
Chapter 2

Further Study of Sequences and Series

As you would see earlier in Chapter 1, some problems would ask you to add the first

ten terms or even evaluate the sum of the first k terms of a sequence or maybe

investigate whether the limit of such sum exists. Expressions such as

1þ 4þ 7þ 10þ 13þ . . . ð2:1Þ
1=2 þ 1=4 þ 1=8 þ 1=16 þ 1=32 þ . . . ð2:2Þ

1þ 4þ 9þ 16þ 25þ 36þ . . . ð2:3Þ

are called series and in all three cases can be evaluated exactly for the sum of any

finite number of terms. Since Eq. 2.1 represents an arithmetic series with first term

1 and common difference 3, we can use the formula for the sum of the first n terms

that is derived in the earlier section. We can write the sum as

Sn ¼ 1þ 4þ 7þ 10þ . . . ¼ 2a1 þ n� 1ð Þd
2

� n ¼ 2 � 1þ n� 1ð Þ3
2

� n

¼ 3n� 1ð Þn
2

:
ð2:4Þ

Since Eq. 2.2 represents a geometric series with the first term 1/2 and common ratio

1/2, then the formula for the sum of the first n terms is known. We have

Sn ¼ 1

2
þ 1

4
þ 1

8
þ 1

16
þ . . . ¼ b1 1� rnð Þ

1� r
¼

1
2
1� 1

2

� �n� �
1� 1

2

¼ 1� 1

2

� �n

: ð2:5Þ

The sum of the last series of Eq. 2.3 can be evaluated exactly as well. We prove this

formula in Chapter 1 and prove it in a different way in the following subsection,
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Sn ¼ 12 þ 22 þ 32 þ . . .þ n2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
6

: ð2:6Þ

What do these series of Eqs. 2.1–2.3 have in common? Their partial sums can be

evaluated exactly for any number of terms n. So we could add the first 25, the

first 100 or even the first 2011 terms and get an exact answer for the sum using

Eqs. 2.1–2.3 by replacing n by 25, 100, or 2011, respectively. However, if the

number of terms, n, were to become infinitely large, then we would see some

differences. For example, if we increase n then the partial sums of Eqs. 2.4 and 2.6

would increase without limit. The result is different for the sum of Eq. 2.5; it will

approach its limit of one since the second term will approach zero. This behavior is

typical for any infinite geometric series with common ratio less than one as we

established earlier.

We say that the series of Eqs. 2.1 and 2.3 diverge and the series of Eq. 2.2

converges. Serious study of convergence and divergence is a subject of mathemat-

ical analysis. For now we simply determine whether or not the series are divergent

or convergent and why. Many challenging math contest problems are dedicated to

finding an exact sum of the first n terms of a series. The determination of the partial

and infinite sums is the topic of the first section of this chapter.

2.1 Methods of Finding Partial and Infinite Sums

Let us derive again Eq. 2.6 for the sum of squares of the first n natural numbers and

Eq. 1.31 for the sum of the cubes of n natural numbers.

Problem 47 Prove that
Pn
k¼1

k2 ¼ n nþ1ð Þ 2nþ1ð Þ
6

Proof. We need to prove that the following relationship is true:

N ¼ 12 þ 22 þ 32 þ 42 þ . . .þ n� 2ð Þ2 þ n� 1ð Þ2 þ n2 ¼ n nþ 1ð Þ 2nþ 1ð Þ
6

:

Arranging sums in ascending and descending order does not help. We need to find a

different approach. If you have read Chapter 1 of the book then you probably have

an idea of how to start. Let us consider the difference of two consecutive cubes,

n3 � n� 1ð Þ3 ¼ 3n2 � 3nþ 1 .
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13 � 03 ¼ 3 � 12 � 3 � 1þ 1 ¼ 1

23 � 13 ¼ 3 � 22 � 3 � 2þ 1

33 � 23 ¼ 3 � 32 � 3 � 3þ 1

. . .

n� 2ð Þ3 � n� 3ð Þ3 ¼ 3 � n� 2ð Þ2 � 3 � n� 2ð Þ þ 1

n� 1ð Þ3 � n� 2ð Þ3 ¼ 3 � n� 1ð Þ2 � 3 n� 1ð Þ þ 1

n3 � n� 1ð Þ3 ¼ 3n2 � 3nþ 1

Adding the left and the right sides, we obtain

n3 ¼ 3 12 þ 22 þ 32 þ . . .þ n2
� �� 3 1þ 2þ 3þ . . .þ nð Þ þ 1 � n. This can be

written using sigma notation as n3 ¼ 3
Pn
k¼1

k2 � 3
Pn
k¼1

k þ n. Solving this for
Pn
k¼1

k2

and assuming that we know the formula for the sum of the first n natural numbers we

obtain

Xn
k¼1

k2 ¼ 2n3 � 2nþ 3n nþ 1ð Þ
6

¼ n 2n2 þ 3nþ 1ð Þ
6Xn

k¼1

k2 ¼ n 2nþ 1ð Þ nþ 1ð Þ
6

:

The statement is proven.

Problem 48 Prove that
Pn
k¼1

k3 ¼ n nþ1ð Þ
2

� �2

Solution. Try to use a similar approach so consider the difference of the fourth

powers of two consecutive integersn4 � n� 1ð Þ4 ¼ 4n3 � 6n2 þ 4n� 1:Write this

out for the first few terms and then for the values as we reach n,

14 � 04 ¼ 4 � 13 � 6 � 12 þ 4 � 1� 1

24 � 14 ¼ 4 � 23 � 6 � 22 þ 4 � 2� 1

34 � 24 ¼ 4 � 33 � 6 � 32 þ 4 � 3� 1

� � �
n� 2ð Þ4 � n� 3ð Þ4 ¼ 4 n� 2ð Þ3 � 6 n� 2ð Þ2 þ 4 � n� 2ð Þ � 1

n� 1ð Þ4 � n� 2ð Þ4 ¼ 4 n� 1ð Þ3 � 6 n� 1ð Þ2 þ 4 � n� 1ð Þ � 1

n4 � n� 1ð Þ4 ¼ 4n3 � 6n2 þ 4 � n� 1:

2.1 Methods of Finding Partial and Infinite Sums 67



Next, we add the left and the right sides together as we did in the previous problem

using sigma notation and solve the equation for the unknown sum,

n4 ¼ 4
Xn
k¼1

k3 � 6
Xn
k¼1

k2 þ 4 �
Xn
k¼1

k � n

Xn
k¼1

k3 ¼ n4 þ n nþ 1ð Þ 2nþ 1ð Þ þ n� 2n nþ 1ð Þ
4Xn

k¼1

k3 ¼ n n3 þ 1ð Þ þ n nþ 1ð Þ 2n� 1ð Þ
4

¼ n nþ 1ð Þ n2 � nþ 1þ 2n� 1ð Þ
4

Xn
k¼1

k3 ¼ n nþ 1ð Þ n2 þ nð Þ
4

¼ n nþ 1ð Þ
2

� �2

¼
Xn
k¼1

k

 !2

:

This is a very interesting relationship because we established again that the sum of

the first n cubes equals the square of the sum of the first n natural numbers. For

example, 13 þ 23 þ 33 þ 43 ¼ 1þ 2þ 3þ 4ð Þ2 ¼ 100:

Remark. Earlier we proved the same formula using the geometric approaches of

ancient Babylonians and Greeks to demonstrate that the sum of the first n cubes

equals the sum of the first m ¼ n nþ1ð Þ
2

odd consecutive numbers.

Problem 49 Find the sum, 1þ 11þ 111þ 1111þ . . .þ 11 . . . :111, where
the last number consists of n repetitions of the digit 1. Evaluate the sum for

n ¼ 9:

Solution. We solve this problem in three different ways so you can compare the

different methods.

Method 1. At first glance, we notice that 1, 11, 111, 1111, . . .. is neither an

arithmetic nor a geometric sequence. Hence, we have to rewrite the sum in another

form. For example,

1¼ 1

11¼ 1þ 10

111¼ 1þ 10þ 100

1111¼ 1þ 10þ 100þ 1000

111:::11¼ 1þ 10þ 102 þ 103 þ 104 þ . . .þ 10n�2 þ 10n�1
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Each number on the left containing digit 1 repeated n times can be written as a sum

of the first n terms of a geometric sequence with the first term equals 1 and a

common ratio 10. Thus,

1¼ S1 ¼ 1

11¼ S2 ¼ 1þ 10

111¼ S3 ¼ 1þ 10þ 100

� � �
111:::11¼ Sn ¼ 1 � 10n � 1ð Þ

10� 1
¼ 10n � 1

9

Adding over the left and right sides, 1þ 11þ 111þ . . .þ 111 . . . 11 ¼ S1 þ S2
þ . . .þ Sn and using the formula for the sum of n terms of a geometric sequence

and properties of
P

- notation we have

S ¼
Xn
k¼1

10k � 1

9
¼
Xn
k¼1

10k

9
� 1

9

Xn
k¼1

1 ¼ 1

9

Xn
k¼1

10k � n

 !
ð2:7Þ

Let us consider the first term of difference of Eq. 2.7,
Pn
k¼1

10k ¼
10þ 102 þ 103 þ . . .þ 10n. The expression on the right is again a geometric

sequence with b1 ¼ 10 and r ¼ 10 and

Xn
k¼1

10k ¼ 10 � 10n � 1ð Þ
9

¼ 10nþ1 � 10

9
ð2:8Þ

Substituting Eq. 2.8 into Eq. 2.7 we obtain a formula for S, S ¼ 10nþ1�10�9n
81

.

This formula can be used in order to find a sum like

1þ 11þ 111þ . . .þ111 . . . :11 for any specific number n. Thus, when n ¼ 9,

S ¼ 1þ 11þ 111þ . . .þ 111111111 ¼ 1010�10�9�9
81

¼ 123, 456, 789.

Method 2. Denote the total sum by S as S ¼ 1þ 11þ 111þ 1111þ
11111þ . . .þ 11 . . . 1. Multiplying S by 10, we obtain 10S ¼ 10þ 110þ
1110þ 11110þ 111110þ . . .. If we subtract the first sum from the second, we

obtain (It may help to rewrite S as S¼ 1þ (10þ 1)þ (110þ 1)þ (1110þ 1)þ . . .).

Then 9S ¼ 111:::1
zfflfflffl}|fflfflffl{n times

0� n � 1 which leads us to the answer, S ¼ 111:::1
zfflfflffl}|fflfflffl{n times

0� n � 1
9

.

Method 3. We can notice that 9 ¼ 10� 1, 99 ¼ 100� 1, 999 ¼ 1000� 1, etc.

If we multiply and divide the given sum by 9 we can easily evaluate it using a

formula for geometric series.
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S¼ 1

9
10� 1þ 100� 1þ 1000� 1þ 10000� 1þ . . .þ 100:::0� 1ð Þ

¼ 10þ 102 þ . . .þ 10n � n
� �

9

S¼ 1

9

10 10n � 1ð Þ
9

� n

	 


Our series is divergent because S increases without bound as n increases.

As we mentioned above, evaluating an exact sum for a finite series or a partial

sum for an infinite series can be a challenging task, and this is why many such

problems appear in different contests. Each problem is unique but we are going to

share with you some ideas of finding such sums; you may find them helpful and

applicable to other or similar problems.

Problem 50 Find the sum: 1
1�2 þ 1

2�3 þ 1
3�4 þ . . .þ 1

1998�1999 þ 1
1999�2000

Solution. Sometimes it is a good idea to rewrite a sum in a different but equivalent

form by noticing something that the terms have in common, some pattern. One

thing you might notice is that the denominator of each fraction is a product of two

consecutive natural numbers. How can we obtain a product of two such numbers

within a denominator? What operation can give us a product? Answer: When we

put together (add or subtract) two fractions with different denominators, that have

no common factors, the least common denominator is going to be a product of these

numbers. In general,

1

c
þ 1

d
¼ d þ c

c � d
1

c
� 1

d
¼ d � c

c � d

Looking at the second formula above, we can find the way of solving the problem.

If c and d differ by 1, i.e., d � c ¼ 1, then
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1

c
� 1

d
¼ 1

c � d
1

1
� 1

2
¼ 1

1 � 2
1

2
� 1

3
¼ 1

2 � 3
1

3
� 1

4
¼ 1

3 � 4
. . .

1

1999
� 1

2000
¼ 1

1999 � 2000:

Using these, we replace each fraction on the right by the difference on the left

obtaining

1

1 � 2þ
1

2 � 3þ
1

3 � 4þ . . .þ 1

1998 � 1999þ
1

1999 � 2000 ¼

1� 1

2
þ 1

2
� 1

3
þ 1

3
� 1

4
þ . . .þ 1

1998
� 1

1999
þ 1

1999
� 1

2000

In this sum all middle terms cancel each other except the first term, 1, and the last

term, � 1
2000

. This gives us S1999 ¼ 1� 1
2000

¼ 1999
2000

. Evaluating this sum when

n¼ 1999 (a big number), we see that S1999 ¼ 1999
2000

is almost 1. On the other hand,

S4 ¼ 1
1�2 þ 1

2�3 þ 1
3�4 þ 1

4�5 ¼ 1� 1
5
¼ 4

5
¼ 0:8. Four is not a “big” number, hence 0.8 is

not as close to 1. Using the same technique, we can find the sum to infinity of the

series:

S ¼ 1
1�2 þ 1

2�3 þ . . .þ 1
n nþ1ð Þ þ . . . so Sn ¼ 1� 1

nþ1
¼ n

nþ1
and also have that

lim
n!1 Sn ¼ lim

n!1
n

nþ1
¼ 1:

Remark. In order to be considered for possible convergence, the series must first

pass the necessary condition for the limit of its nth term, that is, does lim
n!1 un ¼ 0. If

we try to look at the nth term of this sum, 1
n nþ1ð Þ, we can see that lim

n!1
1

n nþ1ð Þ ¼ 0. We

also find that the limit of the partial sums exists, lim
n!1 Sn ¼ S where S is a finite

number 1. However, in general, satisfying the necessary condition is not sufficient.

Convergence or divergence of series is established with the use of sufficient

convergence theorems. We list some of these rules in Chapter 3.

Why didn’t we use a calculator approach? A calculator can be used to find a sum

like 1
1�2 þ 1

2�3 þ 1
3�4, i.e., sum

�
seq 1= x xþ 1ð Þð Þ, x, 1, 3ð Þ ¼ 0:75 This is an exact

answer. A calculator can evaluate this as 1
1�2 þ 1

2�3 þ . . .þ 1
100�101 ¼ 0:990094, i.e.,

sum
�
seq 1=x= xþ 1ð Þ, x, 1, 100ð Þ ¼ 0:990094: Even this: 1

1�2 þ ::::: þ 1
500�501 ¼

0:99800. But if we have more than 100 terms in summation, for example,

x ¼ 1999, such as our original problem, TI83/84 graphing calculators cannot be
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used. We might have some idea that this number gets closer and closer to 1. But

how close? What if we need to find the exact answer or figure out the value of Sn,

the sum of the first n terms for any n? Remember that since Sn ¼ 1� 1
nþ1

¼ n
nþ1

, we

evaluated its limit analytically as lim
n!1 Sn ¼ 1.

