Chapter 2
Further Study of Sequences and Series

As you would see earlier in Chapter 1, some problems would ask you to add the first
ten terms or even evaluate the sum of the first k£ terms of a sequence or maybe
investigate whether the limit of such sum exists. Expressions such as

14+4+7+10+13+... (2.1)
httat+ s+ e+ ... (2.2)
1+4+94+16+25+36+...

are called series and in all three cases can be evaluated exactly for the sum of any
finite number of terms. Since Eq. 2.1 represents an arithmetic series with first term
1 and common difference 3, we can use the formula for the sum of the first n terms
that is derived in the earlier section. We can write the sum as

2 “Dd 2 1+(n—-1)3
Sem 144174104, —2at=Dd (=13
2 2 (2.4)
Bn—1)n
.

Since Eq. 2.2 represents a geometric series with the first term 1/2 and common ratio
1/2, then the formula for the sum of the first n terms is known. We have
1 1 bi(1—r) 1(1—=()" "

S
24

1
O T g 1-1 2

SI‘I

The sum of the last series of Eq. 2.3 can be evaluated exactly as well. We prove this
formula in Chapter 1 and prove it in a different way in the following subsection,
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66 2 Further Study of Sequences and Series

S,1:12+22+32+...+n2:w. (2.6)

What do these series of Egs. 2.1-2.3 have in common? Their partial sums can be
evaluated exactly for any number of terms n. So we could add the first 25, the
first 100 or even the first 2011 terms and get an exact answer for the sum using
Egs. 2.1-2.3 by replacing n by 25, 100, or 2011, respectively. However, if the
number of terms, n, were to become infinitely large, then we would see some
differences. For example, if we increase n then the partial sums of Egs. 2.4 and 2.6
would increase without limit. The result is different for the sum of Eq. 2.5; it will
approach its limit of one since the second term will approach zero. This behavior is
typical for any infinite geometric series with common ratio less than one as we
established earlier.

We say that the series of Egs. 2.1 and 2.3 diverge and the series of Eq. 2.2
converges. Serious study of convergence and divergence is a subject of mathemat-
ical analysis. For now we simply determine whether or not the series are divergent
or convergent and why. Many challenging math contest problems are dedicated to
finding an exact sum of the first n terms of a series. The determination of the partial
and infinite sums is the topic of the first section of this chapter.

2.1 Methods of Finding Partial and Infinite Sums

Let us derive again Eq. 2.6 for the sum of squares of the first # natural numbers and
Eq. 1.31 for the sum of the cubes of n natural numbers.

Problem 47 Prove that ) k? = "+DCr+1
k=1

Proof. We need to prove that the following relationship is true:

nn+1)2n+1) '

N=14+2243244 4. . . + (=2 +m-1)1+n"= .

Arranging sums in ascending and descending order does not help. We need to find a
different approach. If you have read Chapter 1 of the book then you probably have
an idea of how to start. Let us consider the difference of two consecutive cubes,

= (=17 =32 -3n+1|.
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P-0=3-1>-3-1+1=1
2 _13=3.22-3.2+41
33 -23=3.32-3.341

(n=27—n-37=3-n-2-3-(n—2)+1
n—17—n—-27=3-(n—1*=3(n—-1)+1
= (=17 =32 -3n+1

Adding the left and the right sides, we obtain
m=3(1P+22+3+...+n*) —=314+2+3+...+n)+1-n This can be

n n n
written using sigma notation as #° = 3 3 k> — 3 3 k + n. Solving this for 3 &?
k=1 k=1 k=1
and assuming that we know the formula for the sum of the first # natural numbers we

obtain

z":kz 20 —2n+3n(n+1)  n(2n*+3n+1)
N 6 N 6
Zkz n(2n + )(n+1)

The statement is proven.

L 3 n(n+1 2
Problem 48 Prove that;k = ( (2 )>

Solution. Try to use a similar approach so consider the difference of the fourth

powers of two consecutive integers n* — (n — 1)4 =4n> — 6n* + 4n — 1. Write this
out for the first few terms and then for the values as we reach n,

1"—0*=4-1°-6-1"4+4-1-1
24— 1*=4.2"-6-224+4.2—1
3 _2v=4.3_-6.324+4.3-1

(n=2"—(n=3)*=4n-2°-6n—-27+4-(n—2)—1
=1 —(n—-2*"=4n—17-6(n—17+4-(n—1)—1
== =4 —6n>+4-n—1.
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Next, we add the left and the right sides together as we did in the previous problem
using sigma notation and solve the equation for the unknown sum,

n* :42n:k3 —6zn:k2+4-i:k—n
= = k=1

ZkB n*+nn+1)2n+1)+n—2n(n+1)
4

Zk3 (P +1)+nn+1)2n—1) naln+1)(n* —n+142n—1)
4 B 4

kikszn<n+1)4<n2+n>:<<n+1) (Zk>-

This is a very interesting relationship because we established again that the sum of
the first n cubes equals the square of the sum of the first n natural numbers. For

example, 13 4+ 2%+ 3% + 4% = (1 +2+3 +4)* = 100.

Remark. Earlier we proved the same formula using the geometric approaches of

ancient Babylonians and Greeks to demonstrate that the sum of the first n cubes

n(n+1)
2

equals the sum of the first m = odd consecutive numbers.

Problem 49 Find the sum, 1 + 11+ 1114+ 11114 ...+ 11....111, where
the last number consists of # repetitions of the digit 1. Evaluate the sum for
n=09.

Solution. We solve this problem in three different ways so you can compare the
different methods.

Method 1. At first glance, we notice that 1, 11, 111, 1111,.... is neither an
arithmetic nor a geometric sequence. Hence, we have to rewrite the sum in another
form. For example,

1=1
11=1+10

111=1+10+ 100

1111 =1+ 10 + 100 4 1000

1. 11=14+104+ 10> +10* + 10* + ... + 10" 2 + 10"}
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Each number on the left containing digit 1 repeated n times can be written as a sum
of the first n terms of a geometric sequence with the first term equals 1 and a
common ratio 10. Thus,

1=85 =1
=8 =1+10
111=5; =1+ 10 + 100

1-(10" 1) 10" — 1

11..11=S, = —
5 10-1 9

Adding over the left and right sides, 1 + 11+ 1114 ...+ 111... 11 =85+ 5,
+ ...+ S, and using the formula for the sum of n terms of a geometric sequence
and properties of ), - notation we have

10k -1 G0k 1 [

k=1 k=1 k=1

Let us consider the first term of difference of Eq. 2.7, Y 10F=
k=1

10 4+ 10% 4+ 10° 4+ ... 4 10". The expression on the right is again a geometric
sequence with b; = 10 and r = 10 and

4 10-(10"=1) 10"' =10
> 10k = ( ) _ (2.8)

= 9 9
Substituting Eq. 2.8 into Eq. 2.7 we obtain a formula for S, S = m“g#

This formula can be wused in order to find a sum like
14+ 1141114 ...4111....11 for any specific number n. Thus, when n =09,

S=1+11+111+... 4+ 111111111 :10'“}#: 123,456,789.

Method 2. Denote the total sum by § as S=1+11+1114+1111+
11111 4 ... 4+ 11...1. Multiplying S by 10, we obtain 10S =10+ 110+
11104+ 111104+ 111110 + .. .. If we subtract the first sum from the second, we
obtain (It may help torewrite SasS=1+4+(104+ 1)+ 1104+ 1)+ 1110+ 1) +...).

n times

—
111..10—-n-1

9
Method 3. We can notice that 9 = 10 — 1, 99 =100 — 1, 999 = 1000 — 1, etc.

If we multiply and divide the given sum by 9 we can easily evaluate it using a
formula for geometric series.

n times

—~
Then 9§ = 111...1 0 — n - 1 which leads us to the answer, S =
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1
S:§(10—1—|—100—1+1000—1+10000—1+...+100...O—1)

(104 10> +... + 10" — n)
9
1[10(10" — 1
o=

9 9

Our series is divergent because S increases without bound as 7 increases.

As we mentioned above, evaluating an exact sum for a finite series or a partial
sum for an infinite series can be a challenging task, and this is why many such
problems appear in different contests. Each problem is unique but we are going to
share with you some ideas of finding such sums; you may find them helpful and
applicable to other or similar problems.

: .1 1 1 1 1
Problem 50 Find the sum: {5+ 55+ 357+ - - + To55.7995 T 1999.3000

Solution. Sometimes it is a good idea to rewrite a sum in a different but equivalent
form by noticing something that the terms have in common, some pattern. One
thing you might notice is that the denominator of each fraction is a product of two
consecutive natural numbers. How can we obtain a product of two such numbers
within a denominator? What operation can give us a product? Answer: When we
put together (add or subtract) two fractions with different denominators, that have
no common factors, the least common denominator is going to be a product of these
numbers. In general,

1 1 _d+ec
ctaT
1 l_d—c
c d c-d

Looking at the second formula above, we can find the way of solving the problem.
If c and d differ by 1, i.e., d — ¢ = 1, then
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111
c d cd
111
12 1-2
111
2 3 2.3
111
34 3.4

1 1 1

1999 ~ 2000 1999 - 2000
Using these, we replace each fraction on the right by the difference on the left
obtaining

1 1 1 1 1

1~2+2-3 3. +"'+1998-1999—’—1999-2000:
! 1+1 1+1 1+ . 1 1 n 1 1
22 3 3 4 777 1998 1999 1999 2000

In this sum all middle terms cancel each other except the first term, 1, and the last

term, —5555- This gives us Sjo09 = 1 — 5555 = 000 Evaluating this sum when

n=1999 (a big number), we see that Sjg999 = éooo is almost 1. On the other hand,
S4 = 1—12 + % + 3%4 + % =1- % = % = 0.8. Four is not a “big” number, hence 0.8 is
not as close to 1. Using the same technique, we can find the sum to infinity of the
series:

S—i2 %—i— 4. s0 S, _1_ﬁ_L1 and also have that

lim S, = 1m—1:1.
n—oQ n—

Remark. In order to be considered for possible convergence, the series must first
pass the necessary condition for the limit of its n™ term, that is, does lim u, = 0. If

I‘I*?OC
we try to look at the n™ term of this sum, n(r[l-l—l) we can see that hm N o +1) =0.We
also find that the limit of the partial sums exists, lim S, =S Where S is a finite

number 1. However, in general, satisfying the necessary condition is not sufficient.

Convergence or divergence of series is established with the use of sufficient
convergence theorems. We list some of these rules in Chapter 3.

