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Homometry and the Phase Retrieval Problem

Summary. This chapter studies in depth the notion of homometry, i.e. having identical in-
ternal shape, as seen from Fourier space, where homometry can be seen at a glance by the
size (or magnitude) of the Fourier coefficients. Finding homometric distributions is then a
question of choosing the phases of these coefficients, hence this problem is often called phase
retrieval in the literature. Such a choice of phases is summed up in the objects called spectral
units, which connect homometric sets together. I included the original proof of the one difficult
theorem of this book (Theorem 2.10), which non-mathematicians are quite welcome to skip.
Some generalisations of the hexachord theorem are given, followed by the few easy results
on higher-order homometry which deserve some room in this book because they rely heav-
ily on DFT machinery. An original method for phase-retrieval with singular distributions (the
difficult case) is also given. Some knowledge of basic linear algebra may help in this chapter.

We recall the definition of homometry and its characterisation given above: Two
subsets (or distributions) are homometric iff they share the same intervallic distri-
bution, or equivalently iff they have the same magnitude for all their Fourier coeffi-
cients:

IC(A) = IC(B) ⇐⇒ |FA|= |FB|.
See the smallest example in Fig. 2.1 with {0,1,3,7},{0,1,4,6} and of course

their retrogrades. Their intervallic function is (4,1,1,1,1,1,2,1,1,1,1,1).
Though these pc-sets do appear in 20th century music (Elliot Carter’s first quar-

tet for instance), they had never been used as systematically as in Tom Johnson’s
Intervals (2013). The edges of the graph in Fig. 2.3 are the 48 homometric tetra-
chords, organised around common tritones for the eponymous piece. The composer
navigates between adjacent tetrachords, each tritone being completed into the four
distinct forms (up to transposition) of the tetrachords, as can be seen on the first line
of the score in Fig. 2.2 (for instance 2,8 can be completed by 0,3 or 0,6 or 0,9 or
6,9). The other pieces in Intervals, seconds, thirds and so forth, similarly explore the
same collection of 48 pc-sets with focus on seconds, minor thirds, etc –, since these
tetrachords contain all possible intervals. The non-trivial homometry is clearly heard,
the music spells the common tritones in the four different pc-sets classified in Fig.
2.1. Since the awakening of his interest in homometric sets, Johnson has worked on
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Fig. 2.1. Homometric quadruplets

other compositions using them, notably with homometric heptachords in the septet
“Trichords et tetrachords” (2014).

Fig. 2.2. Between common tritones

The Z-relation, as defined by Alan Forte [42] but also previously [49], is homo-
metry in Z12, minus the trivial case of T/I related pc-sets. Non-trivially Z-related sets
exist in Zn for all n � 12, and also when n = 8 or 10.1

This notion originated in crystallography (see [75]) and addresses the question
of whether an interference picture (say of a crystal under X-ray lighting) provides
enough information to identify the geometric structure of the object.2 The question
of finding all (or at least some) homometric sets boils down to finding the phase of
the Fourier coefficients, since their magnitude is common to all homometric distri-
butions. Hence it is often called the Phase Retrieval Problem in the literature. Most
of this chapter is adapted and simplified from [64, 2] which discuss the finer aspects
of this problem and some possible generalisations, especially to non-discrete and/or
non commutative groups. We will allude to some of these developments in Section
2.2.1.

1 Examples in Zn,n � 12 are A = {0,1,2,6,8,11},B = {0,1,6,7,9,11}.
2 Interferences of lightwaves images are made by summing exponential waves with vary-

ing parameters, and the light intensity on the resulting picture varies proportionally to the
magnitude of a Fourier transform.
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Fig. 2.3. T/I images of 0146 and 0137

2.1 Spectral units

In the most general setting, for a distribution f (recall that this generalizes the char-
acteristic function of a pc-set, for instance) the intervallic function is the convolution
product d2( f ) = f ∗ I( f ), where I( f ) is the inversion of f , i.e. f read backwards, e.g.
the traditional musical inversion in the case of a pc-set. This map is called the Pat-
terson function; the notation d2 probably means ‘mutual distances between points’
for crystallographs. From Lewin’s Lemma 1.25 we know that the Patterson function
is completely determined by the Fourier transform, since

d̂2( f ) = | f̂ |2.

In this chapter, we will focus on the magnitude of the Fourier transform | f̂ | instead
of d2( f ). This is a simpler method, which would fail if Zn were to be replaced by
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a non-commutative group since Fourier analysis is much more complicated in such
contexts, but this still works in discrete and locally compact abelian groups as we will
point out in Section 2.2.1. For the sake of simplicity, we stick to Zn in the present
section and refer the more curious readers to the bibliography.

2.1.1 Moving between two homometric distributions

Definition 2.1. A distribution u∈CZn ≈Cn is a spectral unit iff its Fourier transform
is unimodular:

∀t ∈ Zn |û(t)|= 1.

We will denote the set of spectral units on Zn as Un (or Un(K) if we restrict ourselves
to coefficients in a subfield K ⊂ C).

Theorem 2.2. Two distributions f ,g in CZn ≈ Cn are homometric iff there exists a
spectral unit u such that f = u∗g.

Proof. This equation is equivalent to ∃u ∈ Un, f̂ = û× ĝ (termwise), which is itself
equivalent to | f̂ |= 1×|ĝ|, i.e. to the homometry of f ,g.

Proposition 2.3. (Un,∗) is an abelian group.

Proof. It is the image of the torus
(
(S1)n,×) by inverse Fourier transform, which is

a morphism as we have already established.

Since the Fourier transform is also an isometry (for a ‖ ‖2 norm, see Theorem 1.8),
this means that the phase retrieval problem is solved and that the set of distributions
homometric with f is simply Un∗ f = {u∗ f ,u∈Un}, each orbit exhibiting the shape
of a n-dimensional torus. This is true in a way, but deceptively, because we have
chosen the smooth setting of the vector space Cn of all distributions. If one wishes to
retrieve homometric pc-sets, then one must pick in the infinite orbit only those few
distributions which are characteristic functions, i.e. with values in {0,1}. Despite
considerable efforts, there is still no known good general method for doing this.
Computational methods are by and large the best practical tools but the complexity
of their calculations is exponential.

Example 2.4. Consider again the most famous (non-trivial) homometric pc-sets in
Z12, A = {0,1,4,6} and B = {0,1,3,7}.