In the preceding problem numbers within each denominator differed by 1. But

the idea of replacing each fraction by a difference is so elegant, we wonder, “What

happens if two numbers in each fraction differ by the same number but not by 1?

Can we use the same technique here?”

Problem 51 Evaluate 1
1�5 þ 1

5�9 þ 1
9�13 þ . . .þ 1

197�201.

Solution. Look at the sequence of the first numbers of each denominator:

1, 5, 9, . . ., 197. They are terms of an arithmetic sequence with a1 ¼ 1 and d ¼ 4.

Let us find the number of the term that is 197.

an ¼ a1 þ n� 1ð Þd
197¼ 1þ n� 1ð Þ4

n¼ 50

This means that we have to add 50 fractions together. Look at the differences:

1� 1

5
¼ 5� 1

1 � 5 ¼ 4

1 � 5 ¼ 4 � 1

1 � 5
1

5
� 1

9
¼ 9� 5

5 � 9 ¼ 4

5 � 9 ¼ 4 � 1

5 � 9
. . .

1

197
� 1

201
¼ 4

197 � 201 ¼ 4 � 1

197 � 201

Now the given sum can be written in the form:

S50 ¼ 1

4
1� 1

5
þ 1

5
� 1

9
þ 1

9
� 1

13
þ ::::þ 1

193
� 1

197
þ 1

197
� 1

201

� �

S50 ¼ 1

4
1� 1

201

� �
¼ 50

201
:

Notice that the nth term of the series can be written as 1
4n�3ð Þ 4nþ1ð Þ. We can evaluate

the partial sum (the sum of the first n terms) as Sn ¼ 1
4

1� 1
4nþ1

� �
¼ n

4nþ1
. If

n ! 1, Sn ! 1
4
. Therefore, the series is convergent.

Answer. 50
201
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Now we can make a trivial but very useful conclusion. For any real c and d such
that c 6¼ d

1

c � d ¼ 1

d � c
� 1

c
� 1

d

	 

ð2:9Þ

Problem 52 Numbers a1, a2, . . . , an, anþ1 are terms of an arithmetic

sequence. Prove that 1
a1�a2 þ 1

a2�a3 þ . . .þ 1
an�anþ1

¼ n
a1�anþ1

Proof. a1, a2, . . . , an, anþ1 are terms of an arithmetic sequence, then

a2 � a1 ¼ a3 � a2 ¼ . . . ¼ anþ1 � an ¼ d, where d is a common difference of the

sequence. Using (Eq. 2.9) we can state the following:

1

a1a2
¼ 1

a1
� 1

a2

� �
� 1
d

1

a2a3
¼ 1

a2
� 1

a3

� �
� 1
d

� � �
1

ananþ1

¼ 1

an
� 1

anþ1

� �
� 1
d

Replacing each term on the left of the given expression by formulas above and

factoring out 1
�
d
we obtain

S¼ 1

d

1

a1
� 1

a2
þ 1

a2
� 1

a3
þ . . .þ 1

an
� 1

anþ1

� 

¼ 1

d
� anþ1 � a1ð Þ

a1 � anþ1

ð2:10Þ

But anþ1 ¼ a1 þ nd, then

anþ1 � a1 ¼ nd ð2:11Þ

Replacing Eq. 2.11 into Eq. 2.10 we have the required expression for S,

S ¼ nd
d a1�anþ1ð Þ ¼ n

a1�anþ1
.

The proof is complete.

Problem 53 Prove that 1
12
þ 1

22
þ 1

32
þ . . .þ 1

n2 < 2.
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Proof. Denote the given sum by S ¼ 1
12
þ 1

22
þ 1

32
þ . . .þ 1

n2. In addition, consider

another series, made of one that we have already seen and evaluated:

Σ ¼ 1þ 1

1 � 2þ
1

2 � 3þ
1

3 � 4þ . . .þ 1

n� 1ð Þn
� �

Each term of this auxiliary series, starting from the second term, is greater than

the corresponding term of the given series, such that

1

n2
<

1

n� 1ð Þn ¼ 1

n� 1
� 1

n
, n � 2, n2ℕ

Hence, the sum of all terms of the given series is less than the sum of the

auxiliary series:

S < Σ ¼ 1þ 1� 1

n
¼ 2� 1

n
, n2ℕ:

Therefore, we can state that S < 2� 1
n < 2, n2ℕ: The statement is proven.

An interesting approach of rewriting a fraction as a difference of two other

fractions can be applied to many other math problems. For example, we can use this

approach in calculus when evaluating integrals like this:

ð
du

u2 � 1
or any integral of

the form:

ð
du

u2 � m2
, where m is any integer. Let us do the following problem.

Problem 54 Evaluate the integral,

ð
du

u2 � 1
.

Solution. Consider the rational expression under a symbol of an integral. Because

the quantities, u� 1ð Þ and uþ 1ð Þ differ by 2, we can use the same technique

(Eq. 2.9) of rewriting this as a difference of two fractions multiplied by (1/2):

1

u2 � 1
¼ 1

u� 1ð Þ uþ 1ð Þ ¼
1

u� 1
� 1

uþ 1

� �
� 1
2

and ð
du

u2 � 1
¼ 1

2
�
ð

du

u� 1
�
ð

du

uþ 1

� �

¼ 1

2
ln u� 1j j � ln uþ 1j jð Þ þ C ¼ 1

2
ln

u� 1

uþ 1

����
����þ C
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Answer. 1
2
ln u�1

uþ1

�� ��þ C:

Problem 55 Prove that 12

1�3 þ 22

3�5 þ . . .þ n2

2n�1ð Þ 2nþ1ð Þ ¼ n nþ1ð Þ
2 2nþ1ð Þ.

Proof. Would it be nice to have the sum of the first n squares or the sum of

n fractions with those denominators but unit in each numerator? Yes. We would

evaluate such sums without any troubles. These little observations can help us to

prove the statement. Denote the unknown sum by S ¼ 12

1�3 þ 22

3�5 þ . . .þ n2

2n�1ð Þ 2nþ1ð Þ
and then rewrite it using sigma notation and by applying the difference of squares

formula to the nth term,
Pn
n¼1

n2

4n2�1
¼ S. Let us multiply both sides by 4 and put

4 inside the summation:

4 �
Xn
n¼1

n2

4n2 � 1
¼ 4S

Xn
n¼1

4n2

4n2 � 1
¼ 4S

Would it be nice to add just n units instead? We do not have it but the following

operation will make it possible

Xn
n¼1

4n2

4n2 � 1
�
Xn
n¼1

1

4n2 � 1
¼ 4S�

Xn
n¼1

1

4n2 � 1Xn
n¼1

4n2 � 1

4n2 � 1
¼ 4S�

Xn
n¼1

1

2n� 1ð Þ 2nþ 1ð Þ
n ¼ 4S�

Xn
n¼1

1

2n� 1ð Þ 2nþ 1ð Þ

The sum on the right hand side looks familiar to you because denominator of each

term consists of a product of two consecutive odd numbers that differ by 2.

Xn
n¼1

1

2n� 1ð Þ 2nþ 1ð Þ ¼
1

1 � 3þ
1

3 � 5þ . . .þ 1

2n� 1ð Þ 2nþ 1ð Þ

¼ 1

2

1

1
� 1

3
þ 1

3
� . . .� 1

2nþ 1

� �
¼ 2nþ 1� 1

2 2nþ 1ð Þ
¼ n

2nþ 1
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Finally, we haven ¼ 4S� n
2nþ1

. Solving this equation for S, we obtain the requested

quantity:

4S ¼ nþ n

2nþ 1

S ¼ 2n2 þ 2n

4 2nþ 1ð Þ ¼
n nþ 1ð Þ
2 2nþ 1ð Þ

The proof is complete.

Problem 56 demonstrates another approach for finding sums.

Problem 56 Find the sum S ¼ 1
1�3�5 þ 1

3�5�7 þ 1
5�7�9 þ . . ..

Solution. Notice that the nth term of the series can be represented as

un ¼ 1
2n�1ð Þ 2nþ1ð Þ 2nþ3ð Þ.

Let us rewrite it as follows:

un ¼ A

2n� 1
þ B

2nþ 1
þ C

2nþ 3
¼ 1

2n� 1ð Þ 2nþ 1ð Þ 2nþ 3ð Þ ð2:12Þ

where A, B, and C are some constants to be determined.

If we put expressions on the left side of Eq. 2.12 over the common denominator,

and equate both sides, we can find these constants:

A 4n2 þ 8nþ 3ð Þ þ B 4n2 þ 4n� 3ð Þ þ C 4n2 � 1ð Þ ¼ 1

4n2 Aþ Bþ Cð Þ þ 4n 2Aþ Bð Þ þ 3A� 3B� Cð Þ ¼ 1

Since n 6¼ 0 we have to solve the system:

Aþ Bþ C ¼ 0

2Aþ B ¼ 0

3A� 3B� C ¼ 1

8><
>: , A ¼ C ¼ 1=8, B ¼ �1

4
ð2:13Þ

Using Eq. 2.13 the given sum can be written as

1

8
1þ 1=3þ 1=5þ 1=7þ . . .ð Þ � 1

4
1=3þ 1=5þ 1=7þ 1=9þ . . .ð Þ

þ 1

8
1=5þ 1=7þ 1=9þ . . .ð Þ

¼ 1

8
1þ 1=3ð Þ � 1

4
� 1
3
� 1

4
1=5þ 1=7þ . . .ð Þ þ 1

4
1=5þ 1=7þ . . .ð Þ

¼ 1

12
� 0:0833

ð2:14Þ
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Answer. 1/12.

Remark. The required sum can be evaluated using properties of sigma notation as

8S¼
X1
n¼1

1

2n� 1
� 2
X1
n¼1

1

2nþ 1
þ
X1
n¼1

1

2nþ 3

¼
X1
n¼3

1

2n� 1
� 2
X1
n¼3

1

2n� 1
þ
X1
n¼3

1

2n� 1

 !
þ 1þ 1

3
� 2 � 1

3
¼ 2

3

S¼ 1

12
:

Additionally, notice that 1/12 in Eq. 2.14 is the sum of the infinite series.

If the number of terms, k, is some counting number we can evaluate the sum exactly

as Sk ¼ 1
1�3�5 þ 1

3�5�7 þ 1
5�7�9 þ . . . 1

2k�1ð Þ 2kþ1ð Þ 2kþ3ð Þ ¼ 1
12
þ 1

8
1

2kþ3
� 1

2kþ1

� �
¼ 1

12
þ

1
2 2kþ1ð Þ 2kþ3ð Þ ! 1

12
as k ! 1. We say that the series is convergent to 1/12.

k ! 1. However, for small k and sums up to, for example 1
11�13�15 (k ¼ 6 and we

have to add only six terms), we should use the exact formula for the partial sum

above, that yields 1
12
þ 1

2�13�15 ¼ 201
2340

� 1
12
þ 0:002564 � :0859

Problem 57 Find the sum Sn ¼ 1
1�2�3 þ 1

2�3�4 þ . . .þ 1
n nþ1ð Þ nþ2ð Þ.

Solution. Let us rewrite the kth term as

1

k k þ 1ð Þ k þ 2ð Þ ¼ 1

k þ 1
� 1
k
� 1

k þ 2
¼ 1

k þ 1
� 1
2

1

k
� 1

k þ 2

	 

¼ 1

2

1

k k þ 1ð Þ �
1

k þ 1ð Þ k þ 2ð Þ
	 


Therefore, the partial sum is

Sn ¼ 1

2

1

1 � 2�
1

2 � 3þ
1

2 � 3�
1

3 � 4þ
1

3 � 4�
1

4 � 5þ . . .þ 1

n nþ 1ð Þ �
1

nþ 1ð Þ nþ 2ð Þ
	 


¼ 1

2

1

2
� 1

nþ 1ð Þ nþ 2ð Þ
	 


¼ n nþ 3ð Þ
4 nþ 1ð Þ nþ 2ð Þ

Notice that lim
n!1 Sn ¼ 1

4
. The series is convergent.

Answer. Sn ¼ n nþ3ð Þ
4 nþ1ð Þ nþ2ð Þ

Here is another example of how these ideas can be applied in Calculus when

taking integrals:
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Problem 58 Evaluate

ð
dx

x xþ 1ð Þ xþ 2ð Þ for all positive x.

Solution. Noticing that 2
xð Þ xþ1ð Þ xþ2ð Þ ¼ 1

x � 2
xþ1

þ 1
xþ2

we can evaluate the integral asð
dx

x xþ 1ð Þ xþ 2ð Þ ¼
1
2

ln x xþ 2ð Þ½ � � ln xþ 1ð Þ2
n o

þ C ¼ 1
2
ln

x xþ2ð Þ
xþ1ð Þ2 þ C.

Answer. ln

ffiffiffiffiffiffiffiffiffiffi
x xþ2ð Þ

p
xþ1

þ C

Problem 59 Evaluate 1
2
þ 3

22
þ 5

23
þ . . .þ 2n�1

2n
.

Solution. Denote Sn ¼ 1
2
þ 3

22
þ 5

23
þ . . .þ 2n�1

2n
. Multiplying this by two and

regrouping terms, we obtain 2 � Sn ¼ 1þ 3
21
þ 5

22
þ . . .þ 2n�1

2n�1 . Within this sum, we

recognize a geometric series and the original sum minus the last term, The first term

is 1 and the common ratio is ½.

1þ 2

2
þ 1

2

� �
þ 2

22
þ 3

22

� �
þ 2

23
þ 5

23

� �
þ . . .þ 2

2n�1
þ 2n� 3

2n�1

� �

2Sn ¼ 1þ
1� 1

2n�1

1� 1

2

þ Sn � 2n� 1

2n

Solving this for Sn, Sn ¼ 3� 2nþ3
2n

. This series is convergent because if n increases

the second term will approach zero and the limit of partial sums will approach

3, i.e., lim
n!1 Sn ¼ 3.

Answer. Sn ¼ 3� 2nþ3
2n

.

Problem 60 Evaluate the sum: S ¼ 1

1þ ffiffi
2

p þ 1ffiffi
2

p þ ffiffi
3

p þ 1ffiffi
3

p þ ffiffi
4

p þ . . . 1ffiffiffiffiffiffiffi
1977

p þ ffiffiffiffiffiffiffi
1978

p

þ . . .þ 1ffiffiffiffiffiffiffi
2016

p þ ffiffiffiffiffiffiffi
2017

p .