Why didn’t we use a calculator approach? A calculator can be used to find a sum
like 75455455 ie. sum(seq(1/(x(x+1)),x,1,3) =0.75 This is an exact
answer. A calculator can evaluate this as ﬁ + ;7 + ...+ 1001W = 0.990094, i.e.,
sum(seq(1/x/(x+ 1), x, 1, 100) = 0.990094. Even this: 5+ ..... + 5557 =
0.99800. But if we have more than 100 terms in summation, for example,
x = 1999, such as our original problem, TI83/84 graphing calculators cannot be
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used. We might have some idea that this number gets closer and closer to 1. But
how close? What if we need to find the exact answer or figure out the value of §,,,
the sum of the first n terms for any n? Remember that since S, = 1 —
evaluated its limit analytically as nlirglo S, =1

n+1 = a1 we

In the preceding problem numbers within each denominator differed by 1. But
the idea of replacing each fraction by a difference is so elegant, we wonder, “What
happens if two numbers in each fraction differ by the same number but not by 1?
Can we use the same technique here?”

1 1 1 1
Problem 51 Evaluate i5ts5 gt -+ o750

Solution. Look at the sequence of the first numbers of each denominator:
1,5,9,..., 197. They are terms of an arithmetic sequence with ¢; = 1 and d = 4.
Let us find the number of the term that is 197.

ap=ar+ (n—1)d
197 =1+ (n— 1)4
n=1>50

This means that we have to add 50 fractions together. Look at the differences:

1 5-1 4 1
=15 15 415
11 9-5_ 4 1
5 9 5.9 5.9 5.9
1 1 4 1

R —4.
197 201 197-201 197 - 201

Now the given sum can be written in the form:

S fl 1,1 1,1+1,i+ +L,L+L,L
Ny 5 99 13" T193 197 " 197 201

T3
o 4( 201) 201°

Notice that the n'" term of the series can be written as m. We can evaluate
1

the partial sum (the sum of the first n terms) as S, =1 (1— ﬁ) = i If

n— oo, S, — 4. Therefore, the series is convergent.

S0
Answer. 301
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Now we can make a trivial but very useful conclusion. For any real ¢ and d such
that ¢ # d

1 1 1 1 (2.9)
c-d d—c |c d ’
Problem 52 Numbers ay, a, ..., a,, a,.; are terms of an arithmetic
1 1 1 _ n
sequence. Prove that aantaa T Taas = aan
Proof. ay, a», ..., a,, a,.; are terms of an arithmetic sequence, then
ay—ay=a3—a; =...=dayy —a, =d, where d is a common difference of the

sequence. Using (Eq. 2.9) we can state the following:

Q
E —

i)

I
N
5=

I
§l=
~
QU — Ul

I ( 1 1 ) 1
Apdp+1 d, Ay d

Replacing each term on the left of the given expression by formulas above and
factoring out 1/ , We obtain

1(1 1 1 1 1 1

S=dla ate ottt a
1 2 2 3 n n+1 2.10
_l‘(anﬁLl —ap) ( )

d ay-ap

But a,; = a; + nd, then
a1 —ay = nd (2.11)

Replacing Eq. 2.11 into Eq. 2.10 we have the required expression for S,
— nd _ _n

§= d(avani1) — avdpa’
The proof is complete.

Problem 53 Prove that 5+ %+ + ... + 5 <2.
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Proof. Denote the given sum by § = 5+ % + 57 + ... + ;5. In addition, consider
another series, made of one that we have already seen and evaluated:

1 1 1 1
S=l4 (bt
Jr<1-2+2-3+3-4Jr +(n1)n>

Each term of this auxiliary series, starting from the second term, is greater than
the corresponding term of the given series, such that

1 1 1 1
S<———= ——, n>2, neN
n? (n—1)n n—1 n

Hence, the sum of all terms of the given series is less than the sum of the
auxiliary series:

1 1
S<X=1+1—-=2——, nelN.
n n

Therefore, we can state that § < 2 — % < 2, neN. The statement is proven.
An interesting approach of rewriting a fraction as a difference of two other
fractions can be applied to many other math problems. For example, we can use this

approach in calculus when evaluating integrals like this: J " I or any integral of

u2

d
the form: Jiuz, where m is any integer. Let us do the following problem.
m

2 —

Problem 54 Evaluate the integral, Juz—ul

Solution. Consider the rational expression under a symbol of an integral. Because
the quantities, (¥ — 1) and (u + 1) differ by 2, we can use the same technique
(Eq. 2.9) of rewriting this as a difference of two fractions multiplied by (1/2):

1 1 (1 1 1
w—1 (u—1)w+1) \u—-1 u+1) 2

and

J du _1 Jdu Jdu
w—1 u—1 u+1
1

Inju—1|—1 1)+ C==Inl—
(Infu — 1| = Infu + 1) + S

N = N
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1 u—1
Answer. 1In|“—| +C.

2 22 2 _ n(nt1)
Problem 55 Prove that {3+ 5+ ... + mrimrn) = 2anr1

Proof. Would it be nice to have the sum of the first n squares or the sum of
n fractions with those denominators but unit in each numerator? Yes. We would
evaluate such sums without any troubles. These little observations can help us to

prove the statement. Denote the unknown sum by § = % + % 4+ ...+ WEMH)

and then rewrite it using sigma notation and by applying the difference of squares
formula to the n™ term, ; % = S. Let us multiply both sides by 4 and put
4 inside the summation:

n 2

n
4:) =48
n=1
"L 4n?
T 4
—4n? — 1

Would it be nice to add just » units instead? We do not have it but the following
operation will make it possible

4n2—1 Z4n2—17 - Z4n2—1

4n2—1_ 45— Z 2n —1)( 2n+)

1
n=45 - ;(2;1 —D2n+1)

I’l

The sum on the right hand side looks familiar to you because denominator of each
term consists of a product of two consecutive odd numbers that differ by 2.

n 1 1 1 1
—_—
;(211—1)(211-1—1) 1-3 3.5 (2n —1)(2n + 1)

IRVANN S 1\ 2n+1-1

2\1 373 77T 2n4+1)  2(2n+1)
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n
2n+1°

Finally, we haven = 4§ — Solving this equation for S, we obtain the requested

quantity:

n
2n+1
2 +2n n(n+1)

4S =n+

C42n+1) 22n+1)
The proof is complete.
Problem 56 demonstrates another approach for finding sums.

Problem 56 Find the sum § = 4z + 3tz + =35+ .. ..

th

Solution. Notice that the n" term of the series can be represented as

U — 1
T (2n—1)(2n41)(2n+3)"
Let us rewrite it as follows:

A B C 1

= = 2.12
=1 1 M3 =D+ )2n+3) (2.12)

Un

where A, B, and C are some constants to be determined.
If we put expressions on the left side of Eq. 2.12 over the common denominator,
and equate both sides, we can find these constants:

A(4n® +8n+3)+B(4n* +4n—3)+C4n* —1) =1
4n*(A+B+C)+4n(2A+B)+(3A-3B—-C) =1
Since n # 0 we have to solve the system:

A+B+C=0

1
24+B=0 ©A=C=1/8, B=— (2.13)
34-3B-C=1

Using Eq. 2.13 the given sum can be written as

(1/341/5+1/7+1/9+...)

1 1
SUH1B3H1/541/T+..)

a4+
81 11 1 1 (2.14)
= (L 1/3) =5 =25+ /T4 ) 4 (/54 1T+

1
=—~0.0833
12
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Answer. 1/12.

Remark. The required sum can be evaluated using properties of sigma notation as

C\&G2n-1 T&2m-1 Zn—- | 3 33

Additionally, notice that 1/12 in Eq. 2.14 is the sum of the infinite series.
If the number of terms, k, is some counting number we can evaluate the sum exactly

_ 1 1 1 L) 1
as Sk =135t 357 tsm T pEDEREEES) nt+s (m - M) =it

1 1
D) 1 A8 k — oco. We say that the series is convergent to 1/12.

k — oo. However, for small £ and sums up to, for example ﬁ (k = 6 and we
have to add only six terms), we should use the exact formula for the partial sum

above, that yields 5 + 51475 = 205 ~ 5 + 0.002564 ~ .0859

Problem 57 Find the sum S, = 135+ 537 +...+ m
Solution. Let us rewrite the k™ term as
1 1 1 1 1 1 l 1
kk+)(k+2)  k+1 k k+2 k+1 2k k+2

I 1 1
_E[k(kﬂ) _(k+1)(k+2)}

Therefore, the partial sum is

Y O 8 L NS S
2(1-2 2-3 2.3 3.4 3.4 4.5 nn+1) (n+1)(n+2)
11 1 ~ n(n+3)
_5[5_(n+1)(n+2)}_4(n+1)(n+2)

Notice that lim S, = %. The series is convergent.
n—oo

n(n+3
Answer. S, = m

Here is another example of how these ideas can be applied in Calculus when
taking integrals:
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dx
x(x+ 1)(x +2)

Problem 58 Evaluate J for all positive x.

Solution. Noticing that W =1 — o + 113 we can evaluate the integral as
dx

JWZ%{IH[XQC-I—Z)]—IH(X—%U}+C 11 xx+22+C

(x+1)
Answer. In-- al Hz) +C

Problem 59 Evaluate } + 2+ %+ ... + %7

Solution. Denote S, = 2+27 +23 +. +2”2—71. Multiplying this by two and

2" L Within this sum, we

regrouping terms, we obtain 2 - S, = 1 + 3 o+ ;—o +...+
recognize a geometric series and the original sum minus the last term, The first term
is 1 and the common ratio is %.

T (e (23 (22 4 (2
2 2 22 22 23 23 T znfl 21171
1
1] — —
on—1 _2n—l
— 1 + S, o

1 ——
2

Solving this for S,, S, =3 — 2’;3 This series is convergent because if n increases

the second term will approach zero and the limit of partial sums will approach
3,ie., lim S, =3.

n—oo

Answer. §, =3 — 215,

1
Problem 60 Evaluate the sum: S = - \/_ \/_+ R \/_-1— TV
Tt \/2016+\/2017'

Solution. This problem was given at the Volgograd District Math Olympiad, with

the only difference being that the last term ended in ———=—— m+ N because the current

year was 1978. Despite the different last term, the method of solving this problem is
the same: we rationalize the denominator of each fraction:
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1 B vVn—1—+/n -
\/n—1+\/ﬁ_(\/n—lJr\/ﬁ)-(\/n—l—\/ﬁ)_\/_ :

S can be written as

S=vV2—-14+V3=V2+V4—+V3+...+/2017 — v/2016 =+/2017 — 1. Next,

we can easily add the first n terms of the series and find S,;:

1 1 1 1

S, = + + ot — =Vn+1-1
1+v2 V2+V3 V3+V4 N e e

This partial sum can be evaluated precisely for any natural n. The series is divergent
because this sum will increase without bound.

Answer. 2017 — 1.

Next, using similar idea, let us solve the following problem.

Problem 61 Positive numbers ay, ay, . . ., a, form an arithmetic progression.