The spectral unit ‘connecting’ those two pc-sets, i.e. 1B = 1A ∗ u, is easily com-
puted using techniques developed in the next . In this case, it is unique:

u = (
1
4
,

1
4
,0,

1
4
,−1

4
,−1

2
,

1
4
,

1
4
,0,

1
4
,−1

4
,

1
2
).

Since one pc-set is the affine image of the other3, the Fourier coefficients are actually
permutated, following Theorem 1.19. The Fourier coefficients of u are unit-sized as
expected:

û =
(

1,e
iπ
6 ,e−

iπ
3 , i,1,e

5iπ
6 ,−1,e−

5iπ
6 ,1,−i,e

iπ
3 ,e−

iπ
6

)
.

3 In Z12, {0,1,3,7}= 5×{0,1,4,6}−5.
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2.1.2 Chosen spectral units

The fact that a distribution only takes values 0 or 1 yields some information about
possible spectral units between this distribution and another homometric one; and
we can refine Theorem 2.2:

Theorem 2.5. If two pc-sets A,B are homometric then there exists a spectral unit u
with rational coefficients such that 1A = u∗1B.

This is an easy case of the more difficult following theorem ([76]):

Theorem 2.6 (Rosenblatt).

Two distributions f ,g in QZn ≈Qn are homometric iff there exists a spectral unit
u with values in Q such that f = u∗g.

This statement is fairly obvious when one distribution is invertible for the convo-
lution product ∗, since the coefficients of the inverse must stay in the same field
(actually Rosenblatt’s theorem is given for any subfield of C). The difficulty is in the
singular case (again Lewin’s ‘special cases’!) and we will see below that it remains
so for higher-level homometry.

Another simple case provides what is probably the most complicated proof of the
hexachord theorem so far (no challenge intended):

Proposition 2.7. Let h = ( 2
n −1, 2

n ,
2
n , . . .). Then h is a spectral unit4, and when n is

even, for any set A with n/2 elements, h ∗ 1A is equal to the characteristic function
1Zn\A of the complement of A.

Proof. Left as an exercise.

The question of non-invertible, or singular, distributions, is studied in depth in
Section 3.1. For the time being, it will suffice to make a simple observation: if f and
g are homometric and f̂ (k) = 0 (hence ĝ(k) = 0 too) then the value of û(k) can be
chosen arbitrarily on the unit circle, with f = u∗g in k. In this case there may exist
infinitely many different spectral units connecting f and g, even with restrictions on
the coefficients. Some examples will be given below after we have developed the
matricial technique for computation of spectral units.

Remember the algebra of circulating matrixes Cn(C) in section 1.2.3. We have
the following characterisation of spectral units in this setting (recall that the eigen-
values of the matrix are simply the Fourier coefficients of the distribution listed in its
first column):

Proposition 2.8. u ∈ Cn is a spectral unit ⇐⇒ its circulating matrix has all its
eigenvalues on the unit circle. The group of such matrixes is the intersection of Cn(C)

and the group of unitary matrixes (i.e. satisfying U−1 =UT ).

4 Using the language of circulating matrixes which appear again infra, the matrix of h is

H = 2
n

(
1 1 ... 1
...

. . .
...

1 ... ... 1

)
− In and its eigenvalues are 1 and −1, this last repeated n−1 times.
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This makes even more obvious the isomorphism between Un and the torus Tn, which
appears by diagonalisation. The whole group of rational (or real) spectral unit ma-
trixes can be described implicitly by the equations

(Ek) :
n−1

∑
j=0

a ja j+k = 0,k = 1 . . .�n−1
2

� and ∑
j

a2
j = 1

where indices are taken modulo n. For instance, for n = 3 the group of real spectral
units U3(R) is the pair of parallel circles described by the matrixes

(
a b c
c a b
b c a

)
with

a2 +b2 + c2 = 1 and a+b+ c =±1.
Now the computation of a spectral unit between two given homometric distribu-

tions is straightforward:5

Proposition 2.9.

f = u∗g ⇐⇒ F = U ×G ,

where X stands for the circulating matrix associated with distribution x.

In the example given above, we solved the equation in circulating matrixes (only the
first column is provided) ⎛⎜⎜⎜⎜⎜⎜⎝

1 ...
1 ...
0 ...
1 ...
0 ...
0 ...
0 ...
1 ...
0 ...
0 ...
0 ...
0 ...

⎞⎟⎟⎟⎟⎟⎟⎠= U ×

⎛⎜⎜⎜⎜⎜⎜⎝

1 ...
1 ...
0 ...
0 ...
1 ...
0 ...
1 ...
0 ...
0 ...
0 ...
0 ...
0 ...

⎞⎟⎟⎟⎟⎟⎟⎠
which is done by inverting the right-hand matrix given.

2.1.3 Rational spectral units with finite order

Musical transposition is very simply and universally achieved by convolution with
the spectral unit j = (0,1,0,0,0,0,0,0,0,0,0,0) and its powers, e.g. E� minor
triad is obtained from S by the matrix product J 3S , or equivalently j3 ∗ s =
(0,0,0,1,0,0,1,0,0,0,1,0). It is, however, much less straightforward to achieve in-
version by way of a spectral unit.

Let S be the matrix of distribution s = (1,0,0,1,0,0,0,1,0,0,0,0) (the C minor
triad) and T defined by t = (1,0,0,0,1,0,0,1,0,0,0,0) (the C major triad). From C
major to C minor we must have U = S −1T , which yields

u =
1

15
(7,4,−2,1,7,4,−2,1,−8,4,−2,1).

5 With the proviso made above in the case of distributions with some nil Fourier coefficients,
which can still be settled but via the arbitrary choice of the corresponding Fourier coeffi-
cients in û. See Example 2.23.
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Contrarily to transposition, the spectral unit achieving inversion depends on the in-
verted subset6 (or distribution), and even more strangely, in general, such units are
of infinite order in the group of units, as in the example above.

On the other hand, iterating convolution by the spectral unit connecting {0,1,3,7}
and {0,1,4,6}, which has finite order (all its Fourier coefficient are 12th roots of
unity), yields twelve different distributions, eight of which are genuine pc-sets:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 1 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0
1
2

1
2 1 1

2
1
2 −1 1

2
1
2 0 1

2
1
2 0

0 1 0 1 0 0 0 0 0 1 1 0
1 0 0 0 1 0 0 0 0 1 1 0
1
2

1
2 −1 1

2
1
2 0 1

2
1
2 0 1

2
1
2 1

1 0 0 0 0 0 1 1 0 0 1 0
0 1 0 0 0 0 1 1 0 1 0 0
1
2

1
2 0 1

2
1
2 0 1

2
1
2 1 1

2
1
2 −1

0 0 0 1 1 0 0 1 0 1 0 0
0 0 0 1 1 0 1 0 0 0 1 0
1
2

1
2 0 1

2
1
2 1 1

2
1
2 −1 1

2
1
2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
One can interpret the first four distributions in this table as splitting the minor third-
down transposition into three identical moves, which are not transpositions (the first
turns 0137 into 0146, and the next distribution is not a genuine pc-set), e.g. we have
defined a non-trivial cubic root of the minor third transposition.