Solution. This problem was given at the Volgograd District Math Olympiad, with

the only difference being that the last term ended in 1ffiffiffiffiffiffiffi
1977

p þ ffiffiffiffiffiffiffi
1978

p , because the current

year was 1978. Despite the different last term, the method of solving this problem is

the same: we rationalize the denominator of each fraction:
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1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ ffiffiffi
n

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p � ffiffiffi
n

pffiffiffiffiffiffiffiffiffiffiffi
n� 1

p þ ffiffiffi
n

p� � � ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p � ffiffiffi
n

p� � ¼ ffiffiffi
n

p �
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

S can be written as

S ¼ ffiffiffi
2

p � 1þ ffiffiffi
3

p � ffiffiffi
2

p þ ffiffiffi
4

p � ffiffiffi
3

p þ . . .þ ffiffiffiffiffiffiffiffiffiffi
2017

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2016 ¼p ffiffiffiffiffiffiffiffiffiffi

2017
p � 1:Next,

we can easily add the first n terms of the series and find Sn:

Sn ¼ 1

1þ ffiffiffi
2

p þ 1ffiffiffi
2

p þ ffiffiffi
3

p þ 1ffiffiffi
3

p þ ffiffiffi
4

p þ . . .þ 1ffiffiffi
n

p þ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � 1

This partial sum can be evaluated precisely for any natural n. The series is divergent
because this sum will increase without bound.

Answer.
ffiffiffiffiffiffiffiffiffiffi
2017

p � 1.

Next, using similar idea, let us solve the following problem.

Problem 61 Positive numbers a1, a2, . . ., an form an arithmetic progression.

Prove the following: Sn ¼ 1ffiffiffiffi
a1

p þ ffiffiffiffi
a2

p þ 1ffiffiffiffi
a2

p þ ffiffiffiffi
a3

p þ . . .þ 1ffiffiffiffiffiffiffi
an�1

p þ ffiffiffiffi
an

p ¼ n�1ffiffiffiffi
a1

p þ ffiffiffiffi
an

p :

Proof. Since this looks similar to the sum we just evaluated in the previous

problem, let us try the same idea: we rationalize each denominator,

Sn ¼
ffiffiffiffiffi
a2

p � ffiffiffiffiffi
a1

p
a2 � a1

þ
ffiffiffiffiffi
a3

p � ffiffiffiffiffi
a2

p
a3 � a2

þ . . .þ
ffiffiffiffiffi
an

p � ffiffiffiffiffiffiffiffiffi
an�1

p
an � an�1

For any arithmetic progression the differences in these denominators are the

differences between consecutive terms of the arithmetic sequence and must be

the same. We denote it by d. Next, after substitution and eliminating opposite terms,

this expression will be written as

Sn ¼
ffiffiffiffiffi
a2

p � ffiffiffiffiffi
a1

p
d

þ
ffiffiffiffiffi
a3

p � ffiffiffiffiffi
a2

p
d

þ . . .þ
ffiffiffiffiffi
an

p � ffiffiffiffiffiffiffiffiffi
an�1

p
d

¼
ffiffiffiffiffi
an

p � ffiffiffiffiffi
a1

p
d

Since the original problem does not have any information about common difference

of the progression, then we can find d from the formula that connects the first and

the nth term of any arithmetic progression:

an ¼ a1 þ n� 1ð Þd
d ¼ an � a1

n� 1
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Therefore, Sn ¼
ffiffiffiffi
an

p � ffiffiffiffi
a1

p
d ¼ n�1ð Þ ffiffiffiffi

an
p � ffiffiffiffi

a1
pð Þ

an�a1
¼ n�1ffiffiffiffi

an
p þ ffiffiffiffi

a1
p

The proof is complete.

Problem 62 Find the sum Sn ¼ 1 � 1!þ 2 � 2!þ 3 � 3!þ . . .þ n � n!

Solution. The following is true for the nth term of the series

n � n! ¼ nþ 1ð Þ!� n! ¼ n! nþ 1ð Þ � n! ¼ n!n

The given sum can be written as

Sn ¼ 2!� 1!þ 3!� 2!þ 4!� 3!þ . . .þ n!� n� 1ð Þ!þ nþ 1ð Þ!� n!

¼ nþ 1ð Þ!� 1:

The series is divergent since the limit of the partial sums does not exist.

Answer. nþ 1ð Þ!� 1.

Problem 63 Evaluate the sum: 1þ 2 � 2þ 3 � 22 þ 4 � 23 þ . . .þ 100 � 299.
Find a general formula for the sum of the first N terms of series

SN ¼ 1þ 2 � 2þ 3 � 4þ 4 � 8þ 5 � 16þ . . .þ N � 2N�1.

Solution. Method 1.

Denote the required sum as S and multiply it by 2,

2S ¼ 2þ 2 � 22 þ 3 � 23 þ 4 � 24 þ . . .þ 99 � 299 þ 100 � 2100. Next, we subtract

S from 2S,

S¼ 100 � 2100 � 1þ 2þ 22 þ 23 þ . . .þ 299
� �

¼ 100 � 2100 � 2100 � 1
� �

¼ 99 � 2100 þ 1

Clearly, a general formula is SN ¼ N � 1ð Þ � 2N þ 1:

Method 2.
We can rewrite this series as follows:
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1þ 2 � 2þ 3 � 22 þ . . .þ N � 2N�1 ¼ 1þ 2þ 22 þ . . .þ 2N�1
� �
þ 2þ 22 þ . . .þ 2N�1
� �þ 22 þ 23 þ . . .þ 2N�1

� �
þ 23 þ 24 þ . . .þ 2N�1
� �þ . . .þ 2N�1

¼ 2N � 1
� �þ 2 2N�1 � 1

� �þ 22 2N�2 � 1
� �

þ 23 2N�3 � 1
� �þ . . .þ 2N�1 2� 1ð Þ

¼ N � 2N � 1þ 2þ 22 þ . . .þ 2N�1
� �

¼ N � 2N � 2N � 1
� �

S¼ N � 1ð Þ2N þ 1:

Therefore, we obtain
XN
N¼1

N � 2N�1 ¼ 1þ 2N N � 1ð Þ:
Method 3. (Using a derivative).

Consider a polynomial P xð Þ ¼ xþ x2 þ x3 þ . . .þ xN and its first derivative

P0 xð Þ ¼1þ 2xþ 3x2 þ . . .þ N � xN�1: We can evaluate the sum of all terms of

the polynomial as the sum of the N terms of geometric series,

P xð Þ ¼ x xN�1ð Þ
x�1

¼ xNþ1�x
x�1

. The derivative of this sum will be

P0 xð Þ ¼ xNþ1 � xð Þ0 � x� 1ð Þ � xNþ1 � xð Þ x� 1ð Þ0
x� 1ð Þ2 ¼

¼ N � xNþ1 � N þ 1ð ÞxN þ 1

x� 1ð Þ2

If we replace x ¼ 2, we obtain that the given sum is

P0 x ¼ 2ð Þ ¼ N � 2Nþ1 � N þ 1ð Þ2N þ 1

S¼ 1þ 2N � N � 1ð Þ:

Answer. SN ¼ 1þ 2N N � 1ð Þ:

Problem 64 Evaluate S ¼ 1 � 22 þ 2 � 32 þ 3 � 42 þ . . .þ n nþ 1ð Þ2:

Solution. Notice that

2 � 32 þ 32 ¼ 33, 3 � 42 þ 42 ¼ 43, . . . , n nþ 1ð Þ2 þ nþ 1ð Þ2 ¼ nþ 1ð Þ3. Hence,

an ¼ nþ 1ð Þ3 � nþ 1ð Þ2: We can evaluate the series as follows:
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1 � 22 þ 2 � 32 þ 3 � 42 þ . . .þ n nþ 1ð Þ2
þ

22 þ 32 þ 42 þ . . .þ nþ 1ð Þ2
¼ 23 þ 33 þ 43 þ . . .þ nþ 1ð Þ3

The sum above can be rewritten as

Sþ
Xnþ1

n¼2

n2 ¼
Xnþ1

n¼2

n3

Sþ nþ 1ð Þ nþ 2ð Þ 2 nþ 1ð Þ þ 1ð Þ
6

� 1 ¼ nþ 1ð Þ2 nþ 2ð Þ2
4

� 1

S ¼ nþ 1ð Þ nþ 2ð Þ
2

2nþ 3

3
� nþ 1ð Þ nþ 2ð Þ

2

� �

¼ n nþ 1ð Þ nþ 2ð Þ 3nþ 5ð Þ
12

For example, we can check this formula as S4 ¼ 1 � 22 þ 2 � 32þ
3 � 42 þ 4 � 52 ¼ 170 ¼ 4�5�6� 4�3þ5ð Þ

12
¼ 170:

Answer. S ¼ n nþ1ð Þ nþ2ð Þ 3nþ5ð Þ
12

:

Problem 65 Evaluate the sum: S ¼ 1
2! þ 2

3! þ 3
4! þ . . .þ 2015

2016!.

Solution. Let us find the formula for the nth term. We can see that an ¼ n
nþ1ð Þ!.

Notice that n
nþ1ð Þ! þ 1

nþ1ð Þ! ¼ nþ1
nþ1ð Þ! ¼ 1

n!. Hence an þ 1
nþ1ð Þ! ¼ 1

n!. Since an�1 ¼ n�1
n! ,

then an�1 þ 1
n! ¼ n�1

n! þ 1
n! ¼ n

n! and an�1 þ 1
n! ¼ 1

n�1ð Þ!, which can be continued until

we have the last term 1
2! þ 1

2! ¼ 2
2! ¼ 1. Therefore, if we add 1

2016! to the given sum and

start adding the terms by pairing them from right to left, we obtain

Sþ 1

2016!
¼ 1

S ¼ 1� 1

2016!

In general, we can evaluate the partial sum for any number of terms n,

Sn ¼ 1� 1
nþ1ð Þ!.

It is clear that the series is convergent because the limit of the partial sum equals 1.

Answer. S ¼ 1� 1
2016!.
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Problem 66 Prove that

S ¼ 1 � 2 � 3þ 2 � 3 � 4þ 3 � 4 � 5þ . . .þ n nþ 1ð Þ nþ 2ð Þ ¼ n nþ1ð Þ nþ2ð Þ nþ3ð Þ
4

.

Proof.

Method 1. Consider the nth term of the series and rewrite it as

an ¼ n nþ 1ð Þ nþ 2ð Þ ¼ n3 þ 3n2 þ 2n. Hence using sigma notation

we can rewrite this sum asPn
n¼1

n nþ 1ð Þ nþ 2ð Þ ¼ Pn
n¼1

n3 þ 3 � Pn
n¼1

n2 þ 2 � Pn
n¼1

n. If we substitute

Eqs. 1.29–1.31, the right hand side is rewritten as

S¼ nþ 1ð Þ2n2
4

þ 3n nþ 1ð Þ 2nþ 1ð Þ
6

þ 2n nþ 1ð Þ
2

¼ n nþ 1ð Þ n2 þ 5nþ 6ð Þ
4

¼ n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
4

:

Method 2. On the other hand, the nth term and the corresponding partial sum can be

evaluated as

an ¼ nþ 1ð Þ nþ 2ð Þn½ � ¼ nþ 1ð Þ � n2 þ 2nð Þ ¼ nþ 1ð Þ nþ 1ð Þ2 � 1
� �

¼ nþ 1ð Þ3 � nþ 1ð Þ:

S¼ nþ1ð Þ nþ2ð Þ
2

� �2
� nþ 1ð Þ nþ 2ð Þ

2
¼ nþ 1ð Þ nþ 2ð Þ nþ 1ð Þ nþ 2ð Þ � 2ð Þ

4

¼ n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ
4

:

Which allows us to evaluate the requested sum as a difference between

the sum of cubes and the sum of all natural numbers from 1 to nþ 1ð Þ.
The proof is complete.

Problem 67 Prove that for any natural n � 2, n2ℕ, the sum 1
nþ1

þ 1
nþ2

þ
1

nþ3
þ . . .þ 1

2n is greater than ½ but less than 1.
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Proof. Consider the chain of true inequalities,

1

2n
<

1

nþ 1
<

1

n
1

2n
<

1

nþ 2
<

1

n
1

2n
<

1

nþ 3
<

1

n
. . .

1

2n
� 1

2n
<

1

n

Adding all these inequalities, we obtain n
2n ¼ 1

2
< 1

nþ1
þ 1

nþ2
þ . . .þ 1

2n <
n
n ¼ 1:

The proof is complete.

Problem 68 Prove the following statements:

a
� 1

1
¼ 1

2
þ 1

6
þ 1

12
þ 1

20
þ 1

30
þ . . .

b
� 1

2
¼ 1

3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
þ . . .

c
� 1

3
¼ 1

4
þ 1

20
þ 1

60
þ 1

140
þ 1

280
þ . . .

Proof.

a) The partial and infinite sums for the first infinite series can be rewritten and

evaluated as:

Sn ¼ 1

1 � 2þ
1

2 � 3þ
1

3 � 4þ
1

4 � 5þ
1

5 � 6þ . . .þ 1

n nþ 1ð Þ ¼ 1� 1

nþ 1

S¼
X1
n¼1

1

n nþ 1ð Þ ¼ lim
n!1 Sn ¼ 1:

b) Consider the second sum: 1
3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
þ . . .

Method 1. Would it be nice to recognize a similar pattern here? Can we rewrite

each term as a difference of two other terms? Let us rewrite this sum by factoring

out two from each fraction:
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2
1

6
þ 1

24
þ 1

60
þ 1

120
þ 1

210
þ . . .

� �

¼ 2 � 1

1 � 2 � 3þ
1

2 � 3 � 4þ
1

3 � 4 � 5þ
1

4 � 5 � 6þ
1

5 � 6 � 7þ . . .þ
� �

¼ 2
X1
n¼1

1

n nþ 1ð Þ nþ 2ð Þ

This formula must look familiar to you (Prob. 57). The sum above can be found as

Sn ¼
Xn
k¼1

1

k k þ 1ð Þ �
1

k þ 1ð Þ k þ 2ð Þ
� �

¼ 1

1 � 2�
1

2 � 3þ
1

2 � 3�
1

3 � 4þ
1

3 � 4�
1

4 � 5þ . . .� 1

nþ 1ð Þ nþ 2ð Þ
¼ 1

2
� 1

nþ 1ð Þ nþ 2ð Þ:

Therefore, the sum of infinite series is ½.

Method 2. One could also notice the following:

1

3
¼ 1

2
� 1

6

1

12
¼ 1

6
� 1

12

1

30
¼ 1

12
� 1

20

1

60
¼ 1

20
� 1

30

1

105
¼ 1

30
� 1

42
. . .