Prove the following: S, = W 4 m Ak \/ch11+\/(2 = \/Zz‘?-_ri/a_

Proof. Since this looks similar to the sum we just evaluated in the previous
problem, let us try the same idea: we rationalize each denominator,

o VB NVA | EE A

a; —a as —ap ay — dp—1

For any arithmetic progression the differences in these denominators are the
differences between consecutive terms of the arithmetic sequence and must be
the same. We denote it by d. Next, after substitution and eliminating opposite terms,
this expression will be written as

Var —Jar | a3 — /@ Van = a1 fan = Jar

Since the original problem does not have any information about common difference
of the progression, then we can find d from the formula that connects the first and
the n'™ term of any arithmetic progression:

ap,=a;+(n—1)d
a, — dj

n—1
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Therefore, S, = ‘/a—”;‘/a = mﬂ)gﬁrﬁ) = \/a"?:ri/ti

The proof is complete.

Problem 62 Find the sum S, =1-1!'+2-2!4+3-3!+ ... +n-n!

Solution. The following is true for the nth term of the series
n-nl=m+ ) —nl=n(n+1)—nl=nn
The given sum can be written as

Sy =21~ 11431 -2 +4l—31+ ... +nl—(n—Dl+ (n+ 1) —nl
=n+D-1

The series is divergent since the limit of the partial sums does not exist.

Answer. (n+1)! — 1.

Problem 63 Evaluate the sum: 14+2-2+3-2%+4-2° + ... +100-2%.
Find a general formula for the sum of the first N terms of series

Sy=1+2-24+3-444-845-16+...+N -2V 1,

Solution. Method 1.
Denote  the required sum as S and multiply it by 2,
28=2+2-2243-22+4.2*+ ... 4+99.2% + 100 2'°. Next, we subtract
S from 28,
§=100-2" — (1+24+224+2° + ... +2%)
=100-2'% — (2! —1)
=992 41

Clearly, a general formula is Sy = (N — 1) -2V + 1.

Method 2.
We can rewrite this series as follows:
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1422432+, N2V = (142422 +... +2V7)

+(2+22+. 2V ) 4 (22422 4. 42V
+ (2220 2V 2V

=¥ —1)+2(2" " —1)+22(2" 2 - 1)
+222" -1+ +2V 2 -1)

=N-2V—(1+2+2°+...+2V)

=N-2V - (2 1)

S=(N—-1)2Y +1.

N
Therefore, we obtain ZN N =1 2V(N - 1).
N=

Method 3. (Using a derivative).
Consider a polynomial P(x) =x+x*>+ x> +...+x" and its first derivative
P'(x) =1+2x+3x*+... +N-x""1. We can evaluate the sum of all terms of

the polynomial as the sum of the N terms of geometric series,
x(2V 1) Ny

P(x) = (\T = *—* The derivative of this sum will be

Y o= 1) = (Y — (= 1)
Py = @ =0 (:)_1)@ =1
:N-xNHf(NJrl)xNJrl

(x— 1)

If we replace x = 2, we obtain that the given sum is

Plx=2)=N-2""" — (N +1)2" +1
S=1+2V.(N-1).

Answer. Sy =1+2Y(N —1).

Problem 64 Evaluate S =1-22+2-32+3-4 4 ... +n(n+1)°.

Solution. Notice that
2.32432=3 3.4244 =4, . nn+17+(n+17>=(n+1). Hence,
ay, =(n+1)* = (n+ 1)*. We can evaluate the series as follows:
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1-2242.32 43424 . +nn+1)
+

224+ 3P4+ A4+ (n+1)
=24+ 3¥ 444 4+ (n+1)

The sum above can be rewritten as
n+1 n+1

S+ an = Zn3
n=2 n=2

(n+ 1)(”+2)(2(n+ D+1D

S+ —1=

S =

(n+ n+2 <2n+3 n+1)(n+2))

n(n+ )(n+2(3n+5)

For example, we can check this formula as Se=1-2242-324+

3-4% 4.5 =170 =3I _ 70,

S = n(n+1)(n+2)(3n+5)

Answer. -

Problem 65 Evaluate the sum: S = — 32 4 % Fooor 2281165,

Solution. Let us find the formula for the nth term. We can see that a, =

(n & )ik

: 1 1 1
Notice that (nfl), + (l1+1)’ = (;’L)! . Hence a, + (HH) = n, Since a,—1 ="y,
then @,y + 4 =274+ 4 and n_1 + 1 ﬁ, which can be continued until
we have the last term i + a=5=1 Therefore if we add 557 2016, to the given sum and

start adding the terms by palrlng them from right to left, we obtain

1 —

2016!

1
~2016!

S+

S:

In general, we can evaluate the partial sum for any number of terms n,
_ 1

Sn=1—
Itis clear that the series is convergent because the limit of the partial sum equals 1.

Answer. S =1— 2016,
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Problem 66 Prove that
§=1-2-342-3-443-4-54... +n(n+ 1)(n+2) = 2etlet2t3)

Proof.

Method 1. Consider the n™ term of the series and rewrite it as
a, = n(n+1)(n+2) = n* + 3n> + 2n. Hence using sigma notation
we can rewrite this sum as
Snn+1)(n+2)=>n+3-3 n*+2- 3 n If we substitute

n=1 n=1 n=1 n=1

Eqgs. 1.29-1.31, the right hand side is rewritten as

S =

(n+ 1)2n2+3n(n+ H2n+1) +2n(n+ 1)  n(n+1)(n* +5n+6)
4 6 2 4
nn+1)(n+2)(n+3)
y .

Method 2. On the other hand, the n'™ term and the corresponding partial sum can be
evaluated as

an:(n+1)[(n+2)n]:(n+1)-(n2+2n):(n+1)<(n+1)2—1>

— (1) = (n+ 1),
§= (st (1042 _ (1 Dot D+ D+ 2) =
2 4
D2 43)
; .

Which allows us to evaluate the requested sum as a difference between
the sum of cubes and the sum of all natural numbers from 1 to (rn + 1).
The proof is complete.

Problem 67 Prove that for any natural n > 2, n€N, the sum — +1 = +2 +
ﬁ A coodF 217 is greater than 2 but less than 1.
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Proof. Consider the chain of true inequalities,

>
o
o
=
=
(0]
o
=
—
=
a
72}
¢
_
=
9]
e
=]
1)
=N
=
a
»
<
o
Q
o
-
IS
=8
=
S
Il
o=
A\
+
+
+
ST
AN
SIS
I
—_

The proof is complete.

Problem 68 Prove the following statements:
a)
b)

)

I 1 1 1 1 1
T—E‘FE‘FE‘F%‘F%—F...

1 1 1 1 1 1
SRERSTRE RS- AT
I 1 1 1 1 1
3=2" % 60 a0 0T

Proof.
a) The partial and infinite sums for the first infinite series can be rewritten and
evaluated as:

b) Consider the second sum: % + ﬁ + % + & + l(lJ_i + ...

Method 1. Would it be nice to recognize a similar pattern here? Can we rewrite
each term as a difference of two other terms? Let us rewrite this sum by factoring
out two from each fraction:
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of by L L L1,
6 24 60 120 210

1 1 1 1 1
2'Q~I3+23~4+&46+4~56+56-7%”+>

s 1
:zgém+qxn+m

This formula must look familiar to you (Prob. 57). The sum above can be found as

N 1 1 1 1 1 1 1
12 2323 33t 3a a5 T T iy D2
1 1

T2 (n+D)(n+2)

Therefore, the sum of infinite series is Y.

Method 2. One could also notice the following:

111
372 6
111
126 12
111
30 120 20
111
60 20 30
111

It looks like if we add the left and right sides of the relationships, we can evaluate

the corresponding sums of the first two, first three, first four and first five terms of
the series as follows:
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gL 1 1 1 1
T3 R T2 2 34

1 1 1 1 1 1 1
B3ttt T2 0 2 as

1 1 1 1 1 1 1 1
=37 153076072730 2 5.6
S—1+1+i+i+1 l_i 1 L
73712730 60 105 2 42 2 6-

By induction, the formula for the sum of the first n term is

1

1
R R

(2.15)

Using Eq. 2.15 and subtracting the sum of the first #» terms and the sum of the first
(n — 1) terms we obtain the formula for the n™ term:

1 1 1 2
n:S _S’_ — N e 2.16
“ noend n—|—1<n n—|—2> n(n+1)(n+2) (2.16)

By replacing n by 1, 2, 3, 4, and 5, we obtain correct values of the terms. For
example,

2
B=34.5 30

27
“=56.7 105

Now we can predict any term of the series, a¢ = ﬁ a; = 2;2’ ag = 3é0,
Therefore, Eq. 2.15 is correct and then the infinite series sum is Y.

The proof is complete.

The second method of proof can help us to introduce the so-called Leibniz
triangle.

The Leibniz harmonic triangle is a triangular arrangement of fractions in which
each row starts with the reciprocal of the row number and every entry of the triangle

1
is equal to the sum of the two fractions below it. For example, 7 = % + 165 OF

% = 3 +4 35- €tc.. In order to see a connection between Leibniz and Pascal’s triangles,

we place them together as in Figure 2.2. Instead of showing the fractions as in
Figure 2.1, we record only the denominators of the fractions in the Leibniz triangle.
Note that the first row for both triangles corresponds to i = 0.

Whereas each entry in Pascal’s triangle is the sum of the two entries in the above
row, each entry in the Leibniz triangle is the sum of the two entries in the row below
it. Denote by P(i,j), L(i,j), z(i,j) the entries of Pascal, Leibniz, and modified
Leibniz triangles, respectively. For example, in the 5™ row of Pascal triangle, the
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1
1 1
2
1 1 1
3 6 3
1 1 1 1
4 12 12
1 1 ot
5 20 30 20 5
1 1 1 1 1 1
30 60 60 30
[ 1 RN a1 1%
7 42 105 140 105 42 7
1 | 1 1 1 e 1Ty
8 56 168 280 280 168 56 8

Figure 2.1 Leibniz triangle

entry P(5,2) = 10 s the sum of 4 and 6 in the 4™ row. On the other hand, in the 5™
row of the Leibniz triangle the corresponding entry L(5,2) = 1/60 is the sum of
1/105 and 1/140 in the 6™ row. Just as Pascal’s triangle can be computed by using
binomial coefficients, so can Leibniz’s triangle. The connection between the entries
of three triangles is summarized by Eq. 2.17.

1
L(i,)) = =
) )
2(.1) = (7t + viem) .
P(i,j) =P(i—1,j = 1)+ P(i — 1,j) (2.17)
i
Pirj) = Cl = —"—
) JHi =)
z2(i,j) = (i+1)-P(i,j) i=0,1,2,

Because any Leibniz triangle entry L(n — 1,k — 1) is the sum of two entires,
L(n,k — 1) and L(n, k), the following is true:
S S
n-Cl T (n+1DCT T (n+1)Ck (2.18)
L(n—1,k—1)=L(n,k— 1)+ L(n, k)

Please prove it yourself by using Eq. 2.17 for binomial coefficients and by adding
fractions.

