Chapter 2
Non-relativistic QED

Abstract A brief presentation is given of the construction of the theory of
molecular QED. This is done by first writing a classical Lagrangian function for a
collection of non-relativistic charged particles coupled to an electromagnetic field.
After selecting the Coulomb gauge, Hamilton’s principle is invoked and the
Lagrangian is substituted into the Euler-Lagrange equations of motion and shown to
lead to the correct dynamical equations. These are Newton’s second law of motion
with added Lorentz force law electric and magnetic field dependent terms, and the
wave equation for the vector potential in the presence of sources. Canonically
conjugate particle and field momenta are then evaluated, from which the
Hamiltonian is derived. Elevation of classical variables to quantum operators finally
yields the molecular QED Hamiltonian, which is expressed in minimal-coupling
and multipolar forms. In the QED formulation, the electromagnetic field is
described as a set of independent simple harmonic oscillators. Elementary excita-
tions of the field, the photons, emerge automatically on quantisation.

Keywords Lagrangian - Polarisation - Magnetisation - Minimal-coupling
Hamiltonian - Canonical transformation - Multipolar Hamiltonian - Perturbation
theory

2.1 Classical Mechanics and Electrodynamics

As implied by its name, quantum electrodynamics (QED) [1] concerns the quantum
mechanical description of charged particles in motion. Newton’s Laws of Motion
adequately treat the vast majority of kinematical situations encountered by
macroscopic objects [2]. If these bodies move with velocities that are appreciable
relative to that of light, however, then a Lorentz transformation may be applied,
resulting in a relativistic treatment of the dynamics, as formulated by Einstein in his
Special and General Theories of Relativity. A particularly elegant and advantageous
form of classical mechanics, from the viewpoint of development of a quantum
mechanical theory [3], is through the utilisation of the Lagrangian function, L,
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18 2 Non-relativistic QED

which is defined for a conservative system as the difference between kinetic and
potential energies, T — V, along with the invocation of Hamilton’s principle. This
states that the path taken by an object as it moves in configuration space from
space-time point (g, ) to (g2, 1), where ¢ is the generalised coordinate and ¢ is the
time, is the one for which the action, S, is a variational minimum. S is defined as the
time integral of L, so that the extremum condition is

%)
68 = 5/L(q, g,1)dt =0, (2.1)

n

where ¢ denotes the variation, and the velocity, § = dq/dt. Standard calculus of
variations [4] leads to the Euler-Lagrange equations of motion

d (0L oL
—N === =1,2,... 2.2
G(Gr) =0 am12, 22)

for a system with N degrees of freedom. Selection of a suitable coordinate system
for a specific dynamical problem often prevents the wider exploitation of Eq. (2.2)
in classical mechanics when compared to applications of Newton’s Second Law of
Motion.

Since charged particles, protons and electrons are constituents of all matter—
from the atoms of elements to the chemical compounds they form, any theory of the
dynamics of such sources must also include a correct description of the electro-
magnetic fields that necessarily ensue, or which may be applied. These are
expressed beautifully by Maxwell’s equations, which encapsulate the properties and
behaviour of all electromagnetic phenomena [5]. Hence classical mechanics and
classical electrodynamics form two key ingredients in any theory of
radiation-matter interaction. Unfortunately, these classical laws do not apply to
microscopic entities. Elementary particles are instead governed according to
quantum mechanical principles. This is the third, and obviously the most crucial
element in the construction of QED theory. Slow or fast moving sub-atomic spe-
cies, with energies that are significantly less than or comparable to mc?, where m is
the mass and c is the speed of light, may then be appropriately tackled by using
non-relativistic or relativistic formulations of quantum mechanics, respectively.

To facilitate the application of quantum mechanical rules to the coupled charged
particle-electromagnetic field system, Maxwell’s equations are written in their
microscopic form:

gdivé = p (2.3)

divb = 0 (2.4)
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. 0b
curlé = mr (2.5)
1 aé 1 -
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(2.6)

with & the permittivity of the vacuum, which along with the permeability of the
vacuum, i, are related to the speed of light via ¢2 = (gop) '

Maxwell’s equations may be converted to their more familiar macroscopic
counterparts after performing a spatial average over the fundamental microscopic
electric field &(7,7), and the magnetic induction field 5(7, 7), which are both func-
tions of position 7, and time, ¢. These fields are related to the sources via the charge
and current densities, p(7) and j(7), respectively. In a microscopic description these
densities are defined as follows for a collection of point particles that give rise to
continuous distributions of electric charge and current:

p(F) = esd(F — Ga) (2.7)

and

J#) =" eudd,d(F — Ga). (2.8)

In the last two relations, e, is the charge of particle o positioned at g, and J(7) is
the Dirac delta function [3].