It looks like if we add the left and right sides of the relationships, we can evaluate

the corresponding sums of the first two, first three, first four and first five terms of

the series as follows:
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S2 ¼ 1

3
þ 1

12
¼ 1

2
� 1

12
¼ 1

2
� 1

3 � 4
S3 ¼ 1

3
þ 1

12
þ 1

30
¼ 1

2
� 1

20
¼ 1

2
� 1

4 � 5
S4 ¼ 1

3
þ 1

12
þ 1

30
þ 1

60
¼ 1

2
� 1

30
¼ 1

2
� 1

5 � 6
S5 ¼ 1

3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
¼ 1

2
� 1

42
¼ 1

2
� 1

6 � 7
By induction, the formula for the sum of the first n term is

Sn ¼ 1

2
� 1

nþ 1ð Þ � nþ 2ð Þ ð2:15Þ

Using Eq. 2.15 and subtracting the sum of the first n terms and the sum of the first

n� 1ð Þ terms we obtain the formula for the nth term:

an ¼ Sn � Sn�1 ¼ 1

nþ 1

1

n
� 1

nþ 2

� �
¼ 2

n nþ 1ð Þ nþ 2ð Þ ð2:16Þ

By replacing n by 1, 2, 3, 4, and 5, we obtain correct values of the terms. For

example,

a3 ¼ 2

3 � 4 � 5 ¼ 1

30

a5 ¼ 2

5 � 6 � 7 ¼ 1

105

Now we can predict any term of the series, a6 ¼ 1
168

, a7 ¼ 1
252

, a8 ¼ 1
360

, . . . :

Therefore, Eq. 2.15 is correct and then the infinite series sum is ½.

The proof is complete.

The second method of proof can help us to introduce the so-called Leibniz

triangle.

The Leibniz harmonic triangle is a triangular arrangement of fractions in which

each row starts with the reciprocal of the row number and every entry of the triangle

is equal to the sum of the two fractions below it. For example, 1
42
¼ 1

56
þ 1

168
or

1
4
¼ 1

5
þ 1

20
, etc.. In order to see a connection between Leibniz and Pascal’s triangles,

we place them together as in Figure 2.2. Instead of showing the fractions as in

Figure 2.1, we record only the denominators of the fractions in the Leibniz triangle.

Note that the first row for both triangles corresponds to i ¼ 0.

Whereas each entry in Pascal’s triangle is the sum of the two entries in the above

row, each entry in the Leibniz triangle is the sum of the two entries in the row below

it. Denote by P(i, j), L(i, j), z(i, j) the entries of Pascal, Leibniz, and modified

Leibniz triangles, respectively. For example, in the 5th row of Pascal triangle, the

86 2 Further Study of Sequences and Series



entry P 5; 2ð Þ ¼ 10 is the sum of 4 and 6 in the 4th row. On the other hand, in the 5th

row of the Leibniz triangle the corresponding entry L 5; 2ð Þ ¼ 1=60 is the sum of

1/105 and 1/140 in the 6th row. Just as Pascal’s triangle can be computed by using

binomial coefficients, so can Leibniz’s triangle. The connection between the entries
of three triangles is summarized by Eq. 2.17.

Lði, jÞ ¼ 1

zði, jÞ
zði, jÞ ¼ 1

zðiþ1, jÞ þ 1
zðiþ1, jþ1Þ

� ��1

Pði, jÞ ¼ Pði� 1, j� 1Þ þ Pði� 1, jÞ
Pði, jÞ ¼ Cj

i ¼
i!

j!ði� jÞ!
zði, jÞ ¼ ðiþ 1Þ � Pði, jÞ i ¼ 0, 1, 2, . . .

ð2:17Þ

Because any Leibniz triangle entry L n� 1, k � 1ð Þ is the sum of two entires,

L n, k � 1ð Þ and L(n, k), the following is true:

1

n � Ck�1
n�1

¼ 1

nþ 1ð ÞCk�1
n

þ 1

nþ 1ð ÞCk
n

L n� 1, k � 1ð Þ ¼ L n, k � 1ð Þ þ L n; kð Þ
ð2:18Þ

Please prove it yourself by using Eq. 2.17 for binomial coefficients and by adding

fractions.

Consider P 6; 2ð Þ ¼ 15 in Pascal’s triangle, P 6; 2ð Þ ¼ 6!
6�2ð Þ!2! ¼ 15.

Corresponding to it Leibniz number is L 6; 2ð Þ ¼ 1
6þ1ð ÞP 6;2ð Þ ¼ 1

7�15 ¼ 1
105

(Please use

Figure 2.2 to see that z 6; 2ð Þ ¼ 105).

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

2
1
3

1
4

1
5

1
6

1
7

1
8

1
6

1
12

1
20

1
30

1
42

1
56

1
30

1
60

1
12

1
20

1
30

1
56

1
42

1
60

1
105

1
168

1
105

1
280

1
140

1
280

1
168

… … …

Figure 2.1 Leibniz triangle
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Moreover, each diagonal of Leibniz triangle does not only relate to the

corresponding Pascal’s triangle diagonals but also relates to a certain modification

of the figurate numbers. Consider a sequence of the numbers in the second diagonal,

just z numbers presented by the left diagram in Figure 2.2: 2, 6, 12, 20, 42, 56, . . .
Each term of this sequence is 2 times the corresponding triangular number 1, 3,

6, 10, 15, 21, 28, . . . and can be written as bn ¼ 2Tn ¼ 2 � n nþ1ð Þ
2

. Hence, an nth entry

of the second Leibniz diagonal is its reciprocal, an ¼ 1
bn
¼ 1

n nþ1ð Þ.
Consider a sequence of the numbers in the third diagonal, just z numbers

presented by the left diagram in Figure 2.2. Each term of this sequence, 3, 12,

30, 60, 105, 168, . . ., is 3 times the corresponding tethrahedron numbers and can be

written as bn ¼ 3THn ¼ 3 � n nþ1ð Þ nþ2ð Þ
6

¼ n nþ1ð Þ nþ2ð Þ
2

. Hence, the corresponding nth

term of the third diagonal of Leibniz triangle (Figure 2.1) is its reciprocal

(Eq. 2.16), an ¼ 1
bb
¼ 2

n nþ1ð Þ nþ2ð Þ. Therefore, we can also state that the infinite series

of the reciprocals of tetrahedral numbers is convergent and its sum is 3/2,X1
n¼1

6

n nþ 1ð Þ nþ 2ð Þ ¼
3

2
: The proof is complete.

Further, the first Leibniz diagonal consists of reciprocals of natural numbers,

z¼ 1, 2, 3, 4, 5, 6,. . . The second diagonal consists of 1/(2x triangular numbers),

z ¼ 2 � 1, 2 � 3, 2 � 6, 2 � 10, 2 � 15, 2 � 21, . . . (Here 1,3,6,10,15,21, . . . are

triangular numbers). The third diagonal consists of 1/(3x tetrahedral numbers)

and so on.

Method 3. Consider again the sum 1
3
þ 1

12
þ 1

30
þ 1

60
þ 1

105
þ . . .

We can see that this infinite series represent the sum of all fractions in the third

diagonal of Leibniz triangle. Hence, each fraction can be replaced by the difference

of two others using Eq. 2.18,

L n, k � 1ð Þ ¼ L n� 1, k � 1ð Þ � L n; kð Þ ð2:19Þ

For example, z 3; 1ð Þ ¼ 12, P 3; 1ð Þ ¼ 3, L 3; 1ð Þ ¼ 1
12
¼ 1

3þ1ð ÞP 3;1ð Þ ¼ 1
3�4

1 1
1 1

1 1
1 1

11

1 1

11
1

2

2

2

3 3

3 3
6

4 4
44

1212
5

5 510 106

7
8 56 168 168 56 8280 280

42 105 140 105 42 7
7 7

6

6

6

6

520 30

30606030

20

20 1515
21 213535

Figure 2.2 Modified Liebnitz (left) and Pascal (right) triangles
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For some terms of the series b) we obtain the following:

1

3
¼ 1

2
� 1

6

a1 ¼ L 2; 0ð Þ ¼ L 1; 0ð Þ � L 2; 1ð Þ
1

12
¼ 1

6
� 1

12

a2 ¼ L 3; 1ð Þ ¼ L 2; 1ð Þ � L 3; 2ð Þ
1

30
¼ 1

12
� 1

20

a3 ¼ L 4; 2ð Þ ¼ L 3; 2ð Þ � L 4; 3ð Þ
1

60
¼ 1

20
� 1

30

a4 ¼ L 5; 3ð Þ ¼ L 4; 3ð Þ � L 5; 4ð Þ
. . .

ð2:20Þ

Additionally, for this chain of equations, by induction, we can find the formula of

the nth term of this series, an ¼ L nþ 1, n� 1ð Þ ¼ L n, n� 1ð Þ � L nþ 1, nð Þ . We

can see that if we add the left and right sides of Eq. 2.20, then on the left we have the

given series and on the right, all the terms except the first one and the last one are

cancelled and that the partial sum is

Sn ¼ 1

2
� L nþ 1, nð Þ ¼ 1

2
� 1

nþ 2ð ÞCn
nþ1

¼ 1

2
� 1

nþ 2ð Þ nþ 1ð Þ:

S1 ¼ 1

2
:

This matches with our other formula found earlier and proves the statement.

c) Let us now prove that 1
3
¼ 1

4
þ 1

20
þ 1

60
þ 1

140
þ 1

280
þ . . ..

Method 1. Denote the sum by S ¼ 1
4
þ 1

20
þ 1

60
þ 1

140
þ . . ., and multiply and divide

the right side by 6,

S ¼ 6 � 1

4 � 6þ
1

20 � 6þ
1

60 � 6þ
1

140 � 6þ . . .

� �
S ¼ 6

1

1 � 2 � 3 � 4þ
1

2 � 3 � 4 � 5þ
1

3 � 4 � 5 � 6þ . . .

� �
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Hence the given sum is six times the sum inside the parentheses. We have seen

such a series earlier in this chapter. It can be evaluated as

S ¼ 6 �
X1
n¼1

1

n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ. In order to evaluate an infinite sum of this

series, we rewrite the nth term in a different form and firstly, we multiply two

inner and two outer factors of the denominator, 6 � 1
n2þ3nð Þ� n2þ3nþ2ð Þ

� �
.

We obtained a familiar structure: two quantities in the denominator differ by

two, and we can rewrite the fraction again and again decompose it into two new

fractions as follows:

an ¼ 6

2
� 1

n nþ 3ð Þ �
1

nþ 1ð Þ nþ 2ð Þ
� �

¼ 3

3
� 1

n
� 1

nþ 3

� �
� 3

1

nþ 1
� 1

nþ 2

� �

¼ 1

n
� 1

nþ 3
� 3

nþ 1
þ 3

nþ 2
:

This nth term can be rewritten in a little different form so we can calculate the partial

sum of the series easily:

an ¼ 1

n
� 1

nþ 1

� �
þ 1

nþ 2
� 1

nþ 3

� �
� 2 � 1

nþ 1
� 1

nþ 2

� �
X1
n¼1

an ¼
X1
n¼1

1

n
� 1

nþ 1

� �
þ 1

nþ 2
� 1

nþ 3

� �
� 2 � 1

nþ 1
� 1

nþ 2

� �� �

Now, the sum of each quantity can be evaluated separately and the final answer will

be the sum of these three answers:

Xn
n¼1

1

n
� 1

nþ 1

� �
¼ 1� 1

nþ 1Xn
n¼1

1

nþ 2
� 1

nþ 3

� �
¼ 1

3
� 1

nþ 3

�2
Xn
n¼1

1

nþ 1
� 1

nþ 2

� �
¼ �2

2
þ 2

nþ 2

Sn ¼ 1

3
� 1

nþ 1
� 1

nþ 3
þ 2

nþ 2

Obviously, as n goes to infinity, the partial sum will go to 1/3. Therefore,

S1 ¼ 1
3
¼ 1

4
þ 1

20
þ 1

60
þ 1

140
þ 1

280
þ . . ..
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Method 2. Please notice that the series is the sum of all fractions in the fourth

diagonal of Leibniz triangle. Looking at that diagonal of the Leibniz triangle in

Figure 2.2, and using Eq. 2.19 we have the following chain of the true relationships:

a1 ¼ 1

4
¼ 1

3
� 1

12
, a1 ¼ L 3; 0ð Þ ¼ L 2; 0ð Þ � L 3; 1ð Þ

a2 ¼ 1

20
¼ 1

12
� 1

30
, a2 ¼ L 4; 1ð Þ ¼ L 3; 1ð Þ � L 4; 2ð Þ

a3 ¼ 1

60
¼ 1

30
� 1

60
, a3 ¼ L 5; 2ð Þ ¼ L 4; 2ð Þ � L 5; 3ð Þ

a4 ¼ 1

140
¼ 1

60
� 1

105
, a4 ¼ L 6; 3ð Þ ¼ L 5; 3ð Þ � L 6; 4ð Þ

a5 ¼ 1

280
¼ 1

105
� 1

168
, a5 ¼ L 7; 4ð Þ ¼ L 6; 4ð Þ � L 7; 5ð Þ

. . .

From these relationships, by induction, we can recognize the formula for nth term of

the series and evaluate its nth partial sum,

an ¼ L nþ 2, n� 1ð Þ ¼ L nþ 1, n� 1ð Þ � L nþ 2, nð Þ

Sn ¼
Xn
i¼1

ai ¼ 1

3
� L nþ 2, nð Þ ð2:21Þ

It follows from Eq. 2.21 that the nth partial sum of the series is 1/3 minus the Leibniz

entry L nþ 2, nð Þ. Additionally, we can evaluate the nth term of the series by using

Eq. 2.17 for L(i, j),

L nþ 1, n� 1ð Þ ¼ 1

nþ 2ð ÞCn�1
nþ1

¼ 1

nþ 2ð Þ nþ 1ð Þ!
n� 1ð Þ! � 2!

¼ 2

nþ 2ð Þ nþ 1ð Þn
L nþ 2, nð Þ ¼ 1

nþ 3ð ÞCn
nþ2

¼ 1

nþ 3ð Þ nþ 2ð Þ!
nð Þ! � 2!

¼ 2

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ

ð2:22Þ

Subtracting the left and right sides, we obtain
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an ¼ 2

nþ 2ð Þ nþ 1ð Þn�
2

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ

¼ 2 � 1

nþ 2ð Þ nþ 1ð Þn�
1

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ
� �

an

¼ 2

nþ 2ð Þ nþ 1ð Þ �
1

n
� 1

nþ 3

� �

an ¼ 6

n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ

Making substitutions of the Leibniz entry L nþ 2, nð Þ from Eq. 2.22 into Eq. 2.21,

we have

Sn ¼ 1

3
� 2

nþ 3ð Þ nþ 2ð Þ nþ 1ð Þ ð2:23Þ

If n increases without bound, then the partial sum above will get closer and closer to

1/3. Therefore, the sum in part (c) is 1/3. The statement is proven.

Consider again Figure 2.2. Start counting the rows from the top i ¼ 1. Take the

numbers of the nth row and add them. For example, for the 4th row, we have

5þ 20þ 30þ 20þ 5 ¼ 80 ¼ 5 � 24. The following statement is true.

Lemma 2.1 The sum of the numbers in the nth row of a triangle made of the

denominators of Leibniz triangle equals n � 2n�1.

