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Abstract. ARIA is an iterated SPN block cipher developed by a group
of Korean cryptographers in 2003, established as a Korean standard in
2004 and added to the Transport Layer Security (TLS) supported cipher
suites in 2011. It encrypts 128-bit blocks with either 128, 192, or 256-
bit key. In this paper, we revisit the security of round-reduced ARIA
against linear cryptanalysis and present a 5-round linear hull using the
correlation matrix approach to launch the first 8-round key recovery
attack on ARIA-128 and improve the 9 and 11-round attacks on ARIA-
192/256, respectively, by including the post whitening key. Furthermore,
sin all our attacks, we manage to recover the secret master key. The
(data in known plaintexts, time in round-reduced encryption operations,
memory in 128-bit blocks) complexities of our attacks are (2122.61, 2123.48,
2119.94), (2122.99, 2154.83, 2159.94), and (2123.53, 2238.13, 2239.95) for ARIA-
128, ARIA-192, and ARIA-256, respectively.

Keywords: Block cipher · Cryptanalysis · Linear cryptanalysis ·
ARIA · Key recovery · Linear hull · Correlation matrix

1 Introduction

ARIA is an iterated Substitution Permutation Network (SPN) block cipher that
operates on 128-bit blocks with 128, 192 or 256-bit key. It was designed by a
group of Korean cryptographers and published in ICISC 2003 [11]. When ARIA
was published in ICISC, it had 10/12/14 rounds for key sizes of 128/192/256
bits, respectively, and used 4 distinct S-boxes. In 2004, it was adopted by the
Korean Agency for Technology and Standards (KATS) as the Korean 128-bit
block encryption algorithm standard after increasing the number of rounds to
12/14/16 and introducing some modifications in the key scheduling algorithm.
The life span of ARIA has been extended since then and the latest extension was
in December 2014 where its life span was extended for another 5 years (KS X
1213-1:2014) [9]. Since 2011, ARIA is also one of the ciphers that are supported
in the Transport Layer Security (TLS) protocol [10].

Since its introduction, the security of ARIA was scrutinized by several cryp-
tographers. After the initial analysis of ARIA by its designers, Biryukov et al. [4]

c© Springer International Publishing Switzerland 2016
M. Bishop and A.C.A. Nascimento (Eds.): ISC 2016, LNCS 9866, pp. 18–34, 2016.
DOI: 10.1007/978-3-319-45871-7 2



Improved Linear Cryptanalysis of Round-Reduced ARIA 19

evaluated the security of ARIA against many cryptanalytic techniques. The best
attack they developed was based on a 7-round truncated differential. They have
also put forward dedicated linear attacks on 7-round ARIA-128 and 10-round
ARIA-192/256 in the weak-key setting, i.e., these attacks succeed for a limited
number of weak keys. Apart from the cipher designers, Wu et al. [24] were the
first to evaluate the security of ARIA against impossible differential cryptanaly-
sis. They have proved, in contrast to the designers’ expectations, that 4-round
impossible differentials do exist and they can be used to mount a 6-round attack
on ARIA. The impossible differential attack proposed by Wu et al. was indepen-
dently enhanced by Li and Song [15] and Li et al. [21], and then it was extended
to 7-round ARIA-256 by Du and Chen [7]. Li et al. [14] presented 3-round inte-
gral distinguishers that can be used to attack 4/5-round ARIA and 6-round
ARIA-192/256. Afterwards, these 3-round integral distinguishers were modified
by Li et al. [16] to 4-round integral distinguishers which improved the complexity
of the 6-round integral attack and extended it to 7-round attack on ARIA-256.
Boomerang attacks on 5/6-round ARIA and 7-round ARIA-256 were presented
by Fleischmann [8]. Meet-in-the-Middle (MitM) attacks were applied to ARIA
for the first time by Tang et al. [23], where they presented 5 & 6/7/8 MitM
attacks on ARIA-128/192/256, respectively. The complexities of these MitM
attacks were further improved by Bai and Yu [3] which enabled them to extend
the MitM attacks to 7-round ARIA-128 and 9-round ARIA-256. The complex-
ities of the 7/8-round MitM attacks on ARIA-192/256 were also enhanced by
Akshima et al. [2] and they presented the first master key recovery attacks on
ARIA. Although the designers of ARIA did not expect the existence of effective
attacks on 8 or more rounds of ARIA with any key size using linear crypt-
analysis, Liu et al. [17] managed to attack 7/9/11-round ARIA-128/192/256,
respectively, by presenting a special kind of linear characteristics exploiting the
diffusion layer employed in ARIA. However, the attacked rounds by Liu et al. [17]
did not include the post whitening key. This means that if the post whitening
key is considered, then the number of the reported rounds in their attacks will
be reduced by one for all versions of ARIA. Finally, after the introduction of the
Biclique cryptanalysis, it was applied on the full-round ARIA-256 [25], however,
this class of attacks is considered as an optimized exhaustive search.