Auxiliary fields are absent from the microscopic Maxwell equations since all
charges present in the system contribute to p(7) and j(7). From the perspective of
facilitating the quantisation of the electromagnetic field, it is beneficial to recast
Maxwell’s equations in terms of potentials rather than fields. This is done through
the introduction of the scalar potential, ¢ (7,7), and the vector potential, @(7, r), on
making use of the fact that a potential function is obtainable by integrating a field of
force. Whence b = curld, and —V¢=¢+ %. Substituting these last two relations
into the inhomogeneous Maxwell Egs. (2.3) and (2.6) enable the potentials to be
related to the sources. The potentials are themselves subject to transformation by
the simultaneous addition of a gauge function, giving rise to a set of potentials ¢
and @ which leave the fields € and b unchanged, and therefore Maxwell’s equations
invariant. A specific choice of gauge function is then said to fix the gauge.

A common choice, and one that will be adopted throughout this work is the
Coulomb gauge, in which divda = 0. The potentials satisfy individual source
dependent Maxwell’s equations. ¢ obeys
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80v2¢ == (29)

which is immediately recognisable as Poisson’s equation. Its solution represents the
instantaneous Coulomb potential due to the charge density. Meanwhile & satisfies

the wave equation
1 & 1.
(vz_ >[j—_2jl7 (2.10)

where the transverse component of the current densityf'L (¥) appears in Eq. (2.10), and
is a direct consequence of the transverse gauge condition and Helmholtz’s theorem
[4]. It may be extracted with the help of the transverse delta function dyadic

L—»_L A 2 1
5..(r)_(2n)3/(5,] k) T = (<054 ViV) 5 (2.11)

with the longitudinal component given for completeness by

I 1 gy
(7 = o /kk ~ViVi - (2.12)

the sum of the two yielding [6]
55 () + O(F) = 0;0(7). (2.13)

In the last three formulae the Latin subscripts denote Cartesian tensor compo-
nents. When indices repeat, a sum over each component is implied. Clearly evident
from Egs. (2.9) and (2.10) is the separation of the static and dynamic parts of the
sources of the field in the Coulomb gauge, with ¢+ = —oa+ /0t, and dl = —V.
Incidentally, the vector potential is transverse in all gauges.

An interesting case occurs when both p and 7 vanish, corresponding to a free
radiation field since there are no sources present. Solutions of Maxwell’s equations
then represent propagation of electromagnetic waves in vacuum. They are obtained

by solving the wave equation
10
<v2 - 0281‘2) =0, (2.14)

here written for the electric field, with a similar equation holding for @ and b. Plane
wave solutions of the form

(7, 1) = e (k)eFT o (2.15)

follow straightforwardly, in which ¢ is the amplitude of the electric field, and e*) (l?)
is its complex unit electric polarisation vector for radiation propagating with wave



2.1 Classical Mechanics and Electrodynamics 21

vector k and index of polarisation 4, with circular frequency w. Together k and 2
describe the mode of the radiation field. Identical harmonic functional form solu-
tions apply to the magnetic induction field and vector potential, the latter obtained
from solution of Eq. (2.10) after setting the right-hand side equal to zero. The
magnitude of kis k = |7$| = w/c. The unit electric and magnetic polarisation vec-
tors, and direction of propagation, describe a right-handed triad, indicative of
transverse wave propagation. Free electromagnetic radiation is in general ellipti-
cally polarised, but linear combinations of waves with appropriate choice of field
strength and phase components readily produce linearly (plane) or circularly

polarised light. To enumerate the allowed values of k to a countable infinity,
radiation is confined to a cubic box of volume V, with the vector potential satisfying
the periodic boundary condition that it have identical value on opposite sides of the
box. The components of k are then restricted to ki = 27n; /1, with n;, i = x,y,z
taking on integer values, and [ is the length of one side of the box.

In this section the laws underlying the classical mechanical behaviour and
electromagnetic characteristics associated with charged particles have been sum-
marized. The more interesting problem of interaction of microscopic forms of
matter with the radiation field is examined next.