Proof. The sum of all numbers in the nth row is the sum of the z-numbers and

hence, it can be written using a definition of a z number asXn�1

k¼0

n � Ck
n�1

¼ n
Xn�1

k¼0

Ck
n�1

¼ n � 2n�1:

2.2 Trigonometric Series

The following problems are very different from anything above. They are trigono-

metric series. In order to evaluate trigonometric series we need to know trigono-

metric identities and de Moivre’s Formula. Some formulas are given by,
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sin x cos y ¼ 1

2
sin xþ yð Þ þ sin x� yð Þð Þ

sin x sin y ¼ 1

2
� cos x� yð Þ � cos xþ yð Þð Þ

cos x� cos y ¼ 2 sin
xþ y

2
sin

y� x

2

ð2:24Þ

de Moivre’s Formula (Abraham de Moivre, French mathematician, 1667-

1754)

cos nxþ i sin nx ¼ cos xþ i sin xð Þn: ð2:25Þ

We do not give a proof for the first three formulas because students study them in

high school. de Moivre’s Formula is not in the regular high school curriculum so we

need to discuss it a little more. Let us see how easily it can be derived under

assumption that the Euler’s relationship below is true.

Euler’s Formula

eix ¼ cos xþ i sin x ð2:26Þ

Let us raise the left and the right side of Eq. 2.26 to the second power, then the

third, fourth, and so on and apply Eq. 2.25 again each time. We obtain the following

chain of the correct equations:

eixð Þ2 ¼ cos xþ i sin xð Þ2
ei2x ¼ cos 2xþ i sin 2x

eixð Þ3 ¼ cos xþ i sin xð Þ3
ei3x ¼ cos 3xþ i sin 3x

eixð Þ4 ¼ cos xþ i sin xð Þ4
ei4x ¼ cos 4xþ i sin 4x

. . .

einx ¼ cos nxþ i sin nx

Problem 69 Evaluate Sn ¼ cos πn þ cos 2π
n þ cos 3π

n þ . . .þ cos
n�1ð Þπ
n
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Solution. Let us multiply the given sum by sin π
2n. Using the first formula of

trigonometric identities of Eq. 2.24 and the fact that sine is an odd function

ð sin �yð Þ ¼ � sin yð Þ), we obtain,

2Sn sin
π

2n
¼ 2 sin

π

2n
cos

π

n
þ 2 sin

π

2n
cos

2π

n
þ . . .þ 2 sin

π

2n
cos

n� 2ð Þπ
n

þ

2 sin
π

2n
cos

n� 1ð Þπ
n

¼ sin
3π

2n
� sin

π

2n
þ sin

5π

2n
� sin

3π

2n
þ

. . .þ sin
2n� 3ð Þπ

2n
� sin

2n� 5ð Þπ
2n

þ sin
2n� 1ð Þπ

2n
� sin

2n� 3ð Þπ
2n

:

After simplification and canceling opposite terms we obtain

2Sn sin
π
2n ¼ � sin π

2n þ sin
2n�1ð Þπ
2n ¼ � sin π

2n þ sin π � π
2n

� � ¼ 0. Considering the

expression above we notice that the second factor on the left hand side is never

zero for any natural n, therefore the given sum must be zero.

Answer. Sn ¼ 0.

Problem 70 Prove that

Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx ¼ sin nx
2
� sin nþ1ð Þx

2

sin x
2
:

Proof. This proof will involve only knowledge at a high school curriculum level,

and trigonometric identities. Multiplying the sum by 2 sin(x/2) we obtain:

2 sin
x

2
sin xþ sin 2xþ sin 3xþ . . .þ sin nxð Þ

¼ 2 sin
x

2
sin xþ 2 sin

x

2
sin 2xþ 2 sin

x

2
sin 3xþ . . .þ 2 sin

x

2
sin nx

¼ cos
x

2
� x

� �
� cos

x

2
þ x

� �
þ cos

x

2
� 2x

� �
� cos

x

2
þ 2x

� �
þ cos

x

2
� 3x

� �
� cos

x

2
þ 3x

� �
þ . . .þ cos

x

2
� nx

� �
� cos

x

2
þ nx

� �
Since cosine is an even function, then cos �yð Þ ¼ cos yð Þ and all terms in the

middle of the last formula will be eliminated as

cos x
2

� �� cos 3x
2

� �þ cos 3x
2

� �� cos 5x
2

� �þ cos 5x
2

� �þ . . .� cos
x 2nþ1ð Þ

2

� �
. Now

we obtain that Sn � 2 sin x
2
¼ cos x

2
� cos

2nþ1ð Þx
2

: Apply the difference of cosines

formula (3rd formula of Eq. 2.24):
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Sn � 2 sin x
2
¼ 2 sin

1

2
þ 2nþ 1

2

� �
x

2
� sin

�1

2
þ 2nþ 1

2

� �
x

2

¼ 2 sin
nþ 1ð Þx

2
� sin nx

2

Dividing the last row by 2sin(x/2) we prove the formula:

Sn ¼ sin xþ sin 2xþ sin 3xþ . . .þ sin nx

¼
sin

nx

2
� sin nþ 1ð Þx

2

sin
x

2

You will have a chance to prove this formula a second way in a homework problem

using de Moivre’s Formula. You can use the next problem as an example.

Problem 71 Evaluate A ¼
cos

π

4
2

þ
cos

2π

4
22

þ . . .þ
cos

πn

4
2n

:

Solution. Denote

B ¼ sin π
4

2
þ sin 2π

4

22
þ . . .þ sin πn

4

2n
ð2:27Þ

Assuming that B is imaginary part of a complex number Aþ iB, we multiply

Eq. 2.27 by i and add the corresponding A:

Aþ iB¼ 1

2
cos

π

4
þ isin

π

4

� �
þ 1

22
cos

2π

4
þ isin

2π

4

� �
þ . . .þ 1

2n
cos

πn

4
þ isin

πn

4

� �

Applying de Moivre’s Formula (Eq. 2.25) to the previous expression, we have

Aþ iB ¼ 1

2
cos

π

4
þ i sin

π

4

� �
þ 1

22
cos

π

4
þ i sin

π

4

� �2
þ . . .þ 1

2n
cos

π

4
þ i sin

π

4

� �n
ð2:28Þ

We can notice that Eq. 2.28 is a geometric series with both, first term and the ratio

equal to 1
2
� cos π

4
þ i sin π

4

� �
.

Therefore, using the sum of geometric series, Eq. 2.28 can be rewritten in a

compact form as follows:
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Aþ iB ¼ 1

2
cos

π

4
þ i sin

π

4

� � 1� 1
2n

cos π
4
þ i sin π

4

� �n� �
1� 1

2
cos π

4
þ i sin π

4

� �� � ð2:29Þ

Applying de Moivre’s Formula (Eq. 2.25) to Eq. 2.29 again and using the fact that

cos π
4
¼ sin π

4
¼ 1ffiffi

2
p we have,

Aþ iB ¼ 1

2
ffiffiffi
2

p 1þ ið Þ � 1� 1
2n

cos π
4
þ i sin π

4

� �n� �
1� 1

2
ffiffi
2

p � i
2
ffiffi
2

p
� � ð2:30Þ

Rationalizing the denominator and extracting the real part of A+ iB in Eq. 2.30, we

obtain

A ¼
ffiffiffi
2

p � 1
� �

2n � cos πn
4

� �þ ffiffiffi
2

p
sin πn

4

2n 5� 2
ffiffiffi
2

p� � :

Answer. A ¼
ffiffiffi
2

p � 1
� �

2n � cos πn
4

� �þ ffiffiffi
2

p
sin πn

4

2n 5� 2
ffiffiffi
2

p� �

2.3 Using Mathematical Induction for Sequences
and Series

The principle of mathematical induction is very helpful in proving many statements

about positive integers. According to this principle, a mathematical statement

involving the variable n can be shown to be true for any positive integer n by

proving the following two statements:

• The statement is true for n ¼ 1

• If the statement is true for any positive integer k, then it is also true forn ¼ k þ 1.

Let us show how mathematical induction can help us to prove and solve some

problems involving sequences and series.

Problem 72 Use mathematical induction to prove that 1þ 3þ 5þ . . .þ
2n� 1ð Þ ¼ n2 is true for any positive number n.
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Proof. Step 1. Replacing n by 1 in the above equality gives 2 � 1ð Þ � 1 ¼ 1 which

is true, so n¼ 1 satisfies the equation.

Step 2. Assume that the equality is true at n ¼ k. And let us show that it will be

true at n ¼ k þ 1. If 1þ 3þ 5þ . . .þ 2k � 1ð Þ ¼ k2 is true, then let us show that

for n ¼ k þ 1 the left side of the equality equals k þ 1ð Þ2:

1þ 3þ 5þ � � � þ ð2k � 1Þ þ
�
2ðk þ 1Þ � 1

�
:

Start with the left hand side, and notice that (because of our assumption) it is equal

to k2, plus an additional term.

1þ 3þ 5þ . . .þ 2k � 1ð Þ þ 2 k þ 1ð Þ � 1ð Þ ¼ k2 þ 2k þ 1 ¼ k þ 1ð Þ2.
The final equality proves that the equation is true for n ¼ k þ 1, given that it is

true for n ¼ k. By the principle of mathematical induction, we have proven the

statement.

Problem 73 Prove that:
Xn
k¼1

k3 ¼
Xn
k¼1

k

 !2

.

Proof. Step 1. Replacing n by 1 in the above equality gives

13 ¼ 12 which is true, so n¼ 1 satisfies the equation.

Step 2. Assume that the equality is true at n¼ k and let us show that it will be true

at n¼ k þ1:

If 13 þ 23 þ 33 þ . . .þ k3 ¼ 1þ 2þ 3þ . . .þ kð Þ2 ¼ k2 kþ1ð Þ2
4

is true, then let us

show that for n¼ kþ 1 the left side of the given equality equals

1þ 2þ 3þ . . .þ k þ 1ð Þ2 ¼ kþ1ð Þ2 kþ2ð Þ2
4

.

We can state that 13 þ 23 þ 33 þ . . .þ k3 þ k þ 1ð Þ3 ¼ 1þ 2þ 3þ . . .þ kð Þ2
þ k þ 1ð Þ3. Replacing the right hand side, putting fractions over the common

denominator and factoring, we obtain the required formula:

k2 k þ 1ð Þ2
4

þ k þ 1ð Þ3 ¼ k2 k þ 1ð Þ2 þ 4 k þ 1ð Þ3
4

¼ k þ 1ð Þ2 k2 þ 4k þ 4
� �
4

¼ k þ 1ð Þ2 k þ 2ð Þ2
4

The final equality proves that the equation is true for n ¼ k þ 1, assuming that it is

true for n ¼ k. Using the principle of mathematical induction, we have completed

our proof.
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In Prob. 74, we use mathematical induction for recurrent sequences.

Problem 74 Given a sequence {xn} such that

x0 ¼ 2, x1 ¼ 3
2
, xnþ1 ¼ 3

2
xn � 1

2
xn�1. a) Find the exact formula for xn.

b) Evaluate lim
n!1 xn, if the limit exists. c) Is series S1 ¼

X1
k¼0

xk convergent

or divergent?

Solution.

a) Using the given recursive formula we can calculate a few terms of the sequence:

x0 ¼ 2 ¼ 1þ 20

x1 ¼ 3

2
¼ 1þ 1

2
¼ 1þ 2�1

x2 ¼ 3

2
� 3
2
� 1

2
� 2 ¼ 1þ 1

4
¼ 1þ 2�2

x3 ¼ 3

2
� 5
4
� 1

2
� 3
2
¼ 9

8
¼ 1þ 1

8
¼ 1þ 2�3

x4 ¼ 3

2
� 9
8
� 1

2
� 5
4
¼ 17

16
¼ 1þ 2�4

Notice that every nth term of the sequence is obtained as a sum of 1 and 2 raised

to a negative power that is equal to the number of the term. We can assume that

xn ¼ 1þ 2�n ð2:31Þ

Using mathematical induction let us prove that Eq. 2.31 is the exact formula for

the nth term of the sequence. Denote by A(m) our statement for n ¼ m.

Step 1. A(1) is true because x1 ¼ 3
2
¼ 1þ 2�1

Step 2. Assume that A(k) andA k � 1ð Þ are true (i.e., Eq. 2.31 holds for n ¼ k and

for n ¼ k � 1), i.e., xk ¼ 1þ 2�k and xk�1 ¼ 1þ 1
2k�1.

Step 3. Let us prove that A k þ 1ð Þ is also true. That is, we need to show that

xkþ1 ¼ 1þ 2� kþ1ð Þ ¼ 1þ 2�k�1. Indeed, xkþ1 ¼ 3
2
xk � 1

2
xk�1 by the condition of

the problem, then
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xkþ1 ¼ 3

2
� 1þ 1

2k

� �
� 1

2
� 1þ 1

2k�1

� �

¼ 1

2
� 3 � 2k þ 3� 2k � 2
� �

2k

¼ 1

2
� 2 � 2k þ 1
� �

2k

¼ 1

2
� 2þ 1

2k

� �

¼ 1þ 1

2kþ1

¼ 1þ 2� kþ1ð Þ

We proved that Eq. 2.31 is the exact formula for the nth term of the sequence.

The proof is complete.

b) Now, knowing the nth term of the sequence explicitly, xn ¼ 1þ 2�n, let us find

the limit of {xn}, lim
n!1 xn ¼ lim

n!1 1þ 1
2n

� � ¼ 1.

c) The series is divergent because, as we established above, the limit of the nth term
as n goes to infinity is not zero. Therefore, the series does not pass the Necessary
Condition (See Chapter 3 for clarification). We can also evaluate the partial sum

for the series exactly as Sn ¼ 2þ 1þ 1
21
þ 1þ 1

22
þ 1þ 1

23
þ . . .þ 1þ 1

2n
. You

can see that this is the sum of 2þ n � 1ð Þ and the first n terms of geometric series

with b1 ¼ 1
2
, r ¼ 1

2
. Thus, Sn ¼ 2þ nþ

1
2
1� 1

2ð Þnð Þ
1�1

2

¼ 2þ nþ 1� 1
2

� �n
so

Sn ¼ 3þ n� 1
2

� �n
:

We can see that this partial sum depends on n and increases without bound as

n increases.

Answer. a) Xn¼ 1þ 2�n; b) Sn ¼ 3þ n� 1
2

� �n
: c) The series is divergent.

In the homework chapter, you will be asked to find the formula for the nth term
using the knowledge of recursion.

Problem 75 Given a sequence anf g, an ¼ n 3nþ 1ð Þ, n2ℕ: Prove that its

nth partial sum can be evaluated by formula Sn ¼ n nþ 1ð Þ2:

Proof. We prove this by induction. It is easy to see that the formula is true for

n ¼ 1. Indeed, S1 ¼ 1 � 1þ 1ð Þ2 ¼ a1 ¼ 4: If we evaluate the sums of two, three,

four of even five terms of the sequence, we see that the formula works. However, it

does not prove the statement. Assume that this formula is correct for n ¼ k, i.e., the

sum of the first k terms of the given sequence equals Sk ¼ k � k þ 1ð Þ2: Let us

demonstrate that it will be also true for n ¼ k þ 1, i.e., Skþ1 ¼ k þ 1ð Þ � k þ 2ð Þ2:
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We know that the sum of k þ 1ð Þ terms of the sequence equals the sum of its first

k terms plus the (kþ 1)st term, Skþ1 ¼ Sk þ akþ1. Substituting here the kth sum and

the value of the k þ 1ð Þst term of the sequence we obtain

Skþ1 ¼ k k þ 1ð Þ2 þ k þ 1ð Þ 3 � k þ 1ð Þ þ 1ð Þ
¼ k k þ 1ð Þ2 þ k þ 1ð Þ 3k þ 4ð Þ
¼ k þ 1ð Þ k k þ 1ð Þ þ 3k þ 4ð Þ
¼ k þ 1ð Þ k þ 2ð Þ2:

Therefore, the formula is correct for n ¼ k þ 1, hence it is true any natural n. The
statement is proven.