Consider  P(6,2) =15 in Pascal’s triangle, P(6,2) = (6_6—2!>!2! = 15.
Corresponding to it Leibniz number is L(6,2) = m = 1= = = (Please use
Figure 2.2 to see that z(6,2) = 1053).
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A 5 !
2 2 1 1 \ﬁ/
3 6 3 1 2 1
4 12 [12] |4 1 3 3 1
5| |20 [30] [20] [5 1 4 6| |4 1
6| (30 [eo] [eol [30] |6 1 5[ [1o] T[10[ |5 1
7 42[ fod fad fog [42] |7 1 6| [15] [eo] [15] |6 1
|8 56| f1ed psd psd [ieg [56 8| |1 71 [21] [38] [35] [21] |7

Figure 2.2 Modified Liebnitz (left) and Pascal (right) triangles

Moreover, each diagonal of Leibniz triangle does not only relate to the
corresponding Pascal’s triangle diagonals but also relates to a certain modification
of the figurate numbers. Consider a sequence of the numbers in the second diagonal,
just z numbers presented by the left diagram in Figure 2.2: 2, 6, 12, 20, 42, 56, . ..

Each term of this sequence is 2 times the corresponding triangular number 1, 3,

6,10, 15,21,28, ... and can be written asb, =27, =2 - @ Hence, an nh entry

1
n(n+1)

Consider a sequence of the numbers in the third diagonal, just z numbers
presented by the left diagram in Figure 2.2. Each term of this sequence, 3, 12,

30, 60, 105, 168, .. ., is 3 times the corresponding tethrahedron numbers and can be
written as b, = 3TH, = 3 - "("Hg(Hz) = ”(”H%('Hz). Hence, the corresponding n'™
term of the third diagonal of Leibniz triangle (Figure 2.1) is its reciprocal
(Eq. 2.16), a, = % = m Therefore, we can also state that the infinite series

of the reciprocals of tetrahedral numbers is convergent and its sum is 3/2,

of the second Leibniz diagonal is its reciprocal, a, = bi =
n

Z m =3 The proof is complete.

Further, the first Leibniz diagonal consists of reciprocals of natural numbers,
z=1,2,3,4,5,6,... The second diagonal consists of 1/(2x triangular numbers),
z=2-1,2-3,2-6,2-10, 2-15, 2-21, ... (Here 1,3,6,10,15,21, ... are
triangular numbers). The third diagonal consists of 1/(3x tetrahedral numbers)
and so on.

n=1

Method 3. Consider again the sum § + 5+ 35+ a5 + 745 + - - -

We can see that this infinite series represent the sum of all fractions in the third
diagonal of Leibniz triangle. Hence, each fraction can be replaced by the difference
of two others using Eq. 2.18,

L(nk—1)=L(n—1,k—1) — L(n, k) (2.19)

For example, z(3,1) = 12, P(3,1) =3, L(3,1) =4 = GTOPET = 34
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For some terms of the series b) we obtain the following:

ay=L(2,0) = L(1,0) — L(2,1)

1 (2.20)

I
h
—~
>
V)
~—
|
™~
—~
uu.)
V)
~—
|
~
—~
R
W
~—

as

1
60 20 30
as=1L(5,3) = L(4,3) — L(5,4)

Additionally, for this chain of equations, by induction, we can find the formula of
a,=L(n+1n—1)=Lnn—1)—Ln+1n)| We
can see that if we add the left and right sides of Eq. 2.20, then on the left we have the

given series and on the right, all the terms except the first one and the last one are
cancelled and that the partial sum is

the n™ term of this series,

1 1 1
h=~— L+l =e e
So=q Lt lm) =55

n+l1

This matches with our other formula found earlier and proves the statement.
¢) Let us now prove that $ = + b+ &+ g + 555+ - - -

Method 1. Denote the sum by S = § + 55 + g5 + 145 + - - -» and multiply and divide
the right side by 6,

1 1 1 1
S_6'<m+20-6+60-6+140-6+'”)

1 1 1
S_6(1-2~3.4+2.3-4-5+3.4-5.6+"'>
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Hence the given sum is six times the sum inside the parentheses. We have seen
such a series earlier in this chapter. It can be evaluated as

= 1 P .
S=6- Zn(n )Lt 3) In order to evaluate an infinite sum of this

series, we rewrite the n'™ term in a different form and firstly, we multiply two

n=1

inner and two outer factors of the denominator, 6 - (m)

We obtained a familiar structure: two quantities in the denominator differ by
two, and we can rewrite the fraction again and again decompose it into two new
fractions as follows:

6 1 1 3 /1 1 3 1 1
a, == — = _ .| =-= — —
2 \n(n+3) (m+1)(n+2) 3 \n n+3 n+1 n+2
1 3 3

1
Z_n+3_n+1+n+2

This n™ term can be rewritten in a little different form so we can calculate the partial
sum of the series easily:

A N U WA T U WP N
" \n n+1 n+2 n—+3 n+1 n+2

-~ - 1 1 1 1 1 1
n: _— —_ _2. —_—
;a Z<<n n+1>+<n+2 n+3> <n+1 n+2>>

n=1

Now, the sum of each quantity can be evaluated separately and the final answer will
be the sum of these three answers:

n n+1) n+1

n=1

z": b byl
n+2 n+3) 3 n+3

n=1
L 1 1 2 2
) - - )= _=
;<n+1 n+2> 2+n+2
S 1 1 1 . 2
"T3 n+1 n+3 n+2

Obviously, as n goes to infinity, the partial sum will go to 1/3. Therefore,
Seo=t=t+m+&+tTo a5t -
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Method 2. Please notice that the series is the sum of all fractions in the fourth
diagonal of Leibniz triangle. Looking at that diagonal of the Leibniz triangle in
Figure 2.2, and using Eq. 2.19 we have the following chain of the true relationships:

1 1 1

dlzzzg—ﬁ < HIZL(3,O):L(270)_L(3a1)
Sl @) =13, 1)~ L(4,2)
2= 1273 & TS ’
1 1 1
613—@—%_@ g aS_L(S,Z)_L(472)_L(573)
1 1 1
= =——— =L =L —L(6,4
ay 120 60 105 < a4 (673) (5a3) (6’ )
1 1 1
as & as = L<7a4) = L(674) 7L(7,5)

T 280 105 168

From these relationships, by induction, we can recognize the formula for n™ term of
the series and evaluate its n™ partial sum,

ap=Ln+2,n—1)=L(n+1,n—1)—L(n+2,n)

- 1 (2.21)
Sy = ;ai :g—L(n+2,n)

It follows from Eq. 2.21 that the n'™ partial sum of the series is 1/3 minus the Leibniz
entry L(n + 2, n). Additionally, we can evaluate the n'™ term of the series by using
Eq. 2.17 for L(i,)),

1 1
Lin+1,n—1)= — =
n+2)Ch n+1)!
e ("+2)(n(—1)1).z!
_ 2
(n+2)(n+n
Lint+2m) =7 ?})C" - 1(n T 2) -
n+2 (n+3) (! .2!.
2

(n+3)(n+2)(n+1)

Subtracting the left and right sides, we obtain
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B 2 2
M=)+ n (n+3)m+2)(n+l)
1 1
=2 (2t GF D)
_ 2 1
T mh+2)(n+1) <n n—|—3>
6

Tan+ D)(n+2)(n+3)

Making substitutions of the Leibniz entry L(n + 2, n) from Eq. 2.22 into Eq. 2.21,
we have

¢ 1 2
"T3 (n+3)(n+2)(n+1)

(2.23)

If n increases without bound, then the partial sum above will get closer and closer to
1/3. Therefore, the sum in part (c) is 1/3. The statement is proven.

Consider again Figure 2.2. Start counting the rows from the top i = 1. Take the
numbers of the n'™ row and add them. For example, for the 4th row, we have
5420430420+ 5 =280 =5-2* The following statement is true.

Lemma 2.1 The sum of the numbers in the n™ row of a triangle made of the
denominators of Leibniz triangle equals 7 - 2"~!.

Proof. The sum of all numbers in the n'" row is the sum of the z-numbers and

hence, it can be written using a definition of a z number as
n—1 n—1

E n-Cil =n E C”ki] =n-2"""
=0 =0

2.2 Trigonometric Series

The following problems are very different from anything above. They are trigono-
metric series. In order to evaluate trigonometric series we need to know trigono-
metric identities and de Moivre’s Formula. Some formulas are given by,
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1
sinxcosy = E( sin (x 4+ y) + sin (x —y))

1
sinxsiny = 5 (cos(x —y) — cos(x+y)) (2.24)

y—x
2

+y

sin

. X
cosx — cosy = 2sin

de Moivre’s Formula (Abraham de Moivre, French mathematician, 1667-
1754)

cosnx + isinnx = (cosx + isinx)". (2.25)

We do not give a proof for the first three formulas because students study them in
high school. de Moivre’s Formula is not in the regular high school curriculum so we
need to discuss it a little more. Let us see how easily it can be derived under
assumption that the Euler’s relationship below is true.

Euler’s Formula

X

e = cosx+isinx (2.26)

Let us raise the left and the right side of Eq. 2.26 to the second power, then the
third, fourth, and so on and apply Eq. 2.25 again each time. We obtain the following
chain of the correct equations:

(.e”’)2 = (cosx + isinx)’
e = cos2x + isin2x
(e""')3 = (cosx + isinx)’
€ = cos3x + isin3x
(e")* = (cosx + isinx)*
e™ = cos4x + isindx

inx

e"™ = cosnx + isinnx

Problem 69 Evaluate S, = cos? + cos Zn—” + cos 37” + ...+ cos @
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Solution. Let us multiply the given sum by sins.. Using the first formula of
trigonometric identities of Eq. 2.24 and the fact that sine is an odd function
(sin (—y) = —sin (y)), we obtain,

2 -2
28, s,in1 = 25inlcosz+ 25in£cos —”—}— oot ZSinicos (n )ﬂ—i—
2n 2n 2n n 2n n
251n cos (n = 1)z = sin 37 sin ﬂ + sin o sin 3”—}—
2n n 2n 2n 2n 2n
o — _ _ _
4 sin (2n—3)x — sin (2n 5)7[+ sin (2n—Dm sin (2n 3)71'.
2n 2n 2n 2n

After  simplification and canceling opposite terms we  obtain
28, sing. = —sing- + sin (2"2; Dz _ sing- + sin (7: — 2—) = 0. Considering the

expression above we notice that the second factor on the left hand side is never
zero for any natural n, therefore the given sum must be zero.

Answer. S, = 0.