2.2 Lagrangian for a Charged Particle Coupled
to Electromagnetic Radiation

Consider a particle «, with charge e,, mass m, and generalized coordinate ¢,, and
velocity Zj'a, interacting with electromagnetic radiation described by scalar and vector
potentials ¢(7) and d@(7). To facilitate construction of the QED Hamiltonian by
means of the canonical quantization procedure, well known from particles only
quantum mechanics [3], we begin by writing down the classical Lagrangian function
for the particle, the electromagnetic field, and the interaction between the two as
L = Lyayt + Lyag + Lins.- (2.16)

Each of the three terms is given explicitly by:
1 5 -
Lpurt = Eza:myqi - V(Q)7 (217>
where V(q) is the potential energy;

L = %30 / {@*(7) — A(curld(7))*}d°F, (2.18)
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and
Liy = / 77 - a(@d’r. (2.19)

The choice of Lagrangian is justified if it leads to the correct equations of motion
for the system under consideration. Since L in Eq. (2.16) is additive, it is instructive
to consider each of the sub-systems individually before dealing with the total
Lagrangian in the following section.

Assume for the moment that there is no radiation field. The last two terms of
Eq. (2.16) consequently vanish. Substituting L,,, from Eq. (2.17) into the
Euler-Lagrange Eq. (2.2) produces for the equation of motion,

&G, oV
Yar 04,

(2.20)

which is immediately recognisable as Newton’s Second Law of Motion, as is to be
expected for non-relativistic kinematics. Proceeding with the canonical prescription
in order to transition from classical to quantum mechanics, the next step involves
the evaluation of the momentum canonically conjugate to the coordinate variable,

8L
5 221
Pa 8% (2.21)

which for L, above yields p, = mxi]’“ for which kinetic and canonical momenta

are equal.
Hamilton’s principal function is then constructed via

H= Zpaq“ (2.22)

after eliminating the velocity in favour of the momentum. Hamilton’s canonical
equations follow on taking the total derivative of H in Eq. (2.22), giving

. OH
G o= 2.23
9 = 55, (2.23)
. OH
o= 2.24
p{Z aq{x7 ( )
and
oH _ oL (2.25)
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if L is explicitly time-dependent. Continuing with this particles only scenario,
inserting the velocity and L, in Eq. (2.22) results in the particle Hamiltonian

I o
Hpart = Zﬁpi + V(q)7 (226)

o

which represents the total classical energy of a conservative system, and is a sum of
kinetic and potential energy contributions.

Let us now assume that there are no sources of charge and current. Only L,,; of
Eq. (2.16) therefore remains, corresponding to the free radiation field. Choosing the
vector potential to be the analogue of the “coordinate” variable, and its time derivative
to be the “velocity” variable, the canonical formalism valid for particles may be
applied to the electromagnetic field. Because the field is continuous, neighbouring
points in space are related via the spatial gradient as well as by the displacement
between them. Accounting for this fact results in the Euler-Lagrange Eq. (2.2) being
modified by an additional term, which for the ith component reads in total as

D D D
13} (aL ) a oL oL 0. (227)

o\ oa ) " ox00a0x) P

LP is a Lagrangian density. Its integral over all space yields L. With LP . from
Eq. (2.18) given by %80 [Ei'z —c? (curlc_i)z], application of Eq. (2.27) gives rise to the
source free wave equation

, 10
(v ~ =574 =0 (2.28)

validating the choice of radiation field Lagrangian Eq. (2.18).
Analogously to Eq. (2.21), the momentum canonically conjugate to the field
coordinate is defined as

= oL
H(F) == (2.29)
ad(7)
From L2 ,, Ti(7) is explicitly found in this case to be
() = aod(F) = —e0?" (). (2.30)

Proceeding with the canonical formulation, the classical Hamiltonian for the free
radiation field is then calculated from

Hyua = / (Ti(7) - @(7) — L2)d°F, (2.31)
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with the integrand corresponding to the Hamiltonian density. Eliminating @ in terms

of T from Eq. (2.30), H,,q when expressed in terms of canonical variables is
written as

Hypwa = % / {[0%(7)/e0] + eoc?[curld(7)]* }dF. (2.32)

On making use of the definition of the vector potential, and the right-hand most
form of Eq. (2.30), H,,s can be written more transparently as functions of the
electric and magnetic induction fields, as in

Hyoa = %0 / {212(7) + 22 (7) )T, (2.33)

Either of the last two integrands provides an expression for the electromagnetic
energy density.