Problem 76 Prove that any term of the sequence an ¼ 4 � 6n þ 5n� 4 is

divisible by 25.

Proof. We can substitute n ¼ 1 and obtain that a1 ¼ 25. Yes, it is divisible by 25.

Assume that the statement is true for n ¼ k and that ak ¼ 4 � 6k þ 5k � 4 is

divisible by 25, then it can be written as 4 � 6k þ 5k � 4 ¼
25m ) 4 � 6k ¼ 25mþ 4� 5k. Let us prove that the next term, k þ 1, akþ1 ¼ 4

�6kþ1 þ 5 k þ 1ð Þ � 4 is also is also divisible by 25. Next, because the kth term is

divisible by 25, we extract the kth term of the sequence in the expression of the

k þ 1ð Þ term,

akþ1 ¼ 6 � 4 � 6k þ 5k þ 1 ¼ 6 � 4 � 6k þ 5k � 4
� �� 25k þ 25:

Each term of the sum is a multiple of 25, then the total sum or ðk þ 1Þst term is

divisible by 25. You could do this proof a little bit differently by replacing the kth

term by 25 � m:

akþ1 ¼ 6 � 4 � 6k þ 5k � 4þ 5

¼ 6 25mþ 4� 5kð Þ þ 5k þ 1

¼ 150m� 25k þ 25

¼ 25 � 6m� k þ 1ð Þ

It is clear that it is divisible by 25. The statement is proven.

Problem 77 Given a Fibonacci sequence anf g : a1 ¼ a2 ¼ 1, an ¼ an�1 þ
an�2, n > 2: Prove that the terms of the sequence satisfy the equation:

a2nþ1 � an � anþ2 ¼ �1ð Þn, 8n2ℕ:
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Proof. We prove this by induction.

1. Notice that the equality is true for n ¼ 1 because

a22 � a1 � a3 ¼ 1� 1 � 2 ¼ �1ð Þ1:
2. Assume that the statement is true for n ¼ k, a2kþ1 � ak � akþ2 ¼ �1ð Þk. From this

it follows that a2kþ1 ¼ �1ð Þk þ ak � akþ2

3. Let us demonstrate that it is also true for n ¼ k þ 1, i.e.,

a2kþ2 � akþ1 � akþ3 ¼ �1ð Þkþ1:

Let us substitute the expression for the k þ 3ð Þ th term of Fibonacci sequence,

a2kþ2 � akþ1 � akþ1 þ akþ2ð Þ ¼ a2kþ2 � akþ1� akþ2 � a2kþ1 . Substituting in this

formula the value of the term in the box, we obtain

a2kþ2 � akþ1 � akþ3 ¼ a2kþ2 � akþ1 � akþ2 � �1ð Þk � ak � akþ2

¼ a2kþ2 � akþ2 ak þ akþ1ð Þ þ �1ð Þkþ1

¼ a2kþ2 � akþ2 � akþ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

þ �1ð Þkþ1:

The proof is complete.

2.4 Problems on the Properties of Arithmetic
and Geometric Sequences

If three numbers form an arithmetic sequence, the middle term is called the

arithmetic mean of the other two. Thus,

a3 � a2 ¼ a2 � a1

2a2 ¼ a1 þ a3

a2 ¼ a1 þ a3
2

By analogy the arithmetic mean of two numbers is half of their sum. Therefore,
aþbð Þ
2

is the arithmetic mean of numbers a and b, or the average of two numbers.

Similarly the average or mean value of three numbers a, b, and c is aþbþc
3

. In

general, the mean value of n positive numbers, a1, a2, a3, :::::an is a1þa2þ...þan
n ,

that is the average of the sum. Besides the arithmetic mean defined above there is

another form of mean value that is defined by the formula: b ¼ ffiffiffiffiffi
ac

p
. Value b is

called a geometric mean of numbers a and c. Recalling a geometric progression

with positive terms b1, b2, ::::::, bn�1, bn, bnþ1:::: and common ratio r such that
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bn
bn�1

¼ bnþ1

bn
, bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bn�1bnþ1

p
or bn

2 ¼ bn�1 � bnþ1. Every term of a geometric

progression is a geometric mean of the preceding and consequent terms.

Now consider the following problems.

Problem 78 Peter lives near a bus stop A. The bus stops A, B, C, and D are

on the same street. Peter walks for exercise every weekend. He starts at A

with a speed of 5 km per hour and goes to D. Reaching D he turns back and

goes to B. Walking this rout (A-D-B) requires 5 h. At B Peter takes a bus and

goes home. It is known that he can cover the distance between A and C in 3 h.

The distances between A and B, B and C, C and D form a geometric sequence

in the given order. Find the distance between B and C.

Solution. Usually it is a good idea to draw a picture of the problem. A, B, C, and D

are on the same street (Figure 2.3). It means that we can draw them as points on the

same line, A and D will be the end points of the segment and B and C between them

in the order A-B-C-D.

Because our unknown is the distance between B and C it seems obvious to

introduce 3 variables x, y, and z as distances between A and B, B and C, and C and D

respectively. Using the condition of the problem and distance ¼ speed � time we

write, xþ yþ zþ zþ y ¼ 5 � 5 ¼ 25 and xþ y ¼ 3 � 5 ¼ 15.

Now we are going to write the last equation of the system. Because x, y, and z are

consecutive terms of a geometric sequence, then y2 ¼ xz, and we can complete a

system:

xþ 2yþ 2z ¼ 25

xþ y ¼ 15

y2 ¼ xz

8<
:

yþ 2z ¼ 10

x ¼ 15� y
y2 ¼ xz

8<
:

z ¼ 10� y

2
x ¼ 15� y

y2 ¼ 15� yð Þ 10� yð Þ
2

8>>><
>>>:

zyx

A DB C

Figure 2.3 Problem 78
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Subtracting the second equation from the first of the first system, we can eliminate

variable x in the second system. Then we express z and x in terms of y and put them
into the third equation of the last system. Let us solve the last equation for y.
Multiplying both sides by 2, we have

2y2 ¼ 150� 25yþ y2

y2 þ 25y� 150 ¼ 0

y1 ¼ 5, y2 ¼ �30

Because y is a distance, it has to be a positive, so we choose y ¼ 5.

Answer. The distance between B and C is 5 km.

Problem 79 The four numbers a, b, c, and z are given. It is known that the

first three numbers form an arithmetic sequence, and the last three numbers

form a geometric sequence. A sum of the outer terms is 4 and the sum of the

inner terms is 2. Find the numbers.

Solution. Let us write the numbers in a row: a b c z. If variables a, b and c are terms

of an arithmetic sequence, then

b ¼ aþ c

2
ð2:32Þ

On the other hand,

þ aþ z ¼ 4

bþ c ¼ 2

�
aþ bþ cþ z ¼ 6

ð2:33Þ

Replacing aþ cð Þ by 2b from Eq. 2.32 into Eq. 2.33, we have

3bþ z ¼ 6 ð2:34Þ

Our purpose now is to eliminate some variables. It would be nice to obtain a

system of two equations in just two variables. (for example, z and b). Let us use the
second part of the condition. If b, c, and z form a geometric sequence, then c is a

geometric mean of b and z or

c2 ¼ b � z ð2:35Þ
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Expressing c as 2� bð Þ from system (Eq. 2.33) and substituting into (Eq. 2.35)

we derive

2� bð Þ2 ¼ b � z ð2:36Þ

Let us combine Eqs. 2.34 and 2.36 as

2� bð Þ2 ¼ b 6� 3bð Þ
4� 4bþ b2 ¼ 6b� 3b2

2b2 � 5bþ 2 ¼ 0

b1,2 ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52 � 4 � 2 � 2

p

2 � 2 ¼ 5� 3

4

b1 ¼ 2 b2 ¼ 0:5

Two different values of b will give us two sets of a, b, c, and z.
1. b¼ 2

z¼ 6� 3b¼ 0

a¼ 3b� 2¼ 4

c¼ 2� b¼ 0

2. b¼ 0.5

z¼ 4.5

a¼� 0.5

c¼ 1.5

Answer. a; b; c; zð Þ ¼ 4, 2, 0, 0ð Þ, �0:5, 0:5, 1:5, 4:5ð Þf g

Problem 80 The sequence a1, a2, a3, . . . satisfies a1 ¼ 19; a9 ¼ 99, and for

any n � 3; an is the arithmetic mean of the first n� 1ð Þ terms. Find a2.

Solution. Let us write down the formula for the nth and ðn� 1Þst terms of the

sequence:

an ¼ a1 þ a2 þ . . .þ an�2 þ an�1

n� 1
ð2:37Þ

an�1 ¼ a1 þ a2 þ . . .þ an�2

n� 2
ð2:38Þ

Using Eq. 2.38 we can find that

a1 þ a2 þ . . .þ an�2 ¼ n� 2ð Þan�1 ð2:39Þ
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Plugging Eq. 2.39 into Eq. 2.37 we obtain an � n� 1ð Þ ¼ an�1 � n� 2ð Þ
þan�1 ¼ an�1 � n� 1ð Þ. Therefore,

an ¼ an�1 for anyn � 3 ð2:40Þ

1. Since a9 ¼ 99 we can rewrite Eq. 2.40 as a3 ¼ a4 ¼ . . . ¼ a9 ¼ 99

2. Now we can evaluate a2, a3 ¼ a1þa2
2

) 99 ¼ 19þa2
2

, a2 ¼ 2 � 99� 19 ¼ 179.

Answer. 179

Problem 81 (MGU Entrance exam 2008). Integers x, y, z are members of a

geometric progression but numbers 7x� 3, y2, 5z� 6 are members of an

arithmetic progression. Find x, y and z.

Solution. From the condition of the problem and with the use of geometric and

arithmetic means, we have the following two equations,

y2 ¼ xz

y2 ¼ 7x� 3þ 5z� 6

2

from which

zx ¼ 7xþ 5z� 9

2

2zx ¼ 7xþ 5z� 9

x 2z� 7ð Þ ¼ 5z� 9

x ¼ 5z� 9

2z� 7

Multiplying both sides of the last equation by 2 we obtain 2x ¼ 2�5z�2�9
2z�7

. Extracting

the largest integer from the numerator of the last fraction we obtain

2x ¼ 5 2z�7ð Þþ17

2z�7
¼ 5þ 17

2z�7
. Since 17 is prime, then in order for 2x to be an integer,

2z� 7ð Þ can take only the following values: �1;�17.

Consider the following cases:

a) If 2z� 7¼ 1, then z¼ 4, x¼ 11, y ¼ ffiffiffiffiffi
xz

p ¼ ffiffiffiffiffi
44

p
, not a solution

b) If 2z� 7¼�1, then z¼ 3, x¼�6, xz< 0, not a solution

c) 2z� 7¼ 17, then z ¼12, x¼ 3, y¼ 6 or y¼�6

d) 2z� 7¼�17, z¼�5, x¼ 2, zx< 0, not a solution
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Answer. (x,y,z)¼ {(3,6,12),(3,�6,12)}.

Problem 82 (Lidsky). Prove that there exists an infinite convergent geo-

metric series 1, r, r2, . . ., rn, . . . each member of which divided by the sum of

all terms following it, equals given number k. For what value of k does the

problem have a solution?

Solution. By the condition of the problem rj j < 1 and we have

rn ¼ k rnþ1 þ rnþ2 þ . . .ð Þ ¼ krnþ1 � 1
1�r. From this expression 1� r ¼ kr or solving

for r, r ¼ 1= k þ 1ð Þ. Since rj j < 1, then

1

k þ 1

����
���� < 1

k > 0 or k < �2

Answer. k2 �1, � 2ð Þ [ 0;1ð Þ.

Problem 83 (AIME 2000). A sequence of numbers x1, x2,...., x100 has the
property that, for every integer k between 1 and 100, inclusive, the number x k

is k less than the sum of the other 99 numbers. Given that x50 ¼ m
n ; where

m and n are relatively prime positive integers, find mþ nð Þ.

Solution. Because by the condition of the problem, xk þ k ¼ x1 þ x2 þ . . .þ xk�1

þxkþ1 þ . . .þ x100, then

x1 þ 1 ¼ x2 þ x3 þ . . .þ x100

x2 þ 2 ¼ x1 þ x3 þ . . .þ x100

. . .

x50 þ 50 ¼ x1 þ x2 þ . . .þ x49 þ x51 þ . . .þ x100

x51 þ 51 ¼ x1 þ x2 þ . . .þ x50 þ x52 þ . . .þ x100

. . .

x99 þ 99 ¼ x1 þ x2 þ . . .þ x98 þ x100

x100 þ 100 ¼ x1 þ x2 þ . . .þ x99

ð2:41Þ

Let us add xk to both sides of each equation, where k is the number of the

equation:

2xk þ k ¼
X100
i¼1

xi, k ¼ 1, 2, . . . , 100: ð2:42Þ
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Now the right side of each equation will be the same,
X100
i¼1

xi. For example, for the

50th equation we have

2x50 þ 50 ¼
X100
i¼1

xi ð2:43Þ

Method 1. (Using properties of sigma notation)

Adding the left and right sides of Eq. 2.42 for k ¼ 1,2, ..., 100 and after

simplification, we obtain that 2
X100
i¼1

xi þ
X100
i¼1

i ¼ 100
X100
i¼1

xi, which can be simplified

as follows: 100�101
2

¼ 98
X100
i¼1

xi

On the other hand, replacing the sum here by the left side of Eq. 2.43 for the

50th equation, we obtain 98 2x50 þ 50ð Þ ¼ 100�101
2

. After simplification and replace-

ment the 50th term by the formula given in the condition of the problem yields

50 � 101 ¼ 98 2 � m
n
þ 50

� �
Solving for m/n we obtain that

m

n
¼ 75

98

Therefore, mþ n ¼ 75þ 98 ¼ 173.

Method 2. (Using properties of an arithmetic sequence)

Subtracting the left and the right sides of two consecutive equations of Eq. 2.41 and

then dividing both sides by 2 we obtain that xk � xk�1 ¼ �0:5, where k¼ 2,

3, . . ..100. This means that the sequence {xk} is an arithmetic progression with the

common difference d ¼ �0:5. Now the 50th term of the sequence can be written as

x50 ¼ x1 þ 49 � d
x50 ¼ x1 � 0:5 � 49 ð2:44Þ

Using Eq. 1.8 for the sum of an arithmetic sequence, we rewrite Eq. 2.42 for

k ¼ 1 as follows:

2x1 þ 1 ¼ 2x1 þ 99d

2
� 100;

2x1 þ 1 ¼ 2x1 þ 99 � �0:5ð Þð Þ50;
x1 ¼ 1238

49
:
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Substituting the value into Eq. 2.44 we obtain x50 ¼ 75
98
¼ m

n or

mþ n ¼ 75þ 98 ¼ 173.