Since the study of rational spectral units with infinite order does not look too
promising, it is natural to wonder about rational spectral units with finite order.
Their set is a subgroup of Un(Q). Since there are already, for instance, infinitely
many matrixes 2×2 with rational coefficients and finite order, the following result is
noteworthy. Moreover it is a practical way for exploring homometric classes in Zn,
when n is not too large (though brute force search may seem more efficient, until
more refined applications of this theorem are implemented).

Theorem 2.10. Any spectral unit (represented as a rational circulating matrix) with
finite order is completely determined by the values of the subset {ξ j, j | n} of its
eigenvalues, the possibilities being listed infra:

• ξ0 =±1;
• When n is odd, for all j | n, ξ j OR −ξ j is any power of e2i jπ/n.
• When n is even, ξ j is any power of e2i jπ/n if n/ j is even, or any power of ei jπ/n if

n/ j is odd.

Then for any k coprime with n, ξk j = ξ k
j (or −ξ k

j in the specific case when ξ j is a
e(2p j+1)iπ/n and k is even).

As a corollary, we have the structure of the whole group:

6 Matricially, one can write U = S (S T )
−1 if S is not singular.
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Theorem 2.11. The group of all rational spectral units with finite order in dimension
n is isomorphic to the product of cyclic groups ∏d|nZlcm(2,d).

These theorems may perhaps enable computation of all spectral units with, say,
small denominators, which occur in practice for homometric subsets of Zn and may
be a provable condition in general cases.

For instance, for n = 12 the structure of this group is Z12 × (Z6)
2 ×Z4 × (Z2)

2,
with 6,912 elements. The denominators of the values of these spectral units are all
divisors of 12, a typical one being

u =
(− 1

12
,− 1

12
,0,

1
4
,− 1

12
,−1

3
,−3

4
,

1
4
,−1

3
,− 1

12
,

1
4
,0
)
.

The proof is quite involved, and non-mathematically inclined readers are invited
to skip it.

Proof. We begin by proving two intermediary results, which are contained in the
main theorem:

Lemma 2.12. If U ∈ Cn is a spectral unit (matrix) with finite order and n is even,
then all its eigenvalues are nth roots of unity. If n is odd, then the eigenvalues are
either nth roots of unity or their opposites (i.e. they are 2nth roots of unity).

This stems from a more precise condition:

Lemma 2.13. If U ∈ Cn is a rational spectral unit with finite order and n is even,
then for all k coprime with n and any Fourier coefficient (= eigenvalue of U ) ξ j, j �=
0, one has ξk j = ξ j

k. For j = 0 we have ξ0 =±1.
The same condition stands when n is odd, with the exception of the case when ξ j

is a e(2p j+1)iπ/n and k is even: then ξk j =−ξ j
k.

For instance for k = −1, this gives the condition that the last Fourier coefficients
must be the conjugates of the first ones (thus ensuring that U is real valued). More
generally, given one coefficient ξ j we know all coefficients with indexes associated
with j.

Throughout, U is a circulating matrix which is unitary (U −1 = tU ), has finite
order (U m = In for some m), and has rational elements. Hence its eigenvalues have
magnitude 1 (they are mth roots of unity), and, as discussed above,xx U diagonalises
into Diag(ξ0,ξ1, . . .ξn−1) where the eigenvalues ξ j are also the Fourier coefficients
of the first column of U , seen as a map from Zn to C.

We begin by proving an alternative, simpler form of Lemma 2.12, stating that
m = n or m = 2n:

Lemma 2.14. All eigenvalues of U are nth roots of unity for even n, and 2nth roots
of unity for odd n.

Already this establishes that the group we are looking for is finite, a non-trivial fact.
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Proof. As we assumed that U has finite order, all its eigenvalues are roots of unity.
Moreover, as U = P(J ),P ∈Q[X ] is a polynomial in the matrix J , whose eigen-
values are the nth roots of unity, the eigenvalues of U are polynomials in these roots,
i.e. ξk = P(e2ikπ/n), and hence lie in the cyclotomic field Qn = Q[e2iπ/n]. We need
the following:

Lemma 2.15. Let ξ be a mth root of unity belonging to the cyclotomic field Qn.

Then

{
ξ n = 1 when n is even,
ξ 2n = 1 when n is odd.

In other words, if Qm ⊂Qn then m is a divisor of n or 2n, according to whether n is
even or odd.7

Let ξ be such a unit root (say, any eigenvalue of U ). Let m be the order of ξ ,
i.e. the smallest integer satisfying ξ m = 1; we know that ξ , primitive root of order
m, generates Qm. As ξ ∈Q[e2iπ/n] too, Qm ⊂Qn. This does not obviously preclude
m > n. We need still another:

Lemma 2.16. The multiplicative group of elements of finite order in Qn is cyclic.8

This is because given two elements ξ ,ξ ′ with orders m,m′ it is possible to construct
an element of order lcm(m,m′) (for instance, their product). In other words, the roots
of unity in Qn have a maximum order, which is the lcm of all possible orders.

Let us call again m this maximal value; to prove Lemma 2.12 we need to prove
that m = n or 2n. Now, any element ξ of Qn which is a root of unity must satisfy
ξ m = 1.

This is true in particular when ξ is the primitive nth root e2iπ/n; hence m is a
multiple of n, and it follows that Qn, generated by a power of e2iπ/m, is a subset of
Qm. Finally, by double inclusion,Qn =Qm. Now, in order to clarify the relationship
between n and m, we must consider the dimension of Qn as a vector space on the
rational field Q.

It is ϕ(n) = dim[Qn/Q], where ϕ is Euler’s totient function9, it stands that n |
m and ϕ(n) = ϕ(m).

Since ϕ(n)= n×∏
p|n and p prime

(
1− 1

p

)
, the only possibility is that m=

{
n for n even
2n for n odd

.