Problem 70 Prove that

sin 2. gin Ut
S, = sinx + sin2x + sin3x+ ...+ sinnx:#
sin .
2

Proof. This proof will involve only knowledge at a high school curriculum level,
and trigonometric identities. Multiplying the sum by 2 sin(x/2) we obtain:

2sm2(smx—|— sin2x 4+ sin3x + ...+ sinnx)
= 2singsinx + 2sin§sin2x + 2sin§sin3x + ...+ 2sin§sinnx

= cos (f—x) — cos <f+x> + cos ()—C—2x> — cos <{+2x)
N 2 2 2 2

#eos (5= 30) = eos (5 3) 4t cos () = con ()
COS 3 X COS 3 X COoS 3 nx Cos 3 nx

Since cosine is an even function, then cos(—y) = cos(y) and all terms in the

middle of the last formula will be eliminated as
cos (2) — cos ( ) + cos (32X) — cos ( ) + cos (52‘) +...— cos (@) Now
we obtain that S, - 2sing = cosj — cos (2"“) . Apply the difference of cosines

formula (3™ formula of Eq. 2.24):
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1+2n+1 1+2n+1

— x —_—

272 . 2T )
—.Sln—

2 2

. (n+1Dx | nx
= 2sin —" "7 §ip —
sin —— sin =

X
S, 2sin= = 2si
SlIl2 sin

Dividing the last row by 2sin(x/2) we prove the formula:

S, = sinx + sin2x + sin3x + ...+ sinnx

oy (n41)x
SIn — - SN ————
2 2
X
sin —
2

You will have a chance to prove this formula a second way in a homework problem
using de Moivre’s Formula. You can use the next problem as an example.

2
cosZ  cos cos —
Problem 71 Evaluate A = + 224 +oo gt
Solution. Denote
sin% sin %T” sin %
R i e T (2.27)

Assuming that B is imaginary part of a complex number A +iB, we multiply
Eq. 2.27 by i and add the corresponding A:

A+iB 1( ﬂ+,,ﬂ)+l 2ﬂ+,, 2 n +1( ﬂn+., ﬂn)
iB=—(cos——+isin—)+— | cos—-+isin— ...+ —(cos—-+isin—
2 4 4) 92 4 4 2" 4 4

Applying de Moivre’s Formula (Eq. 2.25) to the previous expression, we have

A+ iB l(cos”—l—'sin”)—i— 1(0037[4—'sin7[)2 + + l(cos”—i—'sinﬂ)n
iB=— —+isin— — —+isin— ot = —+isin—
2 4 4) 22 4 4 2" 4 4

(2.28)

We can notice that Eq. 2.28 is a geometric series with both, first term and the ratio
equal to % : (cosf + isin%).

Therefore, using the sum of geometric series, Eq. 2.28 can be rewritten in a
compact form as follows:
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A+iB =

_ 4 z 4 isinZ)"
%(cos—+zsm )((1 r(cos+ising) ) (2.29)

—%(cos%—l— ising))

Applying de Moivre’s Formula (Eq. 2.25) to Eq. 2.29 again and using the fact that
cos% = sin% = % we have,

A+iB :L(l_H).(l _Tln(COT%+i§in%)")
(1-25-2)

2V2
Rationalizing the denominator and extracting the real part of A +iB in Eq. 2.30, we
obtain

(2.30)

(\/5— 1)(2” — CoS ’T) + /2sin ”T”

4= 2'(5-2v2)

(\/E—l)(Z"— cos 4)+\/_sm
2"(5 - 2v2)

Answer. A =

2.3 Using Mathematical Induction for Sequences
and Series

The principle of mathematical induction is very helpful in proving many statements
about positive integers. According to this principle, a mathematical statement
involving the variable n can be shown to be true for any positive integer n by
proving the following two statements:

o The statement is true for n = 1
« If the statement is true for any positive integer k, then it is also true forn = k + 1.

Let us show how mathematical induction can help us to prove and solve some
problems involving sequences and series.

Problem 72 Use mathematical induction to prove that 1 +3 +5+ ...+
(2n — 1) = n? is true for any positive number 7.
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Proof. Step 1. Replacing n by 1 in the above equality gives 2 - (1) — 1 = 1 which
is true, so n =1 satisfies the equation.

Step 2. Assume that the equality is true at # = k. And let us show that it will be
trueatn =k + 1. If 1 +3 +54 ...+ (2k — 1) = k? is true, then let us show that
for n = k + 1 the left side of the equality equals (k + 1)7.

1+3+5+---+(2k—1)+(2(k+1)—1).

Start with the left hand side, and notice that (because of our assumption) it is equal
to &7, plus an additional term.

143454+ ..+ 2k—1)+Q*k+1)—1) = +2k+1=(k+ 1),

The final equality proves that the equation is true for n = k + 1, given that it is
true for n = k. By the principle of mathematical induction, we have proven the
statement.

2
n n

Problem 73 Prove that: B = (Z k) .
k=1 k=1

Proof. Step 1. Replacing n by 1 in the above equality gives

13 = 1% which is true, so n =1 satisfies the equation.

Step 2. Assume that the equality is true at n = k and let us show that it will be true
atn==k +1:

Sy B B B = (142434 ..+ k) =EE s e, then let us
If 13 423 4 33 B=(1+2+3 k)? =
show that for n=k-+1 the left side of the given equality equals

(142434 +k+ 1)? = B @27

We can state that 1> +2° + 3% + .+ i34+ (k+1° =(1+24+3+...+k)°

+(k+ 1)3. Replacing the right hand side, putting fractions over the common
denominator and factoring, we obtain the required formula:

2k 4 1) 5 K+ 1) 4k + 1)

- 4

(k+1)° (k> + 4k +4)
4

(k+1)*(k+2)*

S

+ (k+1)

The final equality proves that the equation is true for n = k 4 1, assuming that it is
true for n = k. Using the principle of mathematical induction, we have completed
our proof.
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In Prob. 74, we use mathematical induction for recurrent sequences.

Problem 74 Given a sequence {x,} such that
Xo=2, X{ =3, Xy11 =3X, —1x,1. a) Find the exact formula for x,.

o0
b) Evaluate lim x,, if the limit exists. ¢) Is series S, = Zxk convergent
h—0o0
k=0

or divergent?

Solution.
a) Using the given recursive formula we can calculate a few terms of the sequence:

xo=2=1+2°
Xl_%:1+l=1+2_l
xz—%;—%-2=1+i:1+2‘2
X%—%~§—%-%=§—l+%=1+2_3
X4f%%*;§:%f1+2’4

Notice that every n™ term of the sequence is obtained as a sum of 1 and 2 raised
to a negative power that is equal to the number of the term. We can assume that

Xp=1427" (2.31)

Using mathematical induction let us prove that Eq. 2.31 is the exact formula for
the n™ term of the sequence. Denote by A(m) our statement for n = m.

Step 1. A(1) is true because x; = % =1+27"!

Step 2. Assume that A(k) and A(k — 1) are true (i.e., Eq. 2.31 holds for n = k and
forn=k—1),ie,x=1+2%and x,_; = 1 —&—2%,1.

Step 3. Let us prove that A(k + 1) is also true. That is, we need to show that
Xepr = 142780 = 1 4 2751 Indeed, x4 = 3 Xk — $x41 by the condition of
the problem, then
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3 1 1 1
xk-H:E' 1+? —E' 1+F

1 (3:-284+3-2¢-2)
: 7
(2-28+1)
2k

N = N~ N

We proved that Eq. 2.31 is the exact formula for the n™ term of the sequence.
The proof is complete.

b) Now, knowing the n™ term of the sequence explicitly, x, = 1 + 27", let us find
the limit of {x,}, lim x, = lim (1 +%) = 1.

c¢) The series is divergent because, as we established above, the limit of the nth term
as n goes to infinity is not zero. Therefore, the series does not pass the Necessary
Condition (See Chapter 3 for clarification). We can also evaluate the partial sum
for the series exactly as S, =2+ 1 +2—1.—|— 1 —l—%—&- 1 +21—3—|—...+ 1 +21—n. You
can see that this is the sum of (2 + n - 1) and the first n terms of geometric series

(1
with by =1, r=1 Thus, S, :2+n+2(11#=2+n+1 - @)" so
2

Sp=3+n-— (%)"

We can see that this partial sum depends on 7 and increases without bound as

n increases.

Answer. a)X,=142""b)S,=3+n— (%) " ¢) The series is divergent.
In the homework chapter, you will be asked to find the formula for the n™ term
using the knowledge of recursion.

Problem 75 Given a sequence {a,}, a, =n(3n+ 1), n€N. Prove that its
n'™ partial sum can be evaluated by formula S, = n(n + 1)2.

Proof. We prove this by induction. It is easy to see that the formula is true for
n=1.Indeed, S; =1- (1 + 1)2 = a; = 4. If we evaluate the sums of two, three,
four of even five terms of the sequence, we see that the formula works. However, it
does not prove the statement. Assume that this formula is correct for n = £, i.e., the
sum of the first k terms of the given sequence equals Sy =k - (k + 1)2. Let us
demonstrate that it will be also true for n = k + 1, i.e., Sy = (k+ 1) - (k+2)*.
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We know that the sum of (k + 1) terms of the sequence equals the sum of its first
k terms plus the (k + 1)™ term, S;+1 = St + ax+1. Substituting here the ™ sum and
the value of the (k + 1)* term of the sequence we obtain

Sk = k(k+1)2 + (k+ 13- (k+1) +1)
=k(k+1)*+ (k+1)(3k + 4)
=(k+1)(k(k+1)+3k+4)
= (k+1)(k+2)°.

Therefore, the formula is correct for n = k + 1, hence it is true any natural n. The
statement is proven.

Problem 76 Prove that any term of the sequence a, =4 - 6" +5n — 4 is
divisible by 25.

Proof. We can substitute n = 1 and obtain that @; = 25. Yes, it is divisible by 25.

Assume that the statement is true for n =k and that a; = 4 - 6° + 5k — 4 is
divisible by 25, then it can be written as 4.6 +5k—4 =
25m = 4-6° =25m + 4 — 5k. Let us prove that the next term, k + 1, a;,; = 4
61 4 5(k 4 1) — 4 is also is also divisible by 25. Next, because the ™ term is
divisible by 25, we extract the kth term of the sequence in the expression of the
(k+ 1) term,

a1 =6-4-6" +5k+1=6-(4-6+ 5k —4) — 25k +25.

Each term of the sum is a multiple of 25, then the total sum or (k + 1)* term is
divisible by 25. You could do this proof a little bit differently by replacing the k™
term by 25 - m:

1 =6-4-6+5k—4+5
= 6(25m + 4 — 5k) + 5k + 1
= 150m — 25k + 25
=25 (6m—k+1)

It is clear that it is divisible by 25. The statement is proven.

Problem 77 Given a Fibonacci sequence {a,} : aj =a, = 1, a, = a,—; +

an—2, n > 2. Prove that the terms of the sequence satisfy the equation:

aﬁﬂ —ay - ano = (—1)", VneN.
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Proof. We prove this by induction.
1. Notice that the equality is true for n

d—a-a3=1-1-2=(-1)".