Answer. m=n ¼ 75=98 and m + n¼ 173.

Let us compare geometric and arithmetic means of two positive numbers a and

b. What is greater aþb
2

or
ffiffiffiffiffi
ab

p
? Because both, a and b are positive, we can raise

both sides to the second power:
aþbð Þ2
4

^ ab. The symbol ^will mean “compare”

for us. If an arithmetic mean is greater than a geometric mean, then
ðaþbÞ2

4
� ab > 0,

Thus, aþ bð Þ2 � 4ab ¼ a2 þ 2abþ b2 � 4ab ¼ a2 � 2abþ b2 ¼ a� bð Þ2 ^ 0.

Because a� bð Þ2 � 0, then we conclude that the arithmetic mean of two positive

numbers is always greater their geometric mean, and is equal to their geometric

mean if and only if a ¼ b,

aþ b

2
�

ffiffiffiffiffi
ab

p

aþ b � 2
ffiffiffiffiffi
ab

p
:

Let us solve the following problem:

Problem 84 For how many ordered pairs (x, y) of integers is it true that the
arithmetic mean of x and y is exactly 2 more that the geometric mean of

x and y?

Solution.
xþ y

2
¼ 2þ ffiffiffiffiffi

xy
p

xþ y ¼ 4þ 2
ffiffiffiffiffi
xy

p

xþ y� 4ð Þ2 ¼ 4xy

x2 þ y2 þ 2xy� 8 xþ yð Þ þ 16 ¼ 4xy

x2 � 2xyþ y2 ¼ 8 xþ y� 2ð Þ
x� yð Þ2 ¼ 8 xþ y� 2ð Þ
x� yð Þ x� yð Þ ¼ 2 � 2 � 2 � xþ y� 2ð Þ

Because x and y are integers from last equation above, we can write only three

possible systems:

1.
x� y ¼ 8

x� y ¼ xþ y� 2

�
x ¼ 9

y ¼ 1

	
2.

x� y ¼ 4

x� y ¼ xþ y� 2ð Þ � 2
�

x ¼ 4

y ¼ 0
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3.
x� y ¼ 2

x� y ¼ 4 xþ y� 2ð Þ
�

x ¼ 9

4
¼ 2:25

y ¼ 0:25

"

4.
x� y ¼ 1

x� y ¼ 8 xþ y� 2ð Þ
�
Systems (3) & (4) do not give us integers. So we have two possible ordered pairs:

Answer. (9, 1) and (4, 0).

2.5 Miscellaneous Problems on Sequences and Series

Problem 85 (Kaganov) Prove that a1 þ a2 þ . . .þ amð Þ2 � m a21 þ . . .
� þ

am
2Þ for any real numbers ai

Solution. Let us prove it by mathematical induction.

1. m ¼ 1. The statement is true for m ¼ 1.

2. Assume this statement is true for a1 þ a2 þ . . .þ am�1ð Þ2 � m� 1ð Þ
a21 þ . . .þ am�1

2
� �

. Denote the left side by α and the right side by β, α � β:
3. Consider that

a1 þ a2 þ . . .þ amð Þ2 ¼ αþ am
2 þ 2am � a1 þ a2 þ . . .þ amð Þ;

m a1
2 þ . . .þ am�1

2 þ am
2ð Þ ¼ m� 1ð Þ a1

2 þ . . .þ am�1
2ð Þ

þa1
2 þ . . .þ am�1

2 þ mam
2

Since a1 þ a2 þ . . .þ am�1ð Þ2 � m� 1ð Þ a21 þ . . .þ am�1
2

� �
is true, then

a1 þ a2 þ . . .þ am�1 þ amð Þ2

¼ αþ am
2 þ 2am a1 þ . . .þ am�1ð Þ � β þ

Xm�1

i¼1

�
ai

2 þ am
2
�þ am

2;

From which it follows that

α� a1
2�2a1 �amþam

2ð Þþ a2
2�2a2 �amþam

2ð Þþ . . .þ am�1
2�2am�1 �amþam

2ð Þ
þβ;α� βþ a1�amð Þ2þ a2�amð Þ2þ . . .þ am�1�amð Þ2:

The proof is complete.
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The following problem will demonstrate how the knowledge of sequences helps

us to do calculus problems.

Problem 86 Evaluate lim
x!1

xnþ1�1
xn�1

:

Solution. This limit cannot be found directly, because when x¼ 1 the denominator

becomes 0. Using formulas for geometric series and applying them for the numer-

ator and denominator:

1þ xþ x2 þ . . .þ xn ¼ xnþ1 � 1

x� 1

1þ xþ x2 þ . . .þ xn�1 ¼ xn � 1

x� 1

We remove discontinuity and evaluate the limit.

lim
x!1

1þ xþ x2 þ . . .þ xn

1þ xþ x2 þ . . .þ xn�1
¼ nþ 1ð Þ � 1

n � 1 ¼ nþ 1

n
,8n2N:

Answer. lim
x!1

xnþ1�1
xn�1

¼ nþ1
n :

Problem 87 (Rivkin) Given

1þ aþ a2 þ . . .þ an ¼ 1þ að Þ 1þ a2ð Þ 1þ a4ð Þ � � � 1þ a2
k

� �
.

Find relationship between n and k.

Solution. The left side of the formula can be rewritten as anþ1�1
a�1

. Multiplying the

both sides by a� 1ð Þ 6¼ 0 and because a 6¼ 1, the given relation can be rewritten as

anþ1 � 1 ¼ a� 1ð Þ 1þ að Þ 1þ a2ð Þ . . . 1þ a2
n� �
. Next, using a difference of

squares formula applied several (k) times, the right side can be simplified as

a2 � 1ð Þ 1þ a2ð Þ � � � 1þ a2
k

� �
¼ a4 � 1ð Þ . . . 1þ a2

k
� �

¼ a2
kþ1 � 1: Therefore,

anþ1 ¼ a2
kþ1

. Because by the condition of the problem a 6¼ 0, � 1, then the neces-

sary relationship between n and k is nþ 1 ¼ 2kþ1:

Answer. n ¼ 2kþ1 � 1:
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Problem 88 Given a function g nð Þ ¼ f nþ1ð Þ
2� f 0ð Þþf 1ð Þþf 2ð Þþ...þf nð Þð Þ, where

f xð Þ ¼ x
2x
. Evaluate A mð Þ ¼ g mþ1ð Þ

g mð Þ and B mð Þ ¼ g mþ 1ð Þ � g mð Þ.

Solution. Let us evaluate several values of function,

f xð Þ : f 0ð Þ ¼ 0, f 1ð Þ ¼ 1

21
, f 2ð Þ ¼ 2

22
, f 3ð Þ ¼ 3

23
, . . . ,

f nð Þ ¼ n

2n
, f nþ 1ð Þ ¼ nþ 1

2nþ1
:

Substituting this into formula for g(n) we obtain the following

g nð Þ ¼
nþ1
2nþ1

2� 1
21
þ 2

22
þ 3

23
þ 4

24
þ . . .þ n�1

2n�1 þ n
2n

� � : ð2:45Þ

Next, we simplify the sum inside parentheses, by denoting it

Sn ¼ 1
21
þ 2

22
þ 3

23
þ 4

24
þ . . .þ n�1

2n�1 þ n
2n
. Multiplying both sides of the equality by

2 we get 2 � Sn ¼ 1þ 2
21
þ 3

22
þ 4

23
þ 5

24
þ . . .þ n�1

2n�2 þ n
2n�1. Subtracting the left and

the right sides of two equations and canceling the same terms, we have

Sn ¼ 1� n

2n
þ 1

2
�

1� 1
2

� �n�1
� �

1� 1

2

� �

¼ 2� n

2n
� 1

2n

ð2:46Þ

Substituting Eq. 2.46 into Eq. 2.45, we have

Finally,

g mþ 1ð Þ
g mð Þ ¼ mþ 2ð Þ2

mþ 1ð Þ mþ 3ð Þ
g mþ 1ð Þ � g mð Þ ¼ mþ 2

2 mþ 3ð Þ �
mþ 1

2 mþ 2ð Þ ¼
1

2 mþ 2ð Þ mþ 3ð Þ:
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Answer. A mð Þ ¼ mþ2ð Þ2
mþ1ð Þ mþ3ð Þ ; B mð Þ ¼ 1

2 mþ2ð Þ mþ3ð Þ.

Problem 89 Find all value of r such that all partial sums of the series
1
2
þ r cos xþ r2 cos 2xþ r3 cos 4xþ r4 cos 8xþ . . . are nonnegative for all

real x.

Solution. Consider the second partial sum, S2 ¼ 1
2
þ r cos x � 0 ) rj j � 1

2
.

Denote

ψ yð Þ ¼ r cos yþ r2 cos 2y )
ψ 2yð Þ ¼ r cos 2yþ r2 cos 4y )
ψ 4yð Þ ¼ r cos 4yþ r2 cos 8y

ψ 8yð Þ ¼ r cos 8yþ r2 cos 16y

ψ 16yð Þ ¼ r cos 16yþ r2 cos 32y

We can see that the given series can be rewritten as

1

2
þ r cos xþ r2 cos 2x
� �þ r2 r cos 4xþ r2 cos 8x

� �
þr4 r cos 16xþ r2 cos 32xð Þ þ . . .

¼ 1

2
þ ψ xð Þ þ r2ψ 4xð Þ þ r4ψ 8xð Þ þ . . .

ð2:47Þ

Let us investigate the behavior of ψ(y). Taking the first derivative of it, we obtain

that

dψ

dy
¼ �r sin y� 4r2 sin y cos y

¼ �r sin y 1þ 4r cos yð Þ ¼ 0

dψ

dy
¼ 0 , y ¼ πn or cos y ¼ � 1

4r

Case 1. y ¼ πn ) ψ yð Þ ¼ ψ πnð Þ ¼ r cos πnþ r22πn ¼ �1ð Þnr þ r2 � �1
4
.

Case 2. ψ yð Þ ¼ �1
4
þ r2 1

8r2 � 1
� � � �3

8
.

Hence we can state that ψ yð Þ � �3
8
8y2ℝ: Series (Eq. 2.47) are bounded as

follows:
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S2nþ1 ¼ 1

2
þ ψ xð Þ þ r2ψ 4xð Þ þ r4ψ 8xð Þ þ . . .þ r2 n�1ð Þψ 4n�1x

� �
� 1

2
� 3

8
1þ r2 þ r4 þ . . .þ r2 n�1ð Þ
� �

� 1

2
� 3

8
1þ 1

4
þ 1

4

� �2

þ . . .þ 1

4

� �n�1
 !

¼ 1

2
� 3

8

1� 1
4

� �n�1

1� 1

4

0
B@

1
CA ¼ 1

2 � 4n ¼
1

22nþ1

Let us find the next partial sum, S2nþ2 ¼ S2nþ1 þ r2nþ1 � cos 22nx
� � � S2nþ1

� 1
22nþ1 � 0: Finally, we can conclude that if rj j � 1

2
, then all partial sums of the

series of Eq. 2.47 are nonnegative.

Problem 90 Given a sequence S1 ¼
ffiffiffi
2

p
, Snþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Sn

p
, prove that this

sequence has a limit. Evaluate it.

Proof. Assume that the sequence has a limit S, then S ¼ ffiffiffiffiffiffiffiffiffiffiffi
Sþ 2

p ) S2 ¼ Sþ 2

) S ¼ �1 or S ¼ 2

Answer. 2.

The following problems will make connection between sequences, number theory

and geometry.

Problem 91 A side of a square is a. The midpoints of its sides are joined to

form an inscribed square. This process is continued as shown in the diagram.

Find the sum of the perimeters of the squares if the process is continued

without end.

Solution. From the diagram (Figure 2.4), we can see that the sides of the black

squares form a geometric progression with the first term of a and common ratio ½:

a, a
2
, a
4
, a
8
, . . . ,a

2n�1. All red squares, in turn, form a geometric progression with the

same common ratio but the first term a
ffiffi
2

p
2

(half of the diagonal of the original

square): a
ffiffi
2

p
2
, a
ffiffi
2

p
4
, a
ffiffi
2

p
8
, . . .. Because the perimeter of a square with side b is 4b, we

obtain the following expression for the sum of the perimeters of black and red

squares:
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P ¼ 4 aþ a
ffiffiffi
2

p

2
þ a=2þ a

ffiffiffi
2

p

4
þ a=4þ a

ffiffiffi
2

p

8
þ a=8þ . . .þ a

2n�1
þ a

ffiffiffi
2

p

2n�1
þ . . .

� �
¼ 4a 1þ 1=2þ 1=4þ ::::ð Þ þ 4a �

ffiffiffi
2

p

2
1þ 1=2þ 1=4þ . . .ð Þ

¼ 4a 2þ ffiffiffi
2

p� �
1� 1

2n

� �
¼ 4a 2þ ffiffiffi

2
p� �

Answer. P ¼ 4a 2þ ffiffiffi
2

p� �
Problem 92 Given a sequence a0 ¼ 2, a1 ¼ 5, an ¼ 5an�1 � 4an�2 for n

� 2: Show that an � anþ2 � a2nþ1 is a perfect square for every n � 0:

Proof. The characteristic polynomial for this recurrent sequence is r2 � 5r þ 4

¼ r � 1ð Þ r � 4ð Þ; then the general term of the sequence is an ¼ A � 4n þ B � 1n:
Using the values of the first two terms, the nth term can be written as an ¼ 4n þ 1:
Evaluate

an � anþ2 � a2nþ1 ¼ 4n þ 1ð Þ 4nþ2 þ 1
� �� 4nþ1 þ 1

� �2
¼ 4n � 9 ¼ 3 � 2nð Þ2 ¼ k2:

The proof is complete.

Problem 93 Prove that there is no infinite arithmetic progression of only

prime numbers.

Figure 2.4 Sketch for

Prob. 91
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Proof. Consider an arithmetic progression with the first term a 6¼ 1 and common

difference d. Then the nth term of this progression can be written as an ¼ aþ
n� 1ð Þd: Clearly, if n ¼ aþ 1 ) an ¼ aþ a � d ¼ a d þ 1ð Þ. Thus, the first and

aþ 1ð Þ st term , aaþ1, of such arithmetic progression are not relatively primes, and

this fact does not depend on the value of the common difference. Moreover, in such

infinite progression all terms sitting in the positions of n ¼ aþ 1, 2aþ 1, 3aþ 1,

4aþ 1, . . . will be multiples of the first term, a.
For example, in the progression 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, . . . there are

infinitely many members divisible by 3, we underlined some of them . All of them

are in the positions 4, 7, 10, . . . 3k þ 1ð Þ, . . .. Because our proof was based on an

assumption that the first term of a progression is not unit, a reasonable question is

what if the first term of an infinite progression equals 1? Can such progression

consist of only primes?