This proves that all eigenvalues of U are nth or 2nth roots of unity. Let us clarify the

case of odd n: eiπ/n =−(
e2iπ/n

) n+1
2 and hence we do indeed have Qn =Q2n. So we

can rephrase what we just proved as Lemma 2.12: in the odd case, ξ n =±1.
7 For instance Q3 =Q6, see exercises.
8 It is perhaps not obvious that this group is finite, and indeed the group of elements of Q2

with magnitude one is not; essentially, this holds because for large m the dimension ϕ(m)
of the galoisian extension Qm/Q tends to infinity and thus exceeds ϕ(n), dimension of
Qn/Q (a more precise computation will be given in the main proof); hence roots of order
m for large m cannot exist in Qn.

9 This follows from the fact that the minimal polynomial of e2iπ/n over Q is the cyclotomic
polynomial Φn with degree ϕ(n).
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Remark 2.17. At this point, U could be constructed as a polynomial in the elemen-
tary circulating matrix J (as all other circulating matrixes) U = P(J ), where P is
the interpolating polynomial that sends the Fourier coefficients of J , i.e. the e2ikπ/n,
to the Fourier coefficients chosen for U . Such a construction is easy and sometimes
practical, using the basis of Lagrange polynomials associated with the e2ikπ/n, since
P is a linear combination of these polynomials with coefficients that are precisely the
Fourier coefficients of the desired u.

It is now time to prove Lemma 2.13: the possibilities of mapping the nth roots of 1 to
mth roots of 1 can be somewhat reduced by noticing that U is a rational polynomial10

in J , and such a polynomial is stable under all field automorphisms of Qn if we use
the following characterisation from Galois theory:

Lemma 2.18. Any object (number, vector, polynomial, matrix) with coefficients in
Qn is rational iff it is invariant under all Galois automorphisms of the cyclotomic
extension Qn over Q.

We mention the structure of its Galois group without proof either.11

Lemma 2.19. Any field (Galois) automorphism of the cyclotomic extension Qn over
Q is defined by Ψk(e2iπ/n) = e2ikπ/n for some definite k ∈ Z∗

n, the group of invertible
elements of the ring Zn, e.g. for any integer k coprime with n.

This is enough to define Ψk(x) for any x ∈ Qn, since any element of Qn can be
written x=∑a je2i jπ/n with rational a j’s, and it follows that Ψk(x) =∑a je2i jkπ/n. For
instance when n = 12, there are exactly four different automorphisms Ψk, defined by
the possible images of e2iπ/12 = eiπ/6, namely eikπ/6, k ∈ {1,5,7,11}. Their group
(the Galois group of the cyclotomic field) is isomorphic with the multiplicative group
Z∗

12 = {1,5,7,11}.
If Ψk is such an automorphism, notice that Ψk(ξ ) = ξ k for any nth root ξ of unity

(with one exception: Ψk(−1) =−1 ∀k ∈ Z∗
n). If n is odd and ξ is a 2nth root but not

a nth, then −ξ is a nth root, and hence

Ψk(ξ ) =−(−ξ )k =

{
ξk for k odd
−ξk for k even

.

For instance Ψ2(ξ ) =−ξ 2 for such ξ .

So from Lemma 2.18, we state that U ∈ Mn(Q) iff U is invariant under all the
Ψk,k ∈ Z∗

n.

Now at last we can prove Lemma 2.13.
First case: n even.

Consider the eigenvector Xj = (1,e2i jπ/n,e2i2 jπ/n, . . .e2i j(n−1)π/n)T for the eigen-
value ξ j of U (for matrix J, the eigenvalue is of course e2i jπ/n). The T indicates

10 The coefficients of this polynomial can be read on the first column of U .
11 These two results can be found in any textbook on Galois theory.
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that we consider Xj as a column. We have Ψk(Xj) = Xjk by direct computation. The
case j = 0 is straightforward: since the eigenvector is real valued, so must be the
eigenvalue, i.e. ξ0 =±1. We shall now set this case aside.

We assume that Ψk(U ) =U (i.e. that U is rational valued). Applying the Galois
automorphism Ψk to the equation

U Xj = ξ jXj yields Ψk(U )Ψk(Xj) = U Xk j = ξk jXk j =Ψk(ξ j)Ψk(Xj) = ξ k
j Xk j.

Hence
Ψk(ξ j) = ξ k

j = ξ jk (�)

for all j �= 0 and all k ∈ Z∗
n.

Now for the reciprocal. Assume the above equation (�) between the eigenvalues.
We choose one Galois automorphism, Ψk (for some k coprime with n). Let us ap-
ply Ψk(U ) to any eigenvector Xj of U ; notice that Xj = Ψk(Xk−1 j) where k−1 j is
computed modulo n. Hence

Ψk(U )Xj =Ψk(U Xk−1 j) =Ψk(ξk−1 jXk−1 j) =Ψk(ξk−1 j)Ψk(Xk−1 j)

= ξ k
k−1 jXkk−1 j because Ψk raises any root of 1 to the kth power

= ξ jXj by our assumption on the eigenvalues.

We have proved that Ψk(U ) does the same thing as U on any eigenvector. But the
eigenvectors of U constitute a basis, hence Ψk(U ) = U for all k coprime with n,
i.e. U is rational valued.

Last case: n odd.

We still get the equation Ψk(ξ j) = ξ jk if U is assumed to be invariant under Ψk.
If ξ is a nth root of unity, the computation is identical.
If ξ 2n = 1 but ξ n �= 1, then (−ξ )n = 1 and henceΨk(ξ ) =−Ψk(−ξ ) =−(−ξ )k =

−ξ k for even k and Ψk(ξ ) = ξ k for odd k. The computation above still yields ξ jk =
Ψk(ξ j) = ξ k

j for odd k, and we have also the new case ξ jk =−ξ k
j for even k.

Say k = 2, and ξ1 = ξ with ξ 2n
1 = 1 �= ξ n

1 ; then ξ2 = −ξ 2,ξ4 = −ξ 4, . . .ξ2m =
−ξ 2m

. Number 2 has finite order in Z∗
n, hence for some m, ξ2m = ξ1. We get an orbit

of m eigenvalues which are all 2nth roots of unity, e.g. O = {ξ1,ξ2,ξ4,ξ8 . . .}.
Say now that k = 2vk′,k′ odd and coprime with n. The formula (�) is then valid

and yields ξk = ξ k′
2v . So ξk is determined when O is known. Notice that ξk will never

be a nth root (because 2 and k′ are coprime with n): either all the eigenvalues (with
even index) are nth roots, or none (except of course ξ0 =±1).