Linear cryptanalysis is one of the major cryptanalysis techniques used against
symmetric-key ciphers. It was applied for the first time to FEAL and then to DES
by Matsui [18,19]. In linear cryptanalysis, which is a known plaintext attack, the
adversary tries to find a linear approximation between some bits from the plain-
text, ciphertext and the secret key which can be used as a statistical distinguisher
over several rounds of the cipher. Such linear distinguishers are then extended to
key-recovery attacks on a few additional rounds using partial decryption and/or
encryption. Subkeys of the appended rounds are guessed and the ciphertext is
decrypted and/or plaintext is encrypted using these subkeys to calculate inter-
mediate state value at the ends of the distinguisher. If the subkeys are correctly
guessed then the distinguisher should hold and it fails, otherwise. After the intro-
duction of linear cryptanalysis, many extensions and improvements have been
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proposed. One particular improvement that we use in this paper is the intro-
duction of the notion of linear hull by Nyberg [20]. A linear hull is a set of
linear approximations that involve the same bits in the plaintext and ciphertext
and each one involves different intermediate state bits. An equally important
framework for the description and understanding of the mechanisms of linear
cryptanalysis is the concept of correlation matrices of boolean functions which
was introduced by Daemen et al. [5]. The elements of the correlation matri-
ces of a boolean function F are all the correlation coefficients between linear
combinations of input bits and that of output bits of F .

In this paper, we revisit the security of ARIA against linear cryptanalysis.
Inspired by the work of Liu et al. [17], we first explore all the iterative patterns
across ARIA’s diffusion layer which have 8 active S-boxes in 2 rounds such as
3-5-3 and 4-4-4. Then, in order to have a good balance between the complexity
of the analysis rounds and the number of S-boxes involved in the distinguisher,
we focus our attention on the patterns that involve 4 S-boxes in each round, i.e.,
4-4-4. Among these patterns, we found 2 patterns that involve only 2 distinct
S-boxes (out of the 4 possible distinct S-boxes used in ARIA) in both the even
and odd rounds. Then, to simplify our analysis, we focus on these 2 patterns
and build their correlation potential matrices to estimate their linear hull effect.
In a correlation potential matrix, every element of the correlation matrix is
squared. One of these patterns provide a new 5-round linear hull distinguisher
with correlation 2−114.93 which gives us one more round as compared to [17].
Based on this 5-round linear hull, we append 3/4/6 analysis rounds which enables
us to mount the first attack on 8-round ARIA-128 and improve the 9 and 11-
round attacks on ARIA-192/256, respectively, to include the post whitening key.
Further, we use the recovered bytes of information from the round keys to recover
the master key. Our results and all previous attacks are summarized in Table 1.

The rest of the paper is organized as follows. Section 2 provides a description
of ARIA and the notations adopted in the paper. In Sect. 3, we briefly give the
concepts required for the linear cryptanalysis of ARIA. In Sect. 4, we use the
correlation potential matrix to establish a linear hull of ARIA and present our
8, 9 and 11-round attacks on ARIA-128/192/256. We also show how the master
key can be recovered. Finally, we conclude the paper in Sect. 5.