2. Assume that the statement is true forn = k, af, | — ay - a0 = (— 1)*. From this

|
—_

because

it follows that a%H = (—1)k + ay - apio
3. Let us demonstrate that it 1is also true for n=k+1, Iie.,

Ay — A - g3 = (-

Let us substitute the expression for the (k 4 3)™ term of Fibonacci sequence,

2 _ 2 2 . . . .
Aiyy — Qi1 - (Qpy1 + Grin) = A p — Gpy1- A2 —|a@j, | Substituting in  this

formula the value of the term in the box, we obtain

2 _ 2 1 k
Ay — Ayl - Apg3 = iy — Qi - Ay — (1) — ag - g
) k+1
= Ay — ars2(ax + aper) + (=1)
2 k+1
= Qj 1y — Q42 - A2 —|—(—1) .
—_———

0

The proof is complete.

2.4 Problems on the Properties of Arithmetic
and Geometric Sequences

If three numbers form an arithmetic sequence, the middle term is called the
arithmetic mean of the other two. Thus,

az —dy =d —d
2a, = a; + a3
a) + a3
a) = ——

2

By analogy the arithmetic mean of two numbers is half of their sum. Therefore,

@ is the arithmetic mean of numbers @ and b, or the average of two numbers.

a+tb+c
3

Similarly the average or mean value of three numbers a, b, and c is . In

general, the mean value of n positive numbers, a, a, as, .....a, is 4Tt

that is the average of the sum. Besides the arithmetic mean defined above there is
another form of mean value that is defined by the formula: b = y/ac. Value b is
called a geometric mean of numbers @ and c. Recalling a geometric progression

with positive terms by, by, ...... ,bu_1, by, byyy.... and common ratio r such that
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hbil = b}”j‘ , by =+/by_1b,+1 or by = by - bnt1. Every term of a geometric
progression is a geometric mean of the preceding and consequent terms.
Now consider the following problems.

Problem 78 Peter lives near a bus stop A. The bus stops A, B, C, and D are
on the same street. Peter walks for exercise every weekend. He starts at A
with a speed of 5 km per hour and goes to D. Reaching D he turns back and
goes to B. Walking this rout (A-D-B) requires 5 h. At B Peter takes a bus and
goes home. It is known that he can cover the distance between A and Cin 3 h.
The distances between A and B, B and C, C and D form a geometric sequence
in the given order. Find the distance between B and C.

Solution. Usually it is a good idea to draw a picture of the problem. A, B, C, and D
are on the same street (Figure 2.3). It means that we can draw them as points on the
same line, A and D will be the end points of the segment and B and C between them
in the order A-B-C-D.

Because our unknown is the distance between B and C it seems obvious to
introduce 3 variables x, y, and z as distances between A and B, B and C, and C and D
respectively. Using the condition of the problem and distance = speed - time we
write, v +y+z+z+y=5-5=25andx+y=3-5=15.

Now we are going to write the last equation of the system. Because x, y, and z are
consecutive terms of a geometric sequence, then y2 = xz, and we can complete a
system:

xX+2y+2z=25

x+y=15

y? =z
y+2z=10

x=15—y
y? =z

A B C D

Figure 2.3 Problem 78
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Subtracting the second equation from the first of the first system, we can eliminate
variable x in the second system. Then we express z and x in terms of y and put them
into the third equation of the last system. Let us solve the last equation for y.
Multiplying both sides by 2, we have

2y2 = 150 — 25y + y?
2 425y —150=0
yi=35 y,=-30

Because y is a distance, it has to be a positive, so we choose y = 5.

Answer. The distance between B and C is 5 km.

Problem 79 The four numbers a, b, ¢, and z are given. It is known that the
first three numbers form an arithmetic sequence, and the last three numbers
form a geometric sequence. A sum of the outer terms is 4 and the sum of the
inner terms is 2. Find the numbers.

Solution. Let us write the numbers in arow: a b ¢ z. If variables a, b and ¢ are terms
of an arithmetic sequence, then

7a+c

b 2.32
. (232)
On the other hand,
n a+z=4
b+c=2 (2.33)
a+b+c+z=6
Replacing (a + ¢) by 2b from Eq. 2.32 into Eq. 2.33, we have
3b+z=06 (2.34)

Our purpose now is to eliminate some variables. It would be nice to obtain a
system of two equations in just two variables. (for example, z and b). Let us use the
second part of the condition. If b, ¢, and z form a geometric sequence, then c is a
geometric mean of b and z or

> =b-z (2.35)
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Expressing ¢ as (2 — b) from system (Eq. 2.33) and substituting into (Eq. 2.35)
we derive

2-b)?=b-z (2.36)
Let us combine Eqs. 2.34 and 2.36 as

(2 —b)* = b(6 — 3b)
4 — 4b 4 b* = 6b — 3b*
20 —5b+2=0

5452 —-4.2.2 543
b1,2: =
2.2 4
by =2 by =0.5

Two different values of b will give us two sets of a, b, ¢, and z.
1. b=2

z=6—-3b=0
a=3b—-2=4
c=2—-b=0
2. b=0.5
z=4.5
a=-—10.5
c=1.5

Answer. (a,b,c,z) = {(4,2,0,0), (0.5, 0.5, 1.5,4.5)}

Problem 80 The sequence ay, a», as, . .. satisfies a; = 19, ag = 99, and for
any n > 3, a,, is the arithmetic mean of the first (n — 1) terms. Find a».

Solution. Let us write down the formula for the n™ and (n — 1)* terms of the
sequence:

_a1+a2+...+an,2+an,1

- n—1

ay+ay+...+a,—»
n—2

(2.37)

n

(2.38)

ap—1 =

Using Eq. 2.38 we can find that

atay+...+apo=(n—2)a, (2.39)
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Plugging Eq. 2.39 into Eq. 2.37 we obtain a,-(n—1)=a,_1-(n—2)
“+dy—1 = ay—1 - (n — 1). Therefore,

a, = a,_ foranyn >3 (2.40)
1. Since a9 = 99 we can rewrite Eq. 240 asaz = a4 = ... = a9 =99
2. Now we can evaluate a,, a3 = 45% = 99 = 19% Say=2-99—19 = 179.

Answer. 179

Problem 81 (MGU Entrance exam 2008). Integers x, y, z are members of a
geometric progression but numbers 7x — 3, y?, 5z — 6 are members of an
arithmetic progression. Find x, y and z.

Solution. From the condition of the problem and with the use of geometric and
arithmetic means, we have the following two equations,

V= xz
, Tx—3+45z-6
B 2
from which
Tx+5z—-9
=
2

2zx =Tx+5z—-9

x(2z—=7)=5z-9
5z—-9

x:22—7

Multiplying both sides of the last equation by 2 we obtain 2x = 23==22 Extracting

the largest integer from the numerator of the last fraction we obtain
2x = w =5+ % Since 17 is prime, then in order for 2x to be an integer,
(2z — 7) can take only the following values: +1; +17.
Consider the following cases:
a) If 2z —7=1, then z=4, x=11, y = \/xz = /44, not a solution
b) If 2z —7=—1, then z=3, x = —6, xz <0, not a solution
c) 2z—T7=17,thenz =12, x=3,y=60ry=—6
d) 2z—7=-17,z=-5, x=2, zx <0, not a solution
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Answer. (x,y,2)=1{(3,6,12),(3,—6,12)}.

Problem 82 (Lidsky). Prove that there exists an infinite convergent geo-
metric series 1,7, r2, ...,r"", ... each member of which divided by the sum of
all terms following it, equals given number k. For what value of k does the
problem have a solution?

Solution. By the condition of the problem |r| <1 and we have
=kt 42 4 ) = ket ﬁ From this expression 1 — r = kr or solving
for r,r =1/(k+1). Since |r| < 1, then

1

— <1
k+1

k>0 ork< -2

Answer. ke (—oo, —2)U (0,00).

Problem 83 (AIME 2000). A sequence of numbers X1, X»,...., X1oo has the
property that, for every integer k between 1 and 100, inclusive, the number x
is k less than the sum of the other 99 numbers. Given that xso =, where
m and n are relatively prime positive integers, find (m + n).

Solution. Because by the condition of the problem, x; +k = x; +x + ... + X3
+Xpy1 + ... + X100, then

x1+1l=xy+x3+...4+x100
Xo+2=x14+x3+...+ X100

Xs0 +50=x1 +x2+ ...+ X490 + X510 + ...+ X100 (241)
Xs1+51=x; +x+...4+ x50 +X50 + ...+ X100 ’
X99 +99 = x1 +x + ...+ Xog + X100

X100 + 100 = x; +x2 + ... + x99

Let us add x; to both sides of each equation, where k is the number of the
equation:

100
2 +k=> x, k=1,2, ..., 100. (2.42)

i=1
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100
Now the right side of each equation will be the same, Z x;. For example, for the
i=1
50™ equation we have

100
2x50 + 50 = ZX[ (243)

i=1

Method 1. (Using properties of sigma notation)

Adding the left and right sides of Eq. 2.42 for £k = 1,2, ..., 100 and after
100 100 100
simplification, we obtain that 2in + i =100 x;, which can be simplified
i=1 i=1 i=1
100
as follows: &2101 = 982)65
i=1

On the other hand, replacing the sum here by the left side of Eq. 2.43 for the
50™ equation, we obtain 98(2xsp + 50) = w. After simplification and replace-
ment the 50™ term by the formula given in the condition of the problem yields

50101 :98(2‘%+50>

Solving for m/n we obtain that

ﬂ75
n 98

Therefore, m +n =75 +98 = 173.

Method 2. (Using properties of an arithmetic sequence)

Subtracting the left and the right sides of two consecutive equations of Eq. 2.41 and
then dividing both sides by 2 we obtain that x; —x;—; = —0.5, where k=2,
3, ....100. This means that the sequence {x;} is an arithmetic progression with the
common difference d = —0.5. Now the 50" term of the sequence can be written as

Xso = x1 +49 -d

(2.44)
X50 = X1 — 0.5-49

Using Eq. 1.8 for the sum of an arithmetic sequence, we rewrite Eq. 2.42 for
=1 as follows:

2x1 +99d

2+ 1= 100;

2% 4+ 1= (2x; +99 - (—0.5))50;
1238

X1 =

49 -
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Substituting the value into Eq. 2.44 we obtain x5 = % =2 or
m-+n="75+98 =173.

Answer. m/n="75/98 and m+n=173.

Let us compare geometric and arithmetic means of two positive numbers a and

b. What is greater “+” or vab? Because both, a and b are positive, we can raise

(a+b)2

both sides to the second power: A ab. The symbol A will mean “compare”

for us. If an arithmetic mean is greater than a geometric mean, then (a+b) —ab >0,
Thus, (a+b)* —4ab = a* + 2ab + b* — 4ab = a* — 2ab + b* = (a—b) A 0.
Because (a — b)2 > 0, then we conclude that the arithmetic mean of two positive

numbers is always greater their geometric mean, and is equal to their geometric
mean if and only if a = b,

b
a—; > Vab
a+b>2+vab.

Let us solve the following problem:

Problem 84 For how many ordered pairs (x,y) of integers is it true that the
arithmetic mean of x and y is exactly 2 more that the geometric mean of
x and y?