Interestingly, it was recognised by Born, Heisenberg and Jordan [7] that the
quantum mechanical version of H,,; is equivalent to the Hamiltonian of a
mechanically vibrating system, as demonstrated by Jeans’ theorem in the classical
regime [8]. By defining two real variables

¢ = (20V)" () +a?) (2.34)
. (2.35)

where al(;‘> are complex Fourier mode components [4] of the vector potential, with

the overbar denoting the complex conjugate, and V is the quantisation volume, H,,;
may be re-expressed as a sum of simple harmonic oscillator Hamiltonians, one for

—

each mode (k, 1)
Lo Gn 2
Hyyg = Zg{pf;) +0?q ) = > Hi (2.36)
¥ K

The new variables (2.34) and (2.35) are canonically conjugate, and result in the
correct Hamilton’s equations of motion being obtained on using (2.23) and (2.24).

Having established that L,,, and L, contained in the total Lagrangian
Eq. (2.16) each correctly describe the dynamics in the absence of a radiation field,
and when there are no sources present, respectively, in the next section we examine
the coupled matter-electromagnetic field system, and see how the equations of
motion are modified due to interaction. The system is then quantised and a QED
Hamiltonian operator is finally obtained.
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2.3 Minimal-Coupling QED Hamiltonian

We now verify that the total Lagrangian for the interacting system, Eq. (2.16), leads
to the correct equations of motion, appropriately changed to account for the
inclusion of L;,,. Application of Eq. (2.2) gives rise to [9]

dqiy) ov n dg, +
o - — 5 2€; _'oz o b _’0( ) 2.37
" 8qi<a>+ee’ (a) e (df xbg )>i (2.37)

instead of Eq. (2.20). Newton’s equations of motion are now modified by the
addition of Lorentz force law terms describing the coupling of the charged particle
to the electromagnetic field. Application of Eq. (2.27) to the full Lagrangian (2.16)
changes Eq. (2.28) to Eq. (2.10), the expected wave equation satisfied by the vector
potential in the presence of sources.

The classical Hamiltonian function for the coupled system may be obtained by
following the canonical scheme implemented in the previous section. The particle
momentum is no longer equal to its kinetic momentum, but changes to
dg;,

Py = my— =+ €40(Gy)- (2.38)

ﬁ(?), however, remains identical to Eq. (2.30). H is then calculated from
H=Y pd,+ / fi(7) - 4(AdF — L, (2.39)
o

which for a many-particle system is found to be [9, 10]

—

1 o 1 1’ . .
"= ZW (B = ead(@)Y + V(@) + 5 / (o + oo (curla)"}d'7. (2.40)

Equation (2.40) is known as the minimal-coupling Hamiltonian on account of
the minimum action principle being applied to its construction. Coupling of radi-
ation with matter simply amounts to replacing the particle momentum by
ﬁ o eaﬁ(ga)-

At this point in the development it is convenient to collect the charged particles o
and form atoms and molecules £. Furthermore, the nuclei are henceforth taken to be
stationary, with the positions and momenta of the electrons only being considered.
As a result, the Hamiltonian Eq. (2.40) may be partitioned as [9, 10]

H=Y Hpn(&) +Huaa+ Y Hiw(E,8), (2.41)
4

4

34
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into a sum of particle, radiation field, and interaction contributions. Decomposing
the electrostatic energy into a sum of single- and two-particle terms,

V=V()+V(), (2.42)

enables the first term of Eq. (2.41) to be written as

Hun€) = Y 56+ V(9. (2.43)

o

and which differs slightly from Eq. (2.26) in that V(&) is now interpreted as the
intra-molecular potential energy. Hence Eq. (2.43) corresponds to the familiar
molecular Hamiltonian of non-relativistic quantum mechanics in the
Born-Oppenheimer approximation [11]. The second term of Eq. (2.41) is given by
the third term of Eq. (2.40) and is seen to be identical to H,,, calculated for the free
radiation field Eq. (2.32). The remaining terms of Eq. (2.40), along with the second
term of Eq. (2.42) constitute the interaction Hamiltonian,

Hin(6,8) = = ) Fal&) -al +22“ @(3,(9) +V(EE), (244)

o o

where the third term of Eq. (2.44) is the instantaneous inter-particle Coulomb
potential. Even though V/(¢&, &) appears explicitly, a fully retarded result is obtained
on using Eq. (2.44) on account of exact cancellation of static terms with those
arising from the vector potential, which contains non-retarded contributions in the
Coulomb gauge. The first two terms of the interaction Hamiltonian are linear and
quadratic in the vector potential evaluated at the position of electron o in atom or
molecule ¢&.