2 Specification of ARIA

ARIA [12] is an iterative 128-bit block cipher that follows the SPN structure. It
can be used with 3 different key lengths, i.e., 128, 192 and 256 bits. The number
of rounds in ARIA differs by the key length, i.e., 12 rounds for ARIA-128, 14
rounds for ARIA-192 and 16 rounds for ARIA-256. Similar to AES, the internal
state of ARIA can be represented as a 4 × 4 matrix, where each byte of the
matrix is an element in GF (28). An ARIA round applies the following three
transformations to the state matrix:
– Add Key (AK): XORing a 128-bit round key with the internal state. The

round keys are deduced from the master key via the key scheduling algorithm
which is described later in this section.
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Table 1. Summary of attacks on ARIA

Key size Rounds Attack type Data Time Memory Reference

128/192/256 4 IC 225 CP 225 ∗ [14]

5 IDC 271.3 CP 271.6 272† [21]

5 IC 227.2 CP 276.7 227.5† [14]

5 MitM 25 CP 265.4 2121 [23]

5 BA 2109 ACPC 2110 257 [8]

6 IDC 2121 CP 2112 2121† [24]

6 IDC 2120 CP 296 ∗ [15]

6 IDC 2120.5 CP 2104.5 2121† [21]

6 IDC 2113 CP 2121.6 2113† [21]

6 MitM 256 CP 2121.5 2121 [23]

6 IC 299.2 CP 271.4 ∗ [16]

6 BA 2128 KP 2108 256 [8]

7 TDC 281 CP 281 280 [4]

7 TDC 2100 CP 2100 251 [4]

7‡ LC 2105.8 KP 2100.99 279.73 [17]

7 MitM 2121 CP 2125.7 2122 [3]

192/256 6 IC 2124.4 CP 2172.4 2124.4† [14]

7 MitM 2113 CP 2132 2130 [23]

7 MitM 296 CP 2161.3 2185 [23]

9‡ LC 2108.3 KP 2154.83 2159.77 [17]

10 wk LC 2119 KP 2119 263 [4]

128 7 wk LC 277 KP 288 261 [4]

8mk LC 2122.61 KP 2123.48 2119.94 This paper

192 7 MitM 2113 CP 2135.1 2130 [2]

9mk LC 2122.99 KP 2154.83 2159.94 This paper

256 7 IC 2100.6 CP 2225.8 ∗ [16]

7 IDC 2125 CP 2238 ∗ [7]

7 BA 2128 KP 2236 2184 [8]

7mk MitM 2115 CP 2136.1 2130 [2]

8 MitM 256 CP 2251.6 2250 [23]

8 MitM 2113 CP 2244.61 2130 [3]

8mk MitM 256 CP 2251.6 2252 [2]

8mk MitM 2113 CP 2245.9 2138 [2]

9 MitM 2121 CP 2253.37 2250 [3]

11‡ LC 2110.3 KP 2218.54 2239.8 [17]

11mk LC 2123.53 KP 2238.13 2239.95 This paper

16mk BC 280 CP 2255.2 ∗ [25]

Time in round-reduced ARIA encryptions and memory in 128-bit blocks

BA: Boomerang Attack

BC: Biclique Cryptanalysis

IC: Integral Cryptanalysis

IDC: Impossible Differential Cryptanalysis

LC: Linear Cryptanalysis

MitM: Meet-in-the-Middle

TDC: Truncated Differential Cryptanalysis

ACPC: Adaptive Chosen Plaintexts and Ciphertext

CP: Chosen Plaintext KP: Known Plaintext

mk: Recovers the master key wk: Weak-key setting

∗: Not given in the related paper †: Estimated in [8]

‡: Without post whitening key
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– SubBytes (SB): Applying non-linear invertible 8-bit to 8-bit S-box to each
byte of the state. ARIA employs 4 distinct S-boxes, namely, S1, S2 and their
inverses S−1

1 , S−1
2 . Moreover, the order in which the S-boxes are applied to

the internal state differs between odd and even rounds. In the odd rounds,
the S-boxes are applied, column-wise, in the order: (S1, S2, S

−1
1 , S−1

2 ) while in
the even rounds, the order, for each column, is: (S−1

1 , S−1
2 , S1, S2). Figure 1

depicts the order in which the S-boxes are applied in both odd (X1) and even
(X2) rounds.

– MixState (MS): Multiplication of the internal state by an involutional binary
matrix that has a branch number of 8. Given an input state Y , the output
state Z of the MS operation is computed as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z[0]
Z[1]
Z[2]
Z[3]
Z[4]
Z[5]
Z[6]
Z[7]
Z[8]
Z[9]
Z[10]
Z[11]
Z[12]
Z[13]
Z[14]
Z[15]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y [0]
Y [1]
Y [2]
Y [3]
Y [4]
Y [5]
Y [6]
Y [7]
Y [8]
Y [9]
Y [10]
Y [11]
Y [12]
Y [13]
Y [14]
Y [15]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the last round of ARIA, the MS linear transformation is replaced by an AK
operation, which is referred to as the post whitening key. The full encryption
function of an r-round ARIA is given in Fig. 1, where the ciphertext C is com-
puted from the plaintext P via r rounds using r + 1 round keys.