Solution.

x;y:2+\/x_y

X+y=4+2/xy
(x+y—4)2:4xy

X2 2+ 20y — 8(x+y) + 16 = 4xy
=2y +y* =8(x+y—2)

(x =y =8(x+y—2)
(x=y)x—y)=2-2-2-(x+y-2)

Because x and y are integers from last equation above, we can write only three
possible systems:

1 x—y:S x=9
Tlx—y=x+y-2 y=1

> x—y=4 x=4
Tlx—y=(kx+y-2)-2 y=0
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.{xyZ x=-=225
x—y=4(x+y—2) y =025

O

4 x—y=1
T lx—y=8(x+y—2)
Systems (3) & (4) do not give us integers. So we have two possible ordered pairs:

Answer. (9, 1) and (4, 0).

2.5 Miscellaneous Problems on Sequences and Series

Problem 85 (Kaganov) Prove that (a; +as + ... + ap)’ < m(ad+ ...+
a,,*) for any real numbers a;

Solution. Let us prove it by mathematical induction.
1. m = 1. The statement is true for m = 1.

2. Assume this statement is true for (aj+ay+ ...+ am)’ < (m—1)
(a} + ...+ an—1?). Denote the left side by a and the right side by 8, a < f.
3. Consider that

(a1 +a2—|—...—|—am)2 =a+ay’+2ay (ai+ar+ ...+ ay);
m(a® + ...+ ap 1> +a,?) = (m—1)(a> + ...+ an1?)

—|—a12 + ...+ am,lz + mam2
Since (ay +ay + ... 4+ am_1)* < (m — 1)(al + ...+ an_1?) is true, then

(ay+ar+ ...+ am1+ am)2

—1
=a+a,>+2an(ar+...+an 1) <P+ (a,-z—i—amz) +a,’:
1

3

i

From which it follows that

a<(a;®>—2ay-ap+a,?)+(a? —2ay-an+an®) + ...+ (a@n1% =21 - ap+a,?)

+ﬂ7a§ﬂ+ (al _am)2+(02 _am)z +...+ (amfl _am)z-

The proof is complete.
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The following problem will demonstrate how the knowledge of sequences helps
us to do calculus problems.

Problem 86 Evaluate lin} x)"::ll ;

Solution. This limit cannot be found directly, because when x = 1 the denominator
becomes 0. Using formulas for geometric series and applying them for the numer-
ator and denominator:

n-H_l
l+x4+24+...+x"=

Xn—ll
l+x4+2+. . 4ot =2""

x—1

We remove discontinuity and evaluate the limit.

lim —
=l T+x+x2 4. ]

1 24X -1 1
x4+ +x (n+ l) _n+ VneN.
n n

X n+l

x—1 " n

Answer. lim
x—1

Problem 87 (Rivkin) Given
l+a+d+..+a"=0+a)(1+a)(1+d*) - (1+a2k).

Find relationship between n and k.

ar1+
a

Solution. The left side of the formula can be rewritten as
both sides by (@ — 1) # 0 and because a # 1, the given relation can be rewritten as
a'—1=(a—1)(1+a)(1+d*)...(1+a*). Next, using a difference of
squares formula applied several (k) times, the right side can be simplified as
(@ —-1)(1+ad?) - (1 +a2k> =(a*-1)... (1 +a2A> =a*"" —1. Therefore,

a1 = a*"". Because by the condition of the problem a # 0, + 1, then the neces-
sary relationship between n and k is n + 1 = 2¢F1,

L. Multiplying the

Answer. n =251 — 1,
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f(nt1)
2—(FO)+ (D)) +4 ()’ where

f(x) = 5 Evaluate A(m) = % and B(m) = g(m + 1) — g(m).

Problem 88 Given a function g(n) =

Solution. Let us evaluate several values of function,

19 0= 041~ I =S ) =2
F) = g flr+ 1) =2

Substituting this into formula for g(n) we obtain the following

n+l
2n+1

8(n) = 1 -
2- (h+3+3+4+. +5+3)

(2.45)

Next, we simplify the sum inside parentheses, by denoting it
S, = 21 +5 + + +. + T Ly 2n Multlplylng both sides of the equality by

2 we get 2 S,, = 1 + 2 o 22 +4 » 24 +...+2 o n—l 2,, 2. Subtracting the left and
the right sides of two equations and cancelmg the same terms, we have

om0

ity
-3 (2.46)

_, n 1

- 2)1 2n

Substituting Eq. 2.46 into Eq. 2.45, we have

n+1
ot (n+1)-27
g(n) = =
no1 2-2(n+2)
2-\2—
_n+1
2n+4
Finally,
gm+1)  (m+ 2)2

gm) — (m+1)(m+3)

m+2 m—+1 1
Slm 1) = 8lm) = 2R w1 2)  2m 2w+ 3)
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Answer. A(m) = %; B(m) =

Problem 89 Find all value of r such that all partial sums of the series
I+ rcosx+r?cos2x +rP cos4x + r* cos 8x + ... are nonnegative for all
real x.

Solution. Consider the second partial sum, S, =1+rcosx>0 = |r| <1
Denote

‘w(y) =rcosy+ r?cos 2y‘ =

w(2y) = rcos2y + r’cosdy =

‘ w(4y) = rcos4y + r? cos 8y ‘

w(8y) = rcos 8y + r* cos 16y

‘1//(16))) = rcos 16y + 7% cos 32y‘

We can see that the given series can be rewritten as

1
3 + (rcosx + r* cos 2x) + r? (r cos 4x + r* cos 8x)
+r*(rcos 16x + 1% cos 32x) + . .. (2.47)

1
=3 + y(x) + Py (4x) + r*y(8x) +

Let us investigate the behavior of w(y). Taking the first derivative of it, we obtain
that

— = —rsiny — 4r?sinycosy
= —rsiny(l +4rcosy) =0

d 1
d—l)lj:O@y:nn or cosy:—ﬂ
Case l.y=nn = w(y) =w(an) =rcosan+r’2zn = (-1)"r +r* > —§
Case 2.y(y) = -1+ (g —1) > -
Hence we can state that w(y) > —3 Vy€R. Series (Eq. 2.47) are bounded as
follows:
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1
Son1 = 5t w(x) + 2y (4x) + ity (8x) + .. 4+ 2 Dy (47 )
1
= %(1 +r 4+t + r2<"—1>)
>1 31+1+ 12+ . Nt
L] A6 N S
2 8 1_1 T o.4n T g2l
4

Let us find the next partial sum, Syo = Saus1 + 721+ cos (22x) > Sy
—22,% > 0. Finally, we can conclude that if |r| <3, then all partial sums of the
series of Eq. 2.47 are nonnegative.

Problem 90 Given a sequence S; = v/2, S,;1 = v/2 + S, prove that this
sequence has a limit. Evaluate it.

Proof. Assume that the sequence has a limit S, then S = /S+2 = 5> =5+2
=S=—-lor§=2

Answer. 2.

The following problems will make connection between sequences, number theory
and geometry.

Problem 91 A side of a square is a. The midpoints of its sides are joined to
form an inscribed square. This process is continued as shown in the diagram.
Find the sum of the perimeters of the squares if the process is continued
without end.

Solution. From the diagram (Figure 2.4), we can see that the sides of the black
squares form a geometric progression with the first term of @ and common ratio 'z:
a,‘zl,%,g, % All red squares, in turn, form a geometric progression with the
same common ratio but the first term %i (half of the diagonal of the original
square): %ﬁ , a4ﬁ , %, .... Because the perimeter of a square with side b is 4b, we
obtain the following expression for the sum of the perimeters of black and red
squares:
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Figure 2.4 Sketch for o o o
Prob. 91
[ )
o .. o
a2 a2 a2 a aVv2
P=4lat+—+a/24+—Ha/d+—+a/8+. ...+ +F+...
2 4 8 2n 2n
V2

=4a(l+1/241/4+ ) +da- (14 1/2 4+ 1/4+..)

= 4a(2 4+ V2) (1 —%) =4a(2+V2)

Answer. P =4a(2+2)

Problem 92 Given a sequence ayg = 2, a; = 5, a, = 5a,_| — 4a,_, for n
> 2. Show that a,, - @, — aﬁ 1 is a perfect square for every n > 0.

Proof. The characteristic polynomial for this recurrent sequence is > — 5r + 4
= (r—1)(r —4), then the general term of the sequence is a, =A-4"+B-1".
Using the values of the first two terms, the nth term can be written as a, = 4" + 1.
Evaluate

Gy pn — @y = (4 + (A2 1) = (471 4 1)
=4".9 = (3,2/1)2:](2.

The proof is complete.

Problem 93 Prove that there is no infinite arithmetic progression of only
prime numbers.
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Proof. Consider an arithmetic progression with the first term a # 1 and common
difference d. Then the nth term of this progression can be written as a, = a +
(n—1)d. Clearly, if n=a+1 = a,=a+a-d=a(d+ 1). Thus, the first and
(a+ 1) stterm , a,. 1, of such arithmetic progression are not relatively primes, and
this fact does not depend on the value of the common difference. Moreover, in such
infinite progression all terms sitting in the positions of n =a+ 1, 2a+ 1, 3a + 1,
4a + 1, ... will be multiples of the first term, a.

For example, in the progression 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, ... there are
infinitely many members divisible by 3, we underlined some of them . All of them
are in the positions 4, 7, 10, ...(3k + 1), .... Because our proof was based on an
assumption that the first term of a progression is not unit, a reasonable question is
what if the first term of an infinite progression equals 1? Can such progression
consist of only primes?

The answer is also “no” and the proof of this fact is very similar to the proof
above. We just for any given progression start our arguments from the second term.
Thus, infinite arithmetic progression {a,} : 1, 1 +d, 1+ 2d, 1 4 3d, ... contains
progression {b,}:1+4d, 1 4+2d, 1+ 3d, ... the first term of which equals the
second term of the first progression, and then again prove that there are infinitely
many terms divisible by (1 4 d).

Remark. Any infinite arithmetic progression with natural members will have
infinitely many multiples of the first, second, third, or any other term and the
location of such multiples will depend only on the value of the selected term of a
progression. Suppose a number b € N is a term of an infinite arithmetic progression,
then there are infinitely numbers of terms divisible by b in the relative location
n=b+1,2b+1, 3b+ 1, .... Thus if b is the k™ term of the given progression,
then all terms divisible by it will have positions of k, kK + b, k + 2b, k+ 3b, ....

For example, since 11 is the third term of the given infinite progression,
3,7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, ..., the terms divisible
by 11 will appear at the positions3, 3 + 11 =14,342-11=25,3+3 11 =36
, «o.y 34+ (m—1)-11, ..., where mrepresent the m™ consecutive multiple of 11.
You can see it yourself, 11 is the first multiple of 11, the second is 55, which is 14"
term of the given progression, then the third consecutive multiple of 11 in the
progression will correspond to the index n =25 and will be evaluated as
34+(25—-1)-4=099,etc.