Quantisation of the classical minimal-coupling Hamiltonian (2.41) then follows
by promoting the classical dynamical variables, for both particles and radiation
field, namely the respective coordinates §,(¢) and @(7), and momenta p,(£) and
ﬁ(?’), to quantum mechanical operators subject to the canonical equal time com-
mutation relations

[Gi(2) (£): Pjip) (E)] = ihD;00p0 e, (2.45)

and
[ai(7), T;(F)] = ih; (F — 7). (2.46)

Recalling that the equations describing the electromagnetic field are formally
equivalent to that of an oscillating mechanical system, quantisation of the radiation
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field corresponds to quantisation of the simple harmonic oscillator Hamiltonian
Eq. (2.36). A powerful and elegant method of obtaining eigenvalue and eigenfunction

solutions to this problem is through the techniques of second quantisation via the
introduction of lowering and raising operators [12]

= % Q/@q—f— i\/%})) ) (2.47)
= % <\/mhzq — i\/%p) ) (2.48)

which are real and mutually adjoint, but are not symmetric and therefore
non-Hermitian. Thus the radiation field Hamiltonian Eq. (2.36) can be expressed in

and

terms of (k, 2)— mode annihilation and creation operators a® (k) and af® (k) as
Hywa = Z{a (k) + }hw (2.49)

subject to the commutator
[0 (®),al @) = 5,0k - ), (2.50)

with all other boson operator combinations commuting.

Identification of the operator combination at® (k)a”) (k) as the number operator
n(l_é, 1), allows the eigenvalue spectrum of the quantised electromagnetic field to be
written down immediately as (n+ 3)hw, n=0,1,2,.... The excitation quanta
therefore correspond to the number of photons in the radiation field, which is
characteristic of the occupation number representation adopted. The state of the

electromagnetic field is specified by the ket |n(_’ )> It is usual to suppress states

with zero photons. The bosonic operators a'*) (k ) and aT ) (k ) respectively decrease
or increase the number of photons in the radiation field by unity according to the
operator relations [3, 6]

a(R)|n(k, 2)) =0, n=0,

_n1/2|(n—1)(1€,x)>7 ne12,..) (2.51)
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and
at D @) (%, 1)> = (n+ D"+ D&, z)>, n=0,1,2,....  (2.52)
along with the number operator
at@(®)a? (B |n(k, z)> = (%, z)>, n=0,1,2,... (2.53)

It is interesting to note that the state of the radiation field in which there are no
photons represents its ground state, corresponding to the electromagnetic vacuum,
for which n = 0 [13]. An ever present %hw of zero-point energy is associated per
mode of the field, resulting in an infinite ground state field energy. Nonetheless,
measurable effects ensue from vacuum fluctuations, with the van der Waals dis-
persion force perhaps being one of the most important. Others include spontaneous
emission (since af® (l?) can act on the vacuum state to create a photon), and the
Lamb shift [1].

A Fourier mode expansion [4] of the vector potential as a function of the creation
and destruction operators in the Schrédinger picture takes the form

I 1/2 S
a(r) = ;<2gockv> 62 ®)a? (k) + 87 (K)aT D (B)e *7),  (2.54)
where 2% (k) is a complex unit electric polarisation vector for a (k, 2)— mode
photon, and V is the box quantisation volume. Similar expressions for & (7), b(7)

and TI(7) follow from their definitions in terms of @(F) given earlier, namely
é-(F) = —d(7) = —¢; 'TI(7), and b(7) = curld(7). They are

1/2 L _ . L .
FF =iy (2’:’; > @D (®)a? B)e*” — D (R)at @ (R)e=*7],  (2.55)
k.

L N e i - ik
b(@—;Z(sz) B ®)a? (B)e® — 5 (®)atP K)e=*7),  (2.56)

where the unit magnetic polarisation vector is b(*) (k) = k x 2% (k), and

=—ZZ(M80) @ B)a? (B — 89 BT, (257)

the first factor after each sum in the mode expansion ensures that each field is
correctly normalised to reproduce the energy of the electromagnetic field.
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2.4 Multipolar-Coupling QED Hamiltonian

While the minimal-coupling Hamiltonian Eq. (2.41) may be employed to compute
light-matter and inter-particle interactions, the form of coupling Hamiltonian
Eq. (2.44) isn’t the most advantageous to work with from the point of view of
treating chemical systems. Inspection of H;, (&, ') reveals the presence of the
particle momentum operator in the first term, the vector potential operator and its
square in the first and second terms, respectively, and the instantaneous two-particle
coupling V (¢, &') given by the last contribution of Eq. (2.44). A superior alternative
QED Hamiltonian is provided by the multipolar counterpart. Here atoms and
molecules couple directly to the causal Maxwell field operators through their
molecular multipole moment distributions, and all instantaneous couplings have
been eliminated. Use of either Hamiltonian leads to results that are properly
retarded. In the minimal-coupling scheme this occurs through explicit cancellation
of static contributions. The multipolar version may be obtained from the
minimal-coupling form by applying a quantum canonical transformation on H,y;,,
Eq. (2.40), using a generating function § that is independent of time. Although the
new Hamiltonian differs in functional form relative to the old one, identical
eigenspectra result with the use of either Hamiltonian since the transformation is
unitary. It is of the form

eiSHmineiiS = Hyuis- (258)