Key Schedule. The key schedule algorithm of ARIA takes the master key and
outputs 13, 15, or 17 128-bit round keys for ARIA-128/192/256, respectively.
First, the master key is divided into 2 128-bit values KL and KR, where KL
is the leftmost 128-bits of the master key and KR is the remaining bits, if any,
of the master key, right-padded with zeros to a 128-bit value. Then, a 3-round,
256-bit Feistel structure, as shown in Fig. 2, is used to compute 4 128-bits words
(W0,W1,W2, and W3), where Fo and Fe denote ARIA odd and even round
functions replacing the AK operation with pre-defined constants addition. The
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Fig. 1. r-round ARIA

round keys are deduced from W0,W1,W2, and W3 as follows:

K1 = W0 ⊕ (W1 ≫ 19), K2 = W1 ⊕ (W2 ≫ 19),
K3 = W2 ⊕ (W3 ≫ 19), K4 = (W0 ≫ 19) ⊕ W3,

K5 = W0 ⊕ (W1 ≫ 31), K6 = W1 ⊕ (W2 ≫ 31),
K7 = W2 ⊕ (W3 ≫ 31), K8 = (W0 ≫ 31) ⊕ W3,

K9 = W0 ⊕ (W1 ≪ 61), K10 = W1 ⊕ (W2 ≪ 61),
K11 = W2 ⊕ (W3 ≪ 61), K12 = (W0 ≪ 61) ⊕ W3,

K13 = W0 ⊕ (W1 ≪ 31), K14 = W1 ⊕ (W2 ≪ 31),
K15 = W2 ⊕ (W3 ≪ 31), K16 = (W0 ≪ 31) ⊕ W3,

K17 = W0 ⊕ (W1 ≪ 19),



24 A. Abdelkhalek et al.

where a ≪ b and a ≫ b denote that a is circularly rotated by b bit to the left
and right, respectively.

For more detailed information regarding the S-boxes and the key schedule algo-
rithm, the reader is referred to [12].

Fig. 2. ARIA key schedule - Initialization phase

2.1 Notations

The following notations are used throughout the rest of this paper:

– Ii: State value at the input of round i, where I1 is the plaintext P .
– Xi: State value after the AK operation of round i, where XR+1 is the cipher-

text C and R is 12 for ARIA-128, 14 for ARIA-192, and 16 for ARIA-256.
– Yi: State value after the SB operation of round i.
– Zi: State value after the MS operation of round i.
– Oi: State value at the output of round i, i.e., Oi = Ii+1.
– Si[j]: The (j +1)th byte of state S at round i, where 0 ≤ j ≤ 15, as numbered

in P in Fig. 1.
– Sk

i [j]: The (j + 1)th byte of state Sk at round i which corresponds to the
plaintext/ciphertext pair (P k, Ck).

– K
{a,b,c,d}
i : The XOR of 4 bytes of Ki, i.e., Ki[a] ⊕ Ki[b] ⊕ Ki[c] ⊕ Ki[d].
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3 Linear Cryptanalysis

As mentioned above, linear cryptanalysis [18,19] is a known plaintext crypt-
analysis technique, in which the adversary attempts to construct linear approx-
imations for each round of a block cipher E, such that the output mask of a
round equals the input mask of the next round. The concatenation of these lin-
ear approximations creates a linear trail (Ω) whose correlation is computed by
multiplying the correlations of each round linear approximation. This results in a
linear distinguisher covering several rounds of E that can be used to distinguish
it from a random permutation. A linear approximation of a block cipher E is
typically given by a plaintext mask α and a ciphertext mask β, such that the
corresponding correlation COE(α, β) is non-negligible:

COE(α, β) = |2 × Pr[α • P ⊕ β • C = γ • K] − 1| � 2−n/2,

where α, β, and γ denote the masks of the plaintext, ciphertext, and key,
respectively, n denotes the block length of the cipher and a • b denotes the
bitwise inner product of a and b. To distinguish E, the adversary gathers
N = O(1/CO2

E(α, β)) plaintexts and their corresponding ciphertexts and com-
putes the empirical correlation ĈOE(α, β):