The reciprocal is similar to the even case:

• it is identical when the eigenvalues are of order n (at most); and
• if ξ1 has order 2n, then the values of ξk that we have obtained will satisfy the re-

lations Ψk(U )Xj = ξ jXj for all j,k §k coprime with n, so that Ψk(U ) is identical
to U , i.e. U is rational-valued.
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This ends the proof of Lemma 2.13.

We can now use the cases expounded in Lemma 2.13 to prove Theorem 2.10.
The whole set of eigenvalues is determined if we know ξ j for a subset of repre-

sentatives j of all orbits under multiplication by elements of Z∗
n (so called associated

elements in the ring Zn). We can specify the smallest representatives:

Lemma 2.20. Any element j ∈ the ring Zn is associated with a divisor of n, i.e.
∃k ∈ Z∗

n, k j = gcd(n, j).

(We identify integers and classes modulo n here since the distinction is irrelevant).

Proof. This stems from the Bezout identity (in Z): for some k, �,k j+�n = gcd(n, j).
After division by gcd(n, j) we see that k and n are coprime. But modulo n,k j =
gcd(n, j).

Example 2.21. For n = 15 we have the orbits of equivalent elements

(0),(1,2,4,7,8,11,13,14),(3,6,9,12),(5,10)

indexed by the divisors 1,3,5 and of course 0. This classification will prove useful
in Chapter 3.

So it is sufficient to specify ξ j when j is any divisor of n. We will need a last
lemma, interesting in its own right:12

Lemma 2.22. The set of differences Δn = Z∗
n −Z∗

n = {a− b,(a,b) ∈ (Z∗
n)

2} is Zn
when n is odd, 2Zn when n is even.

Proof. It is straightforward for n prime, for n an odd prime power, and we notice that
when n = 2m then Z∗

n = odd numbers, so that Δn = even numbers. The general case
now stems from the Chinese remainder theorem, i.e. the Sylow decomposition: if n=
2d . . . pz . . . is the prime decomposition of n then Z∗

n = (Z/2dZ)∗× . . .(Z/pzZ)∗× . . .
and the result being true for the factors is true for the product.

We now proceed to prove the theorem. Remember that ξ0 =±1.

• When n is even:
In this case all eigenvalues are nth roots of unity. Let j be any strict divisor of n.
– When n/ j is even, we can produce k,k′ ∈ Z∗

n with k′ − k =
n
j
∈ 2Z from

Lemma 2.22. Hence (noting that k ≡ k′ mod n)

ξ
k+ n

j
j = ξ k′

j = ξ jk′ = ξ jk = ξ k
j

which proves that ξ
n
j

j = 1, i.e. ξ j is a power of e2i jπ/n.

12 Though elementary in nature, the result was previously unknown to the author and does not
appear to be readily available in the literature.
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– If n/ j is odd (meaning that j contains the same power of 2 as n), then Lemma

2.22 only provides k′ − k =
2n
j

, and the calculation yields ξ 2n/ j
j = 1, i.e. ξ j

is a power of ei jπ/n, which ends the even case of the theorem.
• When n is odd:

The case when ξ j is a nth root is identical to the n even (first) case, as from the last

Lemma 2.22, we can again produce two elements k,k′ ∈ Z∗
n such that k′ −k =

n
j
,

and ξ k′−k
j = 1 = ξ n/ j

j . So the spectral unit is a power of e2iπ j/n, i.e. a n/ jth root
of unity ξ j for each divisor j of n.

Now assume that there is an eigenvalue ξ j which is not a nth root. Then −ξ j is
a nth root, and (as n/ j is odd) a similar calculation yields for k′ − k = n/ j, with
k,k′ ∈ Z∗

n,
(−ξ j)

k′ =−ξ jk′ =−ξ jk = (−ξ j)
k = (−ξ j)

k′− n
j .

Hence −ξ j is again a nth root of unity, this is the second subcase.
This ends the proof of the odd case of Theorem 2.10.

Theorem 2.11 follows from the possible independent values for each ξ j, j | n: in
general each ξ j lies in a cyclic group with order n/ j, while n/ j runs over the list of
divisors of n. The complicated situation is the case when −ξ j is also a n/ jth root,
which explains the lcm in the formula (the group {±1}×Zd is isomorphic with Z2d
whenever d is odd).

Example 2.23. This theorem enables us to find alternative spectral units between ho-
mometric pc-sets with some nil Fourier coefficients.

An example issued from music theory: consider two melodic minor scales
a = (1,0,1,1,0,1,0,1,0,1,0,1),b = (1,0,1,0,1,0,1,0,1,1,0,1). Their Fourier co-
efficients with indexes 2 and 10 are nil. Let us find a spectral unit u such that a∗u= b,
we have several possible choices for Fu(2):

• Using Rosenblatt’s choice, we choose arbitrarily ξ2 = Fu(2) = Fu(10) = ξ10 =
1 (the other Fourier coefficients are determined by Fu(k) = Fb(k)/Fa(k)).
This yields u = (0,0,0,0,0,0,0,0,0,1,0,0). Musically this means that A minor
(melodic) is transposed from C minor by a minor third, a foreseeable result!

• We know from Lemma 2.13 that ξ2 must be some power of eiπ/3, ξ10 being its
conjugate or inverse. This yields no less than five other possible units, e.g.

u =
1
4
(1,0,−1,−1,0,1,1,0,−1,3,0,1) or

u =
1

12
(1,2,1,−1,−2,−1,1,2,1,11,−2,−1) or

u =
1
6
(2,1,−1,−2,−1,1,2,1,−1,4,−1,1) or

u =
1

12
(1,−1,−2,−1,1,2,1,−1,−2,11,1,2) or

u =
1
4
(1,1,0,−1,−1,0,1,1,0,3,−1,0).
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In a way this can be interpreted as additional, hidden symmetries between those two
musical scales.

Example 2.24. Let us elucidate this subgroup of units when n = 12. Let u be a spec-
tral unit with finite order, and ξ0, . . .ξ11 its Fourier coefficients, i.e. the eigenvalues of
the associated matrix U . From Theorem 2.10 above, the relation ξ k

j = ξ jk is satisfied
for all four values of k = 1,5,7,11.

• There are no conditions on ξ1 which is any 12th root ξ of unity; its value specifies
ξ5 = ξ 5 and similarly ξ7,ξ11.

• ξ2 must be a power of e2×2iπ/12 = eiπ/3. This determines also ξ10 = ξ 2.
• Similarly ξ3 is a power of i = eiπ/2. We have ξ9 = ξ 3.
• Since 12/4 is odd (special case), ξ4 must be a power of eiπ/3, just like ξ2. Here

also, we find that ξ8 = ξ 4.
• ξ0 =±1 and ξ6 = ξ−6 = ξ−1

6 is a 12/6th root of 1, i.e. ξ6 =±1.