Hamiltonians related in this way are said to be equivalent [14]. An intrinsic
feature of quantum canonical transformations is that they leave the commutator
between canonically conjugate dynamical variables invariant, for instance

q.p] = ih, (2.59)

and they leave the Heisenberg operator equations of motion unchanged, the latter
being the quantum versions of Hamilton’s canonical equations,

ihg = |q, H], (2.60)
and
ihp = [p, H]. (2.61)

It is easily verified that transformation (2.58) guarantees that these properties are
satisfied [9]. Hence a quantum canonical transformation in essence amounts to
transforming the original canonically conjugate dynamical variables of the system
and expressing the original Hamiltonian in terms of the newly transformed
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quantities. It is therefore the quantum mechanical analogue of a contact transfor-
mation in classical mechanics [2, 3].

The specific form of the generator S that enables transformation of
minimal-coupling variables to those in the multipolar formalism is [15]

s—1 / p(7) - a(?)d’v. (2.62)

In Eq. (2.62), p*(7) is the transverse component of the electric polarisation field
for a molecular assembly,

PR =Y B(&P), (2.63)

<

where a closed form expression for the electronic part of p(&; 7), written in terms of
a parametric integral, is [16]

PER = ~e Y (@0~ Ro) [0 - R~ 200~ Ropar, (264
* 0

where I_écf is the position vector of the centre of species £. Because the generator is a
function only of the particle and field coordinates, §,(¢) and @(F) remain unchanged
by the transformation, with only the canonically conjugate momenta being
transformed.

Employing the Baker-Hausdorff identity for two non-commuting operators
A and B,

¢Be = B (A, B+ 5[4, [A, B] + %[A, AJAB+ -, (265

it can be shown [9] that the particle momentum transforms as
I—)»Zmlt(é) _ eiSﬁ?in(é)eﬂ'S _ ﬁ:’m(é) =+ i[S,ﬁZlin(f)] 4.

' - 2.66
(&) + ed(Ga (&) — / aen<i@ar, &%

on inserting the generator (2.62). In Eq. (2.66), the vector field 7, (&; 7) is defined as

(& 7) = —el@,(&) — Re) / 20(7— Re — 2@ (&) ~RoNdi, (267)
0
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with
() =Y iiy(& 7). (2.68)
&
Carrying out the transformation on the field momentum, we find in similar
fashion
ﬁmull(;:) — eiSﬁmin(;:)e—iS — ﬁmin (;:) + 1[57 ﬁmin(’—;)] 4 ...

_ Hmin(;:) + %[/I‘)‘i(?’) 5(7)d37, ﬁmm(;‘)] 4+ e

(2.69)

On using the field commutation relation (2.46), it is seen that S commutes with
the minimal-coupling field momentum so that all subsequent higher-order nested
commutators not explicitly written in Eq. (2.69), but present in Eq. (2.65) vanish,
leaving the canonically conjugate field momentum in multipolar framework as

0 (7) = T (7) — p (7). (2.70)
Recalling from Eq. (2.30) that TI""(7) = —go@*(7), it is seen that
0 (7) = —d*(7), (2.71)

where d*(F) is the transverse component of the electric displacement field d(7)
defined by

d(7) = eo2(7) +B(7). (2.72)

Hence in the multipolar formalism, the canonically conjugate field momentum is
no longer proportional to the transverse electric field, but is instead equal to the
negative of the displacement field. A mode expansion for this last field quantity is
given by

S (Tickag\
dL(r):lZ( ZV) é

3

~ B OB e . (2.73)

~
—~
k)
SN—
S
=
—
=1
S—
[
B3
~L

The multipolar form of Hamiltonian follows on substituting for p"(¢),
Eq. (2.66) and II"(7), Eq.(2.70) into the minimal-coupling Hamiltonian
Eq. (2.40),
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e sz Z{p / ( ) ~ b d3—»} + Z V
290/{ HGETRGE + e5c? (curld(7) 7+ ZV (&,&),

&e
7

&>¢

(2.74)

on employing decomposition (2.42). As done for its minimal-coupling counterpart,
H™!" may be partitioned into particle, radiation field, and interaction Hamiltonian
terms. Thus