ĈOE(α, β) = |2 × #{i : α • P i ⊕ β • Ci = 0}/N − 1|.
The computed empirical correlation is close to COE(α, β) for the attacked block
cipher E, and smaller than 1/

√
N , with high probability, for a random permu-

tation [13]. By adding more rounds, the so-called analysis rounds, at the bottom
and/or the top of such linear distinguisher, it can be used to perform a key recov-
ery attack using partial decryption and/or encryption. The attack proceeds by
guessing the round keys used in the appended rounds, and computing an inter-
mediate state value(s) from the guessed round keys, ciphertext and/or plaintext.
The distinguisher is then applied to the deduced intermediate state value(s): if
the round keys guess is correct, the distinguisher is expected to hold, and fail
for wrong key guesses.

Linear Hulls. The notion of linear hulls was introduced by Nyberg [20], where
an r-round linear hull of a block cipher E is a set of all linear trails having the
same input mask α, output mask β and can differ in the intermediate masks. If
we denote the square of a correlation by correlation potential, then the average
correlation potential of a linear hull over r rounds of a key-alternating block
cipher, averaged over all values of the expanded key (i.e. the concatenation of
all round keys), is the sum of the correlation potentials of all individual trails
that compose that linear hull, assuming independent round keys (Theorem 7.9.1
in [6]).

Correlation Matrices. High-probable linear hulls can be found by creating a
correlation matrix, or rather a correlation potential matrix, a notion that was
introduced by Daemen et al. [5]. For a key-alternating cipher of n-bit block
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length, a correlation potential matrix M is an 2n ×2n matrix where the element
Mij in row i and column j of the matrix corresponds to the correlation potential
of an input mask αi and an output mask βi. Computing Mr gives the correlation
potential after r rounds [1]. Constructing the correlation potential matrix for
modern block ciphers is infeasible as n is quite large. An alternative approach,
then, is to construct a submatrix of the correlation potential matrix that enables
us to obtain a lower bound on the average correlation potential of a linear hull.

4 Linear Cryptanalysis of ARIA

Liu et al. [17] have proposed a special kind of linear characteristics for byte-
oriented SPN block ciphers and applied it on ARIA. Their proposal exploited
the MS linear transformation in ARIA by finding a linear relation between 4
bytes of its input and 4 bytes of its output. Then, the linear approximation over
one round is formed by applying an input mask α and an output mask β to the
XOR of these input/output bytes, i.e.,

α • ⊕i∈V Ir[i] = β • ⊕i∈V Or[i],

where V is the set of the input/output bytes positions. For example, in their
attack V = {0, 3, 12, 15}.

Inspired by their work, we have first explored the space of all iterative pat-
terns that have 8 active S-boxes in 2 rounds such as 3-5-3 and 4-4-4. We have
found that, for 5-round distinguisher and 3 analysis rounds, there is a trade-off
between the number of S-boxes involved in the linear characteristic, or rather
the linear hull, and the number of key bytes to be guessed in the analysis rounds.
On the one hand, the more S-boxes involved in the linear hull, the smaller the
correlation potential of the linear hull will be and thus the higher data complex-
ity of the attack will be. On the other hand, the more key bytes to be guessed
in the analysis rounds, the higher time complexity will be. Therefore, such a
trade-off can be thought of as a trade-off between the data complexity and the
time complexity. As an example, in a 3-5-3-5-3-5-3-5 pattern, its first 5-round
linear hull involves a total of 19 S-boxes and in its last three analysis rounds,
there are 13 key bytes to be guessed as will be illustrated in our attacks later. If
the same pattern is shifted by one round to be 5-3-5-3-5-3-5-3, then the number
of S-boxes involved in the 5-round distinguisher increases to 21 while the number
of key bytes to be guessed in the analysis rounds drops to 11 bytes. The pattern
that achieves the balance between the number of S-boxes in the distinguisher
and the number of guessed key bytes in the analysis rounds is the pattern 4-4-4.