To conclude: ξ1 is any 12th root of unity, while ξ2,ξ3,ξ4 are limited to sub-
groups, ξ0 and ξ6 = ±1. The structure of the group is then Z12 × (Z6)

2 ×Z4 ×
(Z2)

2, with 6,912 elements like
(
0,0,1/3,−1/3,0,0,−2/3,−1/3,0,0,1/3,−1/3

)
or

(
7/12,−1/6,1/12,1/12,−1/6,−5/12,−5/12,−1/6,1/12,1/12,−1/6,−5/12

)
.

The complete list is available online as a text file:
http://canonsrythmiques.free.fr/allSpectralUnitsZ_12.txt.

It can be expanded from the following list of generators:(
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;

one may notice that the first one is the opposite of the complement operator, cf.
Proposition 2.7.

2.1.4 Orbits for homometric sets

We have seen that the action of the torus of spectral units describes the most general
orbits of homometric classes in the vector space Cn, but fails to elicit the distributions
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in this space which are actual pc-sets, i.e. distributions with values 0 or 1.13 Actually
there is a deep result behind this failure:

Theorem 2.25. Let n ∈ N with n � 2. If n = 8, n = 10 or n � 12, then for every field
K and for every subgroup H of the linear group GLn(K) such that the natural group
action of H on P(Zn) identified with {0,1}n is well-defined, the orbits of this group
action are not identical with the equivalence classes of the Z-relation.

This stunning result discovered by John Mandereau [64] needs translation: it means
that there is no ‘reasonable’ group action (that would induce some action on the pcs
themselves) whose orbits are the homometric classes.14

Of course, it is possible to study the symmetries of one class of isometric pc-
sets as subgroups of the group of permutations of k-subsets. Such symmetry groups
depend on the class and usually include (or coincide with) T/I. The other cases are
intriguing: for instance the group of the homometry class of {0,1,4,6} in Z12 is
isomorphic with the 48-element affine group modulo 12.15 The drawback of this
topdown approach is that the homometry class has to be computed before the sym-
metry group. On the other hand, elucidating the relationships between the elements
of an homometry class is extremely useful for composers: for instance, the afore-
mentioned class is composed of one orbit under the affine group, two orbits under
T/I ({0,1,4,6} and {0,1,3,7}) and four under T (adding {0,2,5,6} and {0,4,6,7},
see Fig. 8.13). More about the computations of these groups can be found in [41],
hinting at some compositional applications by Tom Johnson. A rich example uses
paths between the 108 homometric sets with size 5 in Z12, computed by Franck Je-
drzejewski and drawn by Johnson in Fig. 2.4, each line corresponding with one of
three generators a,b,c of the symmetry group.

2.2 Extensions and generalisations

2.2.1 Hexachordal theorems

We have stated the original hexachord theorem in modern terms:

Theorem 2.26 (Babbitt’s hexachord theorem).

Any hexachord in Z12 is homometric with its complement.

The proof can be easily adapted to a more general statement:

Theorem 2.27. The intervallic contents of a subset of Zn and of its complement differ
by a constant distribution, whose value is the difference between the cardinality of
the set and of its complement:

13 It is possible to get down to Rn but even the difficult Theorem 2.10 does not completely
elucidate homometry in Qn, leaving aside infinite orbits.

14 In this light one may remember that moving from a major to a minor triad was a ‘local’
transformation, depending on both triads.

15 Actually it IS the affine group itself, permutating the interval vector without changing it
since these are all-interval sets.
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Fig. 2.4. Paths between homometric 5-sets drawn by T. Johnson

IC(A)− IC(Zn \A) = (#(A)−#(Zn \A)).1 =Constant

For instance, the intervallic contents of Tristan’s chord {3,5,8,11} and its comple-
ment are (4,0,1,2,1,2,0,2,1,2,1,0) and (8,4,5,6,5,6,4,6,5,6,5,4); the difference
between those two vectors is constant and equal to 4, the cardinality difference. If
one is sensitive to the ratios between the interval counts, then the intervallic dis-
tribution is clearer on the smaller pc-set. If however one perceives the variation of
this interval histogram around a mean value, then perhaps the larger complement set
yields a neater intervallic distribution: the theorem says that the two ICs are equal
(up to a constant) but the contrast differs. In optics this result is actually known as
Babinet’s theorem:

The diffraction pattern from an opaque body is identical to that from a hole
of the same size and shape except for the overall forward beam intensity.

The difference in contrast means that, for instance, one can estimate the breadth of
a hair by carving it out of an opaque sheet and diffracting (ordinary) light with this,
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Fig. 2.5. Two diffraction graphs for a slit and its complement

or estimate the size of red blood cells by comparing the diffraction picture with one
obtained from calibrated small holes, see [20] and Fig. 2.5.16

This theorem can be further extended to a large class of groups (including mainly
compact groups), see [2]. The proof using Fourier transform is still valid for all finite
abelian groups and even compact abelian groups (such as the torus Tn), but we will
not spell it out here since there is a more general one. The essential point is that the
probability of occurrence of an ‘interval’ g (i.e. the size of Ig = {(a,b)∈ G×G,b =
g.a}), can still be measured by integral calculus thanks to the existence of a Haar
measure.17

A nice example in a torus is the following, borrowed from the above paper:

Example 2.28. Musical scales can be modelised as elements of a torus, each note
being a point on the continuous unit circle S1 (see Section 5.1). Say we define the
set ITS of ‘in-tune’ scales as major scales whose maximal deviation from a refer-
ence well-tempered major scale does not exceed 10 cents, e.g. the ‘in-tune’ D ma-
jor scales would be in [190,210]× [390,410]× [590,610]× [690,710]× [890,910]×
[1090,1110]× [90,110] where each pc is given in cents. So ITS is a subset of the
torus T7 = (R/1200Z)7, with measure (20/1200)7 of the whole torus, and the com-
plement OTS (out-of-tune’ scales) has the same interval content, up to a constant.

The simplest generalisation is to finite abelian groups, which are products of
cyclic groups (i.e. discrete torii). Such a group can model for instance:

1. The decomposition Z12 = Z3 ×Z4, so-called torus of thirds: the hexachord the-
orem (or the notion of homometry in general) can be factored down to this ex-
pression of pcs as pairs.

