best way to make one’s way through new notions is always with pen and
pencil.

Professional musicians, researchers and teachers of music theory are of course
the privileged public for this monograph. But I tried to make it accessible at pre-
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graduate level, either in music or in mathematics. In the former case, besides in-
troducing the notion of DFT itself for its intrinsic interest, it may help the student
progress through useful mathematical concepts that crop up along the way. In the
latter case, I hope that maths teachers may find interesting material for their classes,
and that the musical angle can help enlighten those students who need a purpose
before a concept. It is even hoped, and indeed expected, that hardened pure mathe-
maticians will find in here a few original results worth their mettle.

Some general, elementary grounding in mathematics should be useful: knowl-
edge of simple number sets (integers, rationals, real and complex numbers), basics
of group theory (group structure, morphism, subgroups) which are mostly applied to
the group Zi, of integers modulo 12; other simple quotient structures make furtive
appearances in Chapters 1 and 3; vector spaces and diagonalization of matrixes are
mentioned in Chapter 1 and used once in Chapter 2, providing sense to the other-
wise mysterious ‘rational spectral units’. The corresponding Theorem 2.10 is the
only really difficult one in this book: many proofs are one-liners, most do not exceed
paragraph length. All in all, I hope that any cultured reader with a smattering of sci-
entific education will feel at ease with most of this book (and will be welcome to
skip the remaining difficulties). On the other hand, mathematically minded but non-
musician readers who cannot read musical scores or are unfamiliar with ‘pc-sets’ or
‘scales’ can rely on the omnipresent translations into mathematical terms.

Last but not least, some online content has been developed specifically for the
readers of this book, who are strongly encouraged to use it: for instance all ‘Fourier
profiles’ of all classes of pc-sets can be perused at
http://canonsrythmiques. free.fr/MaRecherche/photos-2/
while only a selection of the 210 cases is printed in Chapter 8, and software is avail-
able for the computation of the DFT of any pc-set in Z5.
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