H™" = Hywel + Hi' -+ Hp + / Z| P[P d°F, (2.75)

with
Hynl = Z{—Z H+V(E)}, (2.76)

and

H™I = / {d*2(P) + 220 (7)Y d°F, (2.77)
when written explicitly in terms of Maxwell fields, and
H =" [ 50 -3

(2.78)
- / (7) - BT + % / 04(7, 7 )b: (F)b; (F ) dPFdF .

p(7) appearing in the first term of H" is the electric polarisation field (2.63).
Two new fields feature in the remaining contributions. One is the magnetisation
field,

1
2m

m(r) = Z[ H(ET) X Pul&) = Bal€) X (7)), (2.79)

and the other is the diamagnetisation field

0y(7,7 ZZfszus,mmk &Pl ), (2.80)

where the o-dependence of the n; tensors is implicit. A remarkable aspect of the
multipolar Hamiltonian relative to its minimal-coupling precursor is the
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disappearance of the static inter-particle coupling term V(&, &'). On separating the
square of the transverse polarisation contribution from (2.74) into a sum of intra-
and inter-molecular parts, it is found that the inter-molecular contribution exactly
cancels V(& ¢'). What remains is a one-centre transverse electric polarisation field
squared contribution, the last term of Eq. (2.75). Because it is independent of the
radiation field, it may be neglected when considering effects that produce a change
in the state of the electromagnetic field. When evaluating corrections to the
self-energy, however, this contribution must be retained. Another feature of
Eq. (2.75) is the explicit presence of the transverse electric displacement field. This
is a direct consequence of the transformed field momentum Eq. (2.70).
Furthermore, atoms and molecules couple directly to the electric displacement and
magnetic induction fields through electric polarisation, magnetisation and dia-
magnetisation distributions. Because the Maxwell fields are strictly causal, inter-
actions between centres of charge and current are properly retarded, with
electromagnetic signals propagating at the correct speed, namely that of light,
c. There are no static coupling terms.

The transformation of the minimal-coupling Hamiltonian to H"*" via Eq. (2.58)
and the generator (2.62) is known as the Power-Zienau-Woolley transformation [9,
10, 14-21]. An alternative method of arriving at H™" is to first transform the
minimal-coupling Lagrangian, Eq. (2.16). This may be accomplished by the addition
to L of the time derivative of a function of the coordinates and the time only. The effect
of such a modification is to generate an equivalent Lagrangian, in the sense that the
Euler-Lagrange equations of motion (2.2) remain identical in form [2]. Again the
coordinate variable remains invariant, but the new canonically conjugate momentum

of (q 1)

is changed to p + , where fis the transformation function.

The general connectlon between f and the generator S that yields equivalent
Hamiltonians is easily found. Applying the first line of Eq. (2.66), the new

SO thatf*f S.
32

momentum obtained via canonical transformation is p — hg§,
Hence the multipolar Hamiltonian Eq. (2.75) will result when — < f 7)d°F
is added to L, Eq. (2.16) to give Ly [14, 22, 23]. This add1t10n has the desned

effect of removing coupling via the transverse current. On account of

j#) = de(t) + curl(7), (2.81)

interaction now occurs through the polarisation and magnetisation fields instead.
The newly transformed Lagrangian, L,,,;, leads to the correct equations of motion.
In the case of particles, this is the Newton-Lorentz force law Eq. (2.37). For the
radiation field, the resulting equations are known as the atomic field equations.
They are intermediate between the microscopic Maxwell-Lorentz Egs. (2.3)-(2.6),
and the macroscopic Maxwell equations. The source free Maxwell Eqs. (2.4) and
(2.5) are trivially satisfied by the form of the electromagnetic potentials in the
Coulomb gauge. Meanwhile Eq. (2.3) becomes
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divd(7) = p™(7), (2.82)

where 3(?) was defined by Eq. (2.72), showing that the true charges are solely
responsible for the electric displacement field. The second source dependent
Maxwell-Lorentz Eq. (2.6) becomes

- dt (7
curla(7) = 9 Bt(r) ) (2.83)
on defining the auxiliary magnetic field
h(7) = eoc?b(F) — m(7), (2.84)

after taking the transverse component of relation (2.81), thereby ensuring the
implicit presence of the current density. Hence the sources are represented by
electric polarisation and magnetisation distributions, which are in turn the origins of
the microscopic fields d(7) and k(7).