2. Pairs (or p−uples) of pcs lie in Z12×Z12 (or a larger power), wherein the general
hexachord theorems apply.

16 Obtained by one of my students, Domenech Vianney, in 2015.
17 This means that there is a way to measure a subset’s ‘size’ which is invariant under trans-

lation.
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2.2.2 Phase retrieval even for some singular cases

As discussed above, knowledge of IFunc(A,B) and B enables us to retrieve A, except
when FB vanishes because FA is then indeterminate. It is still possible though to
retrieve A, solving Lewin’s problem, when FB vanishes for a single coefficient18

and when A is known to be a genuine set, i.e. a distribution with only 0’s and 1’s.
This additional information compensates for the missing one. It is perhaps best to
describe the somewhat involved process by way of an example:

Example 2.29. The melodic minor scale B = {0,2,3,5,7,9,11} is one of Lewin’s
special cases: FB(2)(= FB(10)) = 0.

Assume IFunc(A,B) = (2,2,2,1,2,3,0,3,1,2,2,1) where A remains to be found.
Adding the number of intervals, i.e. the elements of IFunc(A,B), one gets 21, mean-
ing that A has three elements to B’s seven. Now compute all available values of FA,
i.e. all except FA(2),FA(10), dividing the coefficients of the DFT of IFunc(A,B) by
the conjugates of those of B. One gets (rounding to the third digit for legibility)

FA = (3.,−0.366−0.366i, X ,2+ i,−1.732i,1.366+1.366i,1, [and conjugates]).

The secret weapon at this juncture is Parseval-Plancherel’s formula:

∑ |FA(k)|2 = n#A

in the case of a pc-set. This provides the magnitude of the missing Fourier co-
efficient X, the phase ϕ being still unknown: let X = FA(2) = FA(10) = reiϕ ,
then the difference between the sum of all known |FA(k)|2 (here equal to 34) and
n#A = 3×12 = 36, is equal to 2r2. Hence r = 1. Plugging back in this value, we are
now down to

FA =(3.,−0.366−0.366i,eiϕ ,2+i,−1.732i,1.366+1.366i,1, and their conjugates)

By inverse Fourier transform, we get (I only quote the first values)

1A =

(
cos(ϕ)

6
+0.833,

1
6

sin
(π

6
−ϕ

)
−0.083,0.083 − 1

6
sin

(
ϕ +

π
6

)
, . . .

)
Now the only way

cos(ϕ)
6

+0.833333 can be equal to 0 or 1 is to have cosϕ = 1, i.e.

ϕ =±2π
3

. The value of ϕ could be found equally easily from any other coefficient,

e.g. 1
6 sin

(π
6 −ϕ

)
= 0.08333 would yield the same solution (in other cases, it might

be necessary to examine several equations in order to dispel possible ambiguities –
or perhaps find multiple solutions).

Plugging this value of ϕ in 1A finally yields (up to rounding errors)

1A = (1,0,0,0,1,0,0,1,0,0,0,0),

i.e. A = {0,4,7} which was indeed the pc-set that served to compute IFunc(A,B) in
the first place.
18 And of course its conjugate.
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Of course, in this particular case it might be quicker to proceed by trial and error, but
the method is general. To sum up the algorithm, one follows these steps:

1. Compute the cardinality of A: it is the sum of the elements of IFunc(A,B) divided
by #B.

2. Compute FA =
F (IFunc(A,B)

FB
, with two coefficients still indeterminate.

3. Compute the sum of the squared magnitudes of the n− 2 known coefficients in
the last step; subtract the result from n#A to get 2r2 and hence r, the magnitude
of the missing coefficient.

4. Compute the inverse Fourier transform of FA as a function of the missing coef-
ficient r eiϕ , where only ϕ remains unknown.

5. Taking into account that all the values computed in the last step must be 0’s or
1’s, determine ϕ; complete the computation of 1A.

To some extent, this algorithm could be used even when A is a multiset.
For practical purposes, I will remind the reader of the matricial formalism men-

tioned in 1.2.3. In [13], we used linear programming to good effect for solving
equations like s ∗ 1A = 1B (which corresponds to finding a linear combination of
translates of A equal to B) and the same procedure could be used for solving
1A ∗ 1−B = IFunc(A,B) in A, which is the problem at hand. But though the algo-
rithm seems to work well, it is not formally proved yet that it always provides a
solution. For one thing, there may well be multiple solutions (that the algorithm may
reach by varying the starting point), e.g. for B = {0,2,4,6,8,10} ⊂ Z12, IFunc(A,B)
does not change when A is replaced by A+2. See the reference above or 3.3.3 for a
description of this method, which bypasses Fourier transform altogether.

2.2.3 Higher order homometry

IFunc counts intervals, which are pairs of elements. There is no law against counting
triplets, quadruplets, and so on. It is necessary to be precise about what is a different
‘occurrence’ of a given triplet. We borrow again some definitions and results from
[64], with some modifications.

Let us begin with counting triplets (i.e. 3-subsets of a pc-set) up to translation: if
we are looking for copies of (0,a,b), their number in A ⊂ Zn is equal to

tv(a,b) = ∑
t∈Zn

1A(t)1A(t +a)1A(t +b).

We redo from scratch the computation of the Fourier transform, here in two vari-
ables:19

19 All sums are taken over the whole Zn.
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t̂v(ω,ν) = ∑
t

∑
a

∑
b

1A(t)1A(t +a)1A(t +b)e−2iπ(ωa+νb)/n

= ∑
t

1A(t)e2iπ(ωt+νt)/n ∑
a

1A(t +a)e−2iπω(t+a)/n ∑
b

1A(t +b)e−2iπν(t+b)/n

= ∑
t

1A(t)e−2iπ(−ω−ν)t/n ∑
x

1A(x)e−2iπωx/n ∑
y

1A(y)e−2iπνy/n

= FA(−ω −ν)FA(ω)FA(ν).

Hence

Proposition 2.30. The triplet histograms of pc-sets A and B are equal iff for all
ω,ν ∈ Zn

FA(−ω −ν)FA(ω)FA(ν) = FB(−ω −ν)FB(ω)FB(ν).

Generalizing to k-uplets, we will say that A,B are k-homometric, i.e. contain the
same number of translates of any k-subset, or more generally that two distributions
E and F are k-homometric, iff

Ê(ω1)Ê(ω2) · · · Ê(ωk−1)Ê(−ω1 − . . .−ωk−1) =

= F̂(ω1)F̂(ω2) · · · F̂(ωk−1)F̂(−ω1 − . . .−ωk−1)

for every (ω1, . . . ,ωk−1) ∈ Zk−1
n .