We just proved that there is no infinite arithmetic progression that consists of
only primes. Is this statement also true for a finite arithmetic progression? The
shortest sequence of primes must contain three terms. We can see that the first three
terms of the infinite progression discussed above, {3, 7, and 11} are in arithmetic
progression given by formula a, =4n— 1, n =1,2,3.

Are there arithmetic progressions with precisely 5, 10 or N prime numbers? The
answer is yes, such progressions exist but it is hard to find them.

The previous problem probably gives you some ideas of how to look for such
progressions. First, we must select only even numbers as common difference, d.
Otherwise, even and odd terms would alternate, which would never be a finite



116 2 Further Study of Sequences and Series

arithmetic progression with only prime terms. Obviously, the first term must be an
odd prime. The following theorem formulated and proven by Cantor will help to get
us started.

Cantor’s Theorem. If N terms of an arithmetic progression are odd primes,
then the difference of the progression is divisible by every prime less than N.

The rigorous proof of the existence of an arithmetic sequence with exactly
N prime terms was given in 2004 by B. Green and T. Tao. However, their proof
does not propose any algorithm of finding such progressions or makes the job of
finding it any easy. It is worth to mention that the last longest arithmetic progression
of 26 prime numbers was discovered only in 2010.

Here we try to find an arithmetic progression of ten prime terms by solving the
following problem.

Problem 94 Propose a finite arithmetic progression formed by ten prime
numbers.

Solution. Regarding Cantor’s Theorem, the common difference of such progres-
sion must be divisible by 2, 3, 5, and 7 (all prime numbers less than n = 10). The
minimal common difference satisfying this conditions is d =2-3-5-7 = 210.
Next, we need to find the starting prime, the first term of the progression. It cannot
be 11, because 11 4+ 210 =221 = 13 - 17 is not prime.

Can it be 13? The answer is no because 210 divided by 11 leaves a remainder of
1, 210 =11-19 + 1. Then the remainder of a term when divided by 11 will
increase by one each time as n increases. For example, if the starting prime is
13 which give a remainder of 2 divided by 11, then the ™ term has the following
form,

a,=134210-(n—1)=1142+11-19-(n—1)+n—1
=1lk+n+1=11m

We can see that if n = 10, then the tenth term will be 1903 that divisible by 11 and
not prime.

If a starting prime divided by 11 will leave a different remainder, for example,
34,5, etc. then a multiple of 11 will be obtained faster each time. Try yourself to
select the first term as next prime, 17. Because 17 = 11 + 6, then the 5" term of the
proposed progression will be a multiple of 11...
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a,=174+210-(n—1)=11411-19-(n—1)+ (6 +n—1), as =858
=11-78.

Therefore, the first term must be odd and leave a remainder of one when divided by
11. Let us try a; = 22m + 1. Consecutive candidates are 23, 67, 89, 199, ... If we
try with the first term 23, 67 and 89, we obtain that such progression would have a
composite number for the sixth, fourth and second term , respectively. If we set the
first term equals 199, then we obtain an arithmetic progression of ten prime
numbers, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, and 2089.

Answer. a, =199+ (n — 1)210 =210n — 11, 1 <n < 10.

Let us find out other properties of finite arithmetic progressions in integers by
solving the following problems.

Problem 95 Is there any arithmetic progression of 50 terms such that any
two selected terms are relatively primes? If such progression exists, find it.

Solution. Let us consider an arithmetic progression with the first term of a; = 1
+49! and common difference d =49! Its nth term can be written as
a,=14+49+ (n—1)49'=1+n-49!, 1 <n <50.

We can see that any term of the progression is not divisible by any natural
number from 1 to 50 because when divided by any such number it gives a remainder
of 1. Next, the difference between its kth and mth terms will be
ar — am = (k —m) - 49!, which means that the difference of any two terms is not
divisible by any prime greater than 49. For example, a; —as =3-491=3-1-2
-3 -4 ....-49.This proves that any two selected terms of the arithmetic progression
are relatively prime, because the only common factor they have is one.

Problem 96 Is there an arithmetic progression formed of positive integers
such that no term of the progression can be represented as a sum or difference
of two primes? If such progression exists, then give an example.

Solution. Consider several arithmetic progressions with the corresponding n™
terms (n€N):
a. 6,10, 14, 18, ..., 4n+2, ...

b. 11, 19, 27,35, ..., 8n + 3, ...
c. 47,89, 131, 173, ..., 42n+5, ...
d. 37, 67,97, 127, ...,30n+ 7, ...

The proression of "a" is represented by only even numbers, and clearly many its
terms can be written as the sum or difference of two primes, for example,
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10=3+7, 14=17 — 3. Any even number is either the sum or difference of two
even or two odd numbers; in general prime numbers are odd. One can prove that
there exist infinitely many even numbers that can be written both as sums and as
difference of two primes. Hence, we further consider only sequences of odd
numbers.

Additionally, let us eliminate a sequence of odd numbers b) because its terms
19=2+17 and 27 =29 — 2. If such arithmetic progression exists, then its terms
must be odd numbers. Next, if some of its terms can be represented by a sum or
difference of two primes, then one of the primes must be even (2).

Consider progression “c” and assume that one of its terms can be written as sum
of two primes:

42n+5=p;+p;
2n+5=2+p,
42n+3 =p,
pr=3-(l4n+1).
We can see that p, is not prime.
Assume that some term of the progression above can be written as a difference of

two primes, i.e., 42n + 5 = p; — p,. Because each term of the progression is odd,
then the second prime must be 2.

2n+5=p, —2
42n+7 =p,
Therefore, no terms of an arithmetic progression a, =42n+5 can be

represented as sum or difference of two primes. A similar conclusion can be
made for progression “d”. We leave it for you as a homework (exercise 89).

Problem 97 Find all right triangles with integer sides forming consecutive
terms of an arithmetic progression.

Solution. Assume that such triangle exists and that its sides are a=a, b=a+d,
¢=a+ 2d. then they must satisfy Pythagorean Theorem:

>+ (a+d)* = (a+2d)*
a* +a* +2ad + d* = &® + 4dad + 4d*

@ = 3d*> 4 2ad
(a—d)* = (2d)’
a—d=2d

a=3d, b=4d, c =5d, deN.
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Therefore, there are infinitely many such right triangles. For example, the sides
of the following right triangles form an arithmetic progression and are Pythagorean
triples: (3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20). ..

Answer. (a,b,c) = (3d,4d,5d), deN.

Problem 98 It is known that the numbers x(x + 1), y(y + 1), z(z + 1)are in
increasing arithmetic progression. Find integer numbers x, y and z.

Solution. Assume that such numbers exist and that

X=x
y = ax + b, where integer coefficients a, b, ¢, d are to be determined.
z=cx+d

Because x(x+ 1), y(y+ 1), z(z+ 1) form an arithmetic progression, then
y(y+1)—x(x+1)=1z(z+ 1) — y(y + 1). Substituting here the expressions from
the system above, we obtain the following chain of true equalities:

(ax+b)lax+b+1)—x(x+1)=(cx+d)(ex+d+ 1) — (ax+b)(ax+ b+ 1)
2(a2x2+2abx+b2) +2ax+3b—x2 —x = A2+ 2cdx + d* +cx+d

By equating the constant terms, the coefficients of linear and quadratic terms,
respectively, we obtain the system of three equations in four undetermined integer
parameters:

2b(b+1)=d(d+1)
2a+4ab — 1 =2cd + ¢
28> —1=¢2

Consider the last equation of the system, 1 + ¢ = 2a®. In order to have any
solutions in integers, we know that parameter ¢ must be an odd number, then
¢ = 2n + 1. Substituting this back into the equation we have

14+ (2n+1) =24

1 +4a® +da+1=2d°
2 +2n+1=d>

2> +2n=a’>—1
2n(n+1)=(a—1)(a+1)

The right hand side is represented by the product of two numbers that differ by
2, hence they either both odd or both even. Because the left side is even then
(a—1) and (a+ 1) must be even, for example, ¢ — 1 =2m, a+ 1 =2m + 2.
Substituting this into the discussed equation, we obtain
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2n(n+1) =2m(2m+2)
n(n+1) =2m(m+ 1).

The last equation has solution only if its variables satisfy the system

m=mt ) dme—a—2dm4+1=2-241=5,
n+1=2m

Knowing a, we can evaluate the corresponding positive ¢, 1 + ¢ =2 - 5% = 50
=c2=49, ¢c=17. Similarly to the solution of the underlined equation above, we
can find positive solution to the first equation of the system.

d(d+1)=2b(b+1)

d=b+1 I
{%d+1$b—2d—&

Note that we found all four parameters using only solutions of the first and the
last equations. This is very typical when solving equations in integers. The second
equation can be used for checking. Thus, 1 +2-7-3+7=4-5-242-5=50.
Finally, we found that if x = x, y = 5x +2, z = 7x + 3, then x(x + 1) = x> + x,
y(y+1) =258 +25x + 6, z(z + 1) =49x> + 49x + 12 are in the increasing
arithmetic progression with common difference 24x> + 24x + 6.

Answer. x =x, y=5x+2, z="7x+3, xeN.

Problem 99 A sequence is defined by a, = 1n2 , n > 1. Given a, + api

n+
+ ...+ a1 =15, m < n,evaluate n — m.

Solution. Factoring the denominator of the n'™ term, we notice that it can be
1 1

written as g, = o = ol = ; = +1 Replacmg each term on the left of the

i it 1_ 1 1_ 1 1 _
given condition, we have . +1 +5 +1 p +2 +.oot - +1 - After cancel

ation of the opposite terms we obtain

1 1 n—m 1

m n mn 17
17(n —m) = mn

The last equation must be solved in integers and can be written as 17m = n(17 — m).
Because from the condition of the problem 17 — m < 17, and 17 is prime, we know
that n» must be a multiple of 17. Let n = 17k. After substitution we have
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17m = 17k(17 — m)
m = k(17 — m).

This equation has integer solutions if and only if the second factor on the right hand
side equals one, i.e.

17—m=1
m=16, k=17, n=16-17.
n—m=16-17 — 16 = 16> = 256.

Answer. n —m = 256.

Problem 100 Given a sequence
up =2, up =8, ..., u, =4u, 1 —u, ,, n=23,4,5, ..., Prove that
u% — Upt) tUp—1 = 4k

Proof. We can evaluate some terms of the recurrence as
us =4uy —uy =4-8—-2=30, ug=4u3 —up; =4-30—8=112. It is clear
that uﬁ — usup = 30> — 112 -8 = 4. Because ab = ba, u, -4, = u,_| - 4u,.
Using the recurrent relationship for the left and right hand sides, we obtain the
following chain of true equations:

Uy - (un + Mn72) = unfl(uanl + unfl)
2 _ 2 _ 2 _
U, — Upp1lUp—1 = U, | — Uplp—2 = U, > — Up—1Up-3 = ...

=15 —uzu; =8> —30-2 = 4.

The proof is complete.
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