By expanding 5(F) and 7i(7) about R: in a Taylor series [5], and retaining the
first few terms in the series, electric dipole and quadrupole polarisation
distributions,

1

=D _eald@: (&) = R){1 = 5;(@:(6) = Re) -V + - Jo(F = Re),  (285)

and the magnetic dipole contribution to the magnetisation field,
- €o /o 3 - - 3B
A7) =D (@) — Re) x POy — 10— Re),  (2:86)

ensue, and similarly for the diamagnetisation distribution, O;(¥,7). Integrating
over all space yields for the interaction Hamiltonian Eq. (2.78), the multipole
expanded form

—

HI(E) =~ i(8) - d-(Re) — 51 04O Vi (Re) +
Wfﬁ(aﬁﬁ , (2.87)
+ SmZ{ ( ) ) Xb(RCV)}z—i—

where the electric dipole moment operator,

() = =57 2 (@:(0) - Ro), (2:88)
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the electric quadrupole moment is
0;(8) = y§j (&) — Re)i(d(8) — Re),, (2.89)

the magnetic dipole moment is

() i}:—%<<> Re) % Al O)), (2.90)

and the last term written explicitly in Eq. (2.87) is the leading order diamagnetic
contribution.

If the dimensions of ¢ are very small relative to the wavelength of light, it is
sufficient to keep only the first coupling term of Eq. (2.87), in what is known as the

electric dipole approximation. This is further justified on account of (&) and Q(¢)
typically being of the order of the fine structure constant smaller than i(¢£), these
higher-order multipolar terms providing small corrections to the electric dipole
interaction term. For improved accuracy, and when treating optically active species,
however, it is necessary to include contributions from higher multipole moments.

2.5 Perturbative Solution to the QED Hamiltonian

If the coupling between electromagnetic radiation and matter is taken to be weak
compared to the strength of intra-atomic or molecular Coulomb fields, as is fre-
quently the case if the magnitude of the electric field strength of the radiation is of
the order of 10° Vem™ or less, eigenvalue and eigenfunction solutions to the QED
Hamiltonian operator may be obtained perturbatively. The total Hamiltonian is
separated into an unperturbed part, Ho, comprising the sum of H,,, and H,,4, and
the perturbation operator given by H;,, namely

H = Hy+ Hy,, (2.91)
with
Hy = Hpar, +H, . (292)

As was demonstrated in Sect. 2.2 of this chapter, when there is no radiation field,
the total system is made up of charged particles only, while when these sources
vanish, there is only the free field. Hence H, represents a solved problem, and
which is separable when the sub-systems do not interact. Known solutions to the
atomic and molecular Hamiltonian are represented by Hy..(¢)|ES) = E5|ES,),

where |Efn> is the energy eigenket associated with energy eigenvalue qu for species
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¢ in electronic state represented by quantum number m, with additional labels being
inserted to describe extra degrees of freedom. An occupation number state is used to

specify the radiation field according to H,qq|n(k, ))> =(n+ %)hck|n(l?, i)>, where
the energy of the electromagnetic field is E,., = (n+ %)hw, when there are

n photons of mode (l?, /). Other radiation field states, such as a coherent state
representation [9], may be used in place of a number state specification. Hence the
basis functions employed in the perturbation theory solution to Eq. (2.91) are
product particle-radiation field states

\part)|rad) = |part; rad) = |E; n(k, ))> (2.93)

The total energy of state (2.93) is given by Efn + nhck.

The question often asked in any quantum mechanical problem, is given that the
system at some initial time , is in state |i), what is the probability that it is in state |f)
at some later time #,, due to the influence of the perturbation, which may or may not
be time-dependent, but acts during the time interval? With exact analytical solutions
only possible for a few limited choices of H;,, a perturbation theory solution is
developed for the probability amplitude M in series of powers of H;, for the
transition |f) <— |i). The observable quantity commonly derived from the matrix
element is the transition rate, I', associated with Fermi’s golden rule [9],

2
I == M0y, (2.94)

where p is the density of final states. Equation (2.94) holds in the weak-coupling
regime. When the initial and final states are identical, corresponding to a diagonal
matrix element, the resulting observable may be interpreted as an energy shift,
which is especially useful in the chapters to follow when dispersion potentials are
evaluated. In powers of the perturbation operator, we find for the perturbed energy

(O | Hig| @) (0O Ly [ )
E;) - E,

E, = E,(,?) + <m(0) |Hint|m(0)> + Z + - (295)

n
mn

in terms of the unperturbed states and energies |m(0)> and E,(,?)

of zeroth-, first-, second-, and higher-order terms in H,.

, respectively, a sum
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