It is easily seen from this formula that

1. k-homometry implies (k−1)−homometry,20 and
2. 2-homometry is usual homometry21:

|FA(ω)|2 = FA(ω)FA(−ω) = FB(ω)FB(−ω) = |FB(ω)|2.

The study of phase retrieval (find all distributions k-homometric with a given E) is
hence very difficult when the Fourier transform vanishes. When it does not, there is
a strong result:

Theorem 2.31. When E is non negative and if Ê never vanishes on Zn, any distribu-
tion 3-homometric with E must be a translate of E.

The proof illustrates the strength and relevancy of the DFT.

Proof. Assume E and F are 3-homometric, Ê and F̂ never vanishing. Let us denote
by ξ the ratio of the DFTs, ξ (t) = Ê(t)/F̂(t). Then from Proposition 2.30 we get
that

ξ (ω +ν) = ξ (ω)ξ (ν) ∀ω,ν ∈ Zn;

20 At least when F̂(0) �= 0.
21 By now surely nobody will presume to call it ‘simple homometry’.
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meaning that ξ is a group morphism from (Zn,+) into (C∗,×), a.k.a. a charac-
ter. The characters of Zn are well-known: there is22 an integer k such that ξ : t �→
e−2iπkt/n. But this means

∀t ∈ Zn Ê(t) = F̂(t)× e−2iπkt/n.

By inverse Fourier transform (or by reversing Proposition 1.16) this means that E =
F + k.

Here is an example of non-trivial 3-homometry in Z32:

A = {0,7,8,9,12,15,17,18,19,20,21,22,26,27,29,30},
B = {0,1,8,9,10,12,13,15,18,19,20,21,22,23,27,30}.

These sets are 3-homometric – for instance the pattern (0, 10, 20) appears seven
times in both – but not translates, cf. Fig. 2.6 (hence their DFT must vanish; indeed
all Fourier coefficients with even index are nil).

Fig. 2.6. Two 3-homometric subsets

This result narrows the import of the notion of k-homometry of pc-sets: in most
cases, this notion is nothing new since it reduces to equivalence under translation.23

This is probably why the literature usually addresses a broader form of homometry.
Indeed a problem appears for k � 3 which did not make sense for k = 2, i.e. when

22 Such a morphism is determined by the image of 1 ∈ Zn since one element generates the
whole group. We used a stronger form of this result during the proof of Theorem 2.10.

23 The result is still true even in several cases with vanishing DFT, when n has few factors,
though the proof gets really difficult (see [64], Section 4). We will see though in the next
chapter that distributions with nil Fourier coefficients play vital roles in some areas of music
theory, so perhaps this area deserves further research. For instance, both subsets given in
the last example tile (trivially) Z32.
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counting intervals: clearly whenever an interval appeared, so did its inverse. But for
triplets or larger subsets, the inversion is usually a distinct form. Hence the following,
taken again from [64], Section 4:

Definition 2.32. Let H be a subgroup of the group of permutations of Zn, S(Zn). Let
us define a H-copy of a set S ⊂ Zn as any set of the form h(S), with h ∈ H. Their set,
the orbit of S under the action of H, will be denoted by [S]H.

The two most interesting cases are H = T , the cyclic group of transpositions, and
H = T/I, the dihedral group of transpositions and inversions, though other groups,
like the affine group, might be of interest for composers.

Definition 2.33. Let A ⊂ Zn; we call k-vector of A the map

S �→ mvk(A)S = #{S′ ∈ [S]T/I ,S
′ ⊂ A}.

For of any k-set S, it tallies the number of its T/I-copies embedded in A.

Example 2.34. The set A = {0,1,3,4,7} has essentially only six non-zero entries in
its 3-vector:

mv3(A){0,1,3} = 2 mv3(A){0,1,4} = 3
mv3(A){0,1,6} = 1 mv3(A){0,2,6} = 1
mv3(A){0,3,6} = 1 mv3(A){0,3,7} = 2

Indeed, mv3(A){0,1,3} = 2 since there are two T/I-copies of {0,1,3} embedded
in A (they are {0,1,3} and {1,3,4}); mv3(A){0,1,4} = 3 since there are three T/I-
copies of {0,1,4} embedded in A (they are {0,1,4}, {0,3,4} and {3,4,7}); and so
on.

This is more general than what we have done with k-homometry.

Definition 2.35. Sets A1, . . . ,As are k-Homometric (with a capital ‘H’) iff mvk(A1)S =
mvk(A2)S = . . .= mvk(As)S for all S ⊂ Zn, #S = k.

Example 2.36. Let us consider, in Z18, the two sets A = {0,1,2,3,5,6,7,9,13}
and B = {0,1,4,5,6,7,8,10,12}. They are not related by translation/inversion, but
mv3(A)S = mv3(B)S for all 3−subsets S. For instance the set S = {0,1,9} appears
once in A and once, inverted, in B (see Fig. 2.7).

Their Fourier transform never vanishes, which shows that Theorem 2.31 works
with general homometry (by translation) but not with Homometry (by transla-
tion/inversion).

The search for non-trivial k-Homometry is a formidable computational problem,
but an example for k = 4 was found in 2011 by Daniele Ghisi.
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Fig. 2.7. Two non-trivially 3-Homometric subsets of Z18

Exercises

Exercise 2.37. Choose one hexachord, compute its intervallic distribution and that
of its complement. Are these two hexachords T/I related?

Exercise 2.38. Compose a melody with four notes in {0,1,4,6} in one of its trans-
lated forms (say B C E� F) spelling eleven distinct intervals. Superimpose another
melody with the same intervals, but taken in a homometric pc-set, say {0,1,3,7}.

Exercise 2.39. Find non-trivially homometric pentachords (two classes). Are they
affinely related?

Exercise 2.40. Prove Theorem 2.2 for non-singular distributions (i.e. their DFT
never vanishes).

Exercise 2.41. Prove Proposition 2.7 by computing the eigenvalues and eigenspaces
and the convolution product with an arbitrary characteristic function.

Exercise 2.42. Compute some non-obvious cubic roots of the circulating matrix
of the minor third transposition mt = (0,0,0,1,0,0,0,0,0,0,0,0) = j3 in CnCC (C)
(hint: use the matrix formalism and eigenvalues). Which of the solutions belong to
CnCC (R),CnCC (Q)?

Exercise 2.43. Cyclotomic fields: find a linear basis of Q3 over field Q. Same thing
with Q6, checking that Q6 =Q3.
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