The answer is also “no” and the proof of this fact is very similar to the proof

above. We just for any given progression start our arguments from the second term.

Thus, infinite arithmetic progression anf g : 1, 1þ d, 1þ 2d, 1þ 3d, . . . contains
progression bnf g : 1þ d, 1þ 2d, 1þ 3d, . . . the first term of which equals the

second term of the first progression, and then again prove that there are infinitely

many terms divisible by 1þ dð Þ.
Remark. Any infinite arithmetic progression with natural members will have

infinitely many multiples of the first, second, third, or any other term and the

location of such multiples will depend only on the value of the selected term of a

progression. Suppose a number b2ℕ is a term of an infinite arithmetic progression,

then there are infinitely numbers of terms divisible by b in the relative location

n ¼ bþ 1, 2bþ 1, 3bþ 1, . . .. Thus if b is the kth term of the given progression,

then all terms divisible by it will have positions of k, k þ b, k þ 2b, k þ 3b, . . ..
For example, since 11 is the third term of the given infinite progression,

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, . . ., the terms divisible

by 11 will appear at the positions 3, 3þ 11 ¼ 14, 3þ 2 � 11 ¼ 25, 3þ 3 � 11 ¼ 36

, . . . , 3þ m� 1ð Þ � 11, . . . , wherem represent the mth consecutive multiple of 11.

You can see it yourself, 11 is the first multiple of 11, the second is 55, which is 14th

term of the given progression, then the third consecutive multiple of 11 in the

progression will correspond to the index n ¼ 25 and will be evaluated as

3þ 25� 1ð Þ � 4 ¼ 99, etc.

We just proved that there is no infinite arithmetic progression that consists of

only primes. Is this statement also true for a finite arithmetic progression? The

shortest sequence of primes must contain three terms. We can see that the first three

terms of the infinite progression discussed above, {3, 7, and 11} are in arithmetic

progression given by formula an ¼ 4n� 1, n ¼ 1, 2, 3:
Are there arithmetic progressions with precisely 5, 10 or N prime numbers? The

answer is yes, such progressions exist but it is hard to find them.

The previous problem probably gives you some ideas of how to look for such

progressions. First, we must select only even numbers as common difference, d.
Otherwise, even and odd terms would alternate, which would never be a finite
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arithmetic progression with only prime terms. Obviously, the first term must be an

odd prime. The following theorem formulated and proven by Cantor will help to get

us started.

Cantor’s Theorem. If N terms of an arithmetic progression are odd primes,

then the difference of the progression is divisible by every prime less than N.

The rigorous proof of the existence of an arithmetic sequence with exactly

N prime terms was given in 2004 by B. Green and T. Tao. However, their proof

does not propose any algorithm of finding such progressions or makes the job of

finding it any easy. It is worth to mention that the last longest arithmetic progression

of 26 prime numbers was discovered only in 2010.

Here we try to find an arithmetic progression of ten prime terms by solving the

following problem.

Problem 94 Propose a finite arithmetic progression formed by ten prime

numbers.

Solution. Regarding Cantor’s Theorem, the common difference of such progres-

sion must be divisible by 2, 3, 5, and 7 (all prime numbers less than n¼ 10). The

minimal common difference satisfying this conditions is d ¼ 2 � 3 � 5 � 7 ¼ 210:
Next, we need to find the starting prime, the first term of the progression. It cannot

be 11, because 11þ 210 ¼ 221 ¼ 13 � 17 is not prime.

Can it be 13? The answer is no because 210 divided by 11 leaves a remainder of

1, 210 ¼ 11 � 19þ 1. Then the remainder of a term when divided by 11 will

increase by one each time as n increases. For example, if the starting prime is

13 which give a remainder of 2 divided by 11, then the nth term has the following

form,

an ¼ 13þ 210 � n� 1ð Þ ¼ 11þ 2þ 11 � 19 � n� 1ð Þ þ n� 1

¼ 11k þ nþ 1 ¼ 11m

We can see that if n ¼ 10, then the tenth term will be 1903 that divisible by 11 and

not prime.

If a starting prime divided by 11 will leave a different remainder, for example,

3,4,5, etc. then a multiple of 11 will be obtained faster each time. Try yourself to

select the first term as next prime, 17. Because 17 ¼ 11þ 6, then the 5th term of the

proposed progression will be a multiple of 11. . .
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an ¼ 17þ 210 � n� 1ð Þ ¼ 11þ 11 � 19 � n� 1ð Þ þ 6þ n� 1ð Þ, a5 ¼ 858

¼ 11 � 78:

Therefore, the first term must be odd and leave a remainder of one when divided by

11. Let us try a1 ¼ 22mþ 1: Consecutive candidates are 23, 67, 89, 199, . . . If we
try with the first term 23, 67 and 89, we obtain that such progression would have a

composite number for the sixth, fourth and second term , respectively. If we set the

first term equals 199, then we obtain an arithmetic progression of ten prime

numbers, 199, 409, 619, 829, 1039, 1249, 1459, 1669, 1879, and 2089.

Answer. an ¼ 199þ n� 1ð Þ210 ¼ 210n� 11, 1 � n � 10:

Let us find out other properties of finite arithmetic progressions in integers by

solving the following problems.

Problem 95 Is there any arithmetic progression of 50 terms such that any

two selected terms are relatively primes? If such progression exists, find it.

Solution. Let us consider an arithmetic progression with the first term of a1 ¼ 1

þ49! and common difference d ¼ 49! Its nth term can be written as

an ¼ 1þ 49!þ n� 1ð Þ49! ¼ 1þ n � 49!, 1 � n � 50:
We can see that any term of the progression is not divisible by any natural

number from 1 to 50 because when divided by any such number it gives a remainder

of 1. Next, the difference between its kth and mth terms will be

ak � am ¼ k � mð Þ � 49!, which means that the difference of any two terms is not

divisible by any prime greater than 49. For example, a7 � a4 ¼ 3 � 49! ¼ 3 � 1 � 2
�3 � 4 � . . . � 49:This proves that any two selected terms of the arithmetic progression

are relatively prime, because the only common factor they have is one.

Problem 96 Is there an arithmetic progression formed of positive integers

such that no term of the progression can be represented as a sum or difference

of two primes? If such progression exists, then give an example.

Solution. Consider several arithmetic progressions with the corresponding nth

terms n2Nð Þ:
a. 6, 10, 14, 18, . . . , 4nþ 2, . . .
b. 11, 19, 27, 35, . . . , 8n þ 3, . . .
c. 47, 89, 131, 173, . . . , 42nþ 5, . . .
d. 37, 67, 97, 127, . . . , 30nþ 7, . . .

The proression of "a" is represented by only even numbers, and clearly many its

terms can be written as the sum or difference of two primes, for example,
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10¼ 3þ 7, 14¼ 17� 3. Any even number is either the sum or difference of two

even or two odd numbers; in general prime numbers are odd. One can prove that

there exist infinitely many even numbers that can be written both as sums and as

difference of two primes. Hence, we further consider only sequences of odd

numbers.

Additionally, let us eliminate a sequence of odd numbers b) because its terms

19¼ 2þ 17 and 27¼ 29� 2. If such arithmetic progression exists, then its terms

must be odd numbers. Next, if some of its terms can be represented by a sum or

difference of two primes, then one of the primes must be even (2).

Consider progression “c” and assume that one of its terms can be written as sum

of two primes:

42nþ 5 ¼ p1 þ p2

42nþ 5 ¼ 2þ p2

42nþ 3 ¼ p2

p2 ¼ 3 � 14nþ 1ð Þ:

We can see that p2 is not prime.

Assume that some term of the progression above can be written as a difference of

two primes, i.e., 42nþ 5 ¼ p1 � p2. Because each term of the progression is odd,

then the second prime must be 2.

42nþ 5 ¼ p1 � 2

42nþ 7 ¼ p1

p1 ¼ 7 � 6nþ 1ð Þ

Therefore, no terms of an arithmetic progression an ¼ 42nþ 5 can be

represented as sum or difference of two primes. A similar conclusion can be

made for progression “d”. We leave it for you as a homework (exercise 89).

Problem 97 Find all right triangles with integer sides forming consecutive

terms of an arithmetic progression.

Solution. Assume that such triangle exists and that its sides are a¼ a, b¼ a + d,
c¼ aþ 2d. then they must satisfy Pythagorean Theorem:

a2 þ aþ dð Þ2 ¼ aþ 2dð Þ2
a2 þ a2 þ 2ad þ d2 ¼ a2 þ 4ad þ 4d2

a2 ¼ 3d2 þ 2ad

a� dð Þ2 ¼ 2dð Þ2
a� d ¼ 2d

a ¼ 3d, b ¼ 4d, c ¼ 5d, d2ℕ:
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Therefore, there are infinitely many such right triangles. For example, the sides

of the following right triangles form an arithmetic progression and are Pythagorean

triples: (3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20). . .

Answer. a; b; cð Þ ¼ 3d, 4d, 5dð Þ, d2ℕ:

Problem 98 It is known that the numbers x xþ 1ð Þ, y yþ 1ð Þ, z zþ 1ð Þ are in
increasing arithmetic progression. Find integer numbers x, y and z.

Solution. Assume that such numbers exist and that

x ¼ x
y ¼ axþ b
z ¼ cxþ d

8<
: , where integer coefficients a, b, c, d are to be determined.

Because x xþ 1ð Þ, y yþ 1ð Þ, z zþ 1ð Þ form an arithmetic progression, then

y yþ 1ð Þ � x xþ 1ð Þ ¼ z zþ 1ð Þ � y yþ 1ð Þ. Substituting here the expressions from

the system above, we obtain the following chain of true equalities:

axþ bð Þ axþ bþ 1ð Þ � x xþ 1ð Þ ¼ cxþ dð Þ cxþ d þ 1ð Þ � axþ bð Þ axþ bþ 1ð Þ
2 a2x2 þ 2abxþ b2
� �þ 2axþ 3b� x2 � x ¼ c2x2 þ 2cdxþ d2 þ cxþ d

By equating the constant terms, the coefficients of linear and quadratic terms,

respectively, we obtain the system of three equations in four undetermined integer

parameters:

2b bþ 1ð Þ ¼ d d þ 1ð Þ
2aþ 4ab� 1 ¼ 2cd þ c
2a2 � 1 ¼ c2

8<
:

Consider the last equation of the system, 1þ c2 ¼ 2a2. In order to have any

solutions in integers, we know that parameter c must be an odd number, then

c ¼ 2nþ 1. Substituting this back into the equation we have

1þ 2nþ 1ð Þ2 ¼ 2a2

1þ 4a2 þ 4aþ 1 ¼ 2a2

2n2 þ 2nþ 1 ¼ a2

2n2 þ 2n ¼ a2 � 1

2n nþ 1ð Þ ¼ a� 1ð Þ aþ 1ð Þ

The right hand side is represented by the product of two numbers that differ by

2, hence they either both odd or both even. Because the left side is even then

a� 1ð Þ and aþ 1ð Þ must be even, for example, a� 1 ¼ 2m, aþ 1 ¼ 2mþ 2.

Substituting this into the discussed equation, we obtain
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2n nþ 1ð Þ ¼ 2m 2mþ 2ð Þ
n nþ 1ð Þ ¼ 2m mþ 1ð Þ:

The last equation has solution only if its variables satisfy the system

n ¼ mþ 1

nþ 1 ¼ 2m

�
) mþ 2 ¼ 2m ) a ¼ 2mþ 1 ¼ 2 � 2þ 1 ¼ 5:

Knowing a, we can evaluate the corresponding positive c, 1þ c2 ¼ 2 � 52 ¼ 50

) c2 ¼ 49, c ¼ 7: Similarly to the solution of the underlined equation above, we

can find positive solution to the first equation of the system.

d d þ 1ð Þ ¼ 2b bþ 1ð Þ
d ¼ bþ 1

2b ¼ d þ 1

�
) b ¼ 2, d ¼ 3:

Note that we found all four parameters using only solutions of the first and the

last equations. This is very typical when solving equations in integers. The second

equation can be used for checking. Thus, 1þ 2 � 7 � 3þ 7 ¼ 4 � 5 � 2þ 2 � 5 ¼ 50.

Finally, we found that if x ¼ x, y ¼ 5xþ 2, z ¼ 7xþ 3, then x xþ 1ð Þ ¼ x2 þ x,

y yþ 1ð Þ ¼ 25x2 þ 25xþ 6, z zþ 1ð Þ ¼ 49x2 þ 49xþ 12 are in the increasing

arithmetic progression with common difference 24x2 þ 24xþ 6:

Answer. x ¼ x, y ¼ 5xþ 2, z ¼ 7xþ 3, x2ℕ:

Problem 99 A sequence is defined by an ¼ 1
nþn2 , n � 1: Given am þ amþ1

þ . . .þ an�1 ¼ 1
17
, m < n; evaluate n� m:

Solution. Factoring the denominator of the nth term, we notice that it can be

written as an ¼ 1
nþn2 ¼ 1

n nþ1ð Þ ¼ 1
n � 1

nþ1
. Replacing each term on the left of the

given condition, we have 1
m � 1

mþ1
þ 1

mþ1
� 1

mþ2
þ . . .þ 1

n � 1
nþ1

¼ 1
17
. After cancel-

ation of the opposite terms we obtain

1

m
� 1

n
¼ n� m

mn
¼ 1

17
17 n� mð Þ ¼ mn

The last equation must be solved in integers and can be written as 17m ¼ n 17� mð Þ:
Because from the condition of the problem 17� m < 17; and 17 is prime, we know

that n must be a multiple of 17. Let n ¼ 17k. After substitution we have
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17m ¼ 17k 17� mð Þ
m ¼ k 17� mð Þ:

This equation has integer solutions if and only if the second factor on the right hand

side equals one, i.e.

17� m ¼ 1

m ¼ 16, k ¼ 17, n ¼ 16 � 17:
n� m ¼ 16 � 17� 16 ¼ 162 ¼ 256:

Answer. n� m ¼ 256:

Problem 100 Given a sequence

u1 ¼ 2, u2 ¼ 8, . . . , un ¼ 4un�1 � un�2, n ¼ 3, 4, 5, . . ., Prove that

u2n � unþ1 � un�1 ¼ 4:

Proof. We can evaluate some terms of the recurrence as

u3 ¼ 4u2 � u1 ¼ 4 � 8� 2 ¼ 30, u4 ¼ 4u3 � u2 ¼ 4 � 30� 8 ¼ 112. It is clear

that u24 � u3u2 ¼ 302 � 112 � 8 ¼ 4: Because ab ¼ ba, un � 4un�1 ¼ un�1 � 4un.
Using the recurrent relationship for the left and right hand sides, we obtain the

following chain of true equations:

un � un þ un�2ð Þ ¼ un�1 unþ1 þ un�1ð Þ
u2n � unþ1un�1 ¼ u2n�1 � unun�2 ¼ u2n�2 � un�1un�3 ¼ . . .

¼ u22 � u3u1 ¼ 82 � 30 � 2 ¼ 4:

The proof is complete.
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