We have automated the search for all the 4-4-4 patterns across ARIA’s MS
linear transformation and found that there are 204 such patterns. Among all
these patterns, there are only 2 patterns that have 2 active distinct S-boxes even
though the order of the application of the S-boxes alternates between the odd
and even rounds. The first set of these two patterns is V 1 = {8, 10, 12, 14} which
has S1 and S−1

1 as the active S-boxes in both the odd and even rounds (the gray
cells in Fig. 3). The other set is V 2 = {9, 11, 13, 15} which has S2 and S−1

2 as the
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active S-boxes, once again in both the odd and even rounds (the black-hatched
cells in Fig. 3). Based on these two patterns, a 1-round linear trail of round i
with input mask α and output mask β can be written as:

V 1 :α • (Ii[8] ⊕ Ii[10] ⊕ Ii[12] ⊕ Ii[14]) =
β • (Oi[8] ⊕ Oi[10] ⊕ Oi[12] ⊕ Oi[14]),

V 2 :α • (Ii[9] ⊕ Ii[11] ⊕ Ii[13] ⊕ Ii[15]) =
β • (Oi[9] ⊕ Oi[11] ⊕ Oi[13] ⊕ Oi[15]).
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Fig. 3. ARIA 4-4-4 iterative patterns involving 2 distinct S-boxes, each. The gray cells
represent pattern V 1 while the black-hatched cells represent pattern V 2.

Since both α and β ∈ GF (28), the 1-round correlation potential matrix M for
each pattern has a size of a 28 ×28 and as the S-boxes involved in these patterns
do not change over the odd and even rounds, an Mr correlation potential matrix
to get the average correlation potential after r rounds can be constructed by
simply raising M to the power r. Such a correlation potential matrix can be
regarded as a correlation potential submatrix of ARIA, restricting the inputs
and outputs of the matrix to the values that follow our specific patterns. We
have automatically constructed the 1-round correlation potential matrix for both
patterns. We were not able to go for more than 5 rounds as the highest correlation
potential starting M6 exceeds 2−128. So, for M5 of pattern V 1, the highest
average correlation potential was found to be 2−114.93 when the input mask α is
0x09 and the output mask β is 0x0E while for M5 of pattern V 2, the highest
average correlation potential was found to be 2−115.63 when the input mask α is
0x24 and the output mask β is 0xD3.
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4.1 Key Recovery Attacks on ARIA

As the highest correlation potential in V 1 is greater than the highest one in V 2,
we have opted for using pattern V 1. In our attacks, we have placed the 5-round
linear hull to cover rounds 1–5, hence it is represented as:

0x09 • (I1[8] ⊕ I1[10] ⊕ I1[12] ⊕ I1[14]) =
0x0E • (O5[8] ⊕ O5[10] ⊕ O5[12] ⊕ O5[14])

and since:

O5[8] ⊕ O5[10] ⊕ O5[12] ⊕ O5[14] =
X6[8] ⊕ X6[10] ⊕ X6[12] ⊕ X6[14]⊕
K6[8] ⊕ K6[10] ⊕ k6[12] ⊕ K6[14]

the 5-round linear hull can be re-written as:

0x09 • (P [8] ⊕ P [10] ⊕ P [12] ⊕ P [14]) =
0x0E • (X6[8] ⊕ X6[10] ⊕ X6[12] ⊕ X6[14])

Fig. 4. Attack on 8-round ARIA

ARIA-128. The attack on 8-round ARIA-128 is based on the above 5-round
linear hull and adding 3 more rounds at its end, as illustrated in Fig. 4. The attack
proceeds as follows:
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1. First, we gather N plaintexts and their corresponding ciphertexts (P i, Ci),
where 1 ≤ i ≤ N .

2. Next, we initialize 232 counters Um, where the size of each counter is �log2N�
bits and 0 ≤ m ≤ 232 − 1. Then, for each plaintext/ciphertext pair (P i, Ci),
we increment (resp. decrement) the counter Um by 1 if the parity of

0x09 • (P i[8] ⊕ P i[10] ⊕ P i[12] ⊕ P i[14])

is 0 (resp. 1) and m equals the value of Ci[8]‖Ci[10]‖Ci[12]‖Ci[14].
3. We initialize 2120 counters Ul, where the size of each counter is �log2N� bits

as well and 0 ≤ l ≤ 2120 − 1 and l represents the possible value of the 15
bytes of K

{8,10,12,14}
9 ‖K

{8,10,12,14}
8 ‖K

{8,10,12,14}
7 ‖Y8[8] ‖Y8[10]‖Y8[12]‖Y8[14]‖

Y7[8]‖Y7[10]‖Y7[12]‖Y7[14]‖Y6[8]‖Y6[10]‖Y6[12]‖Y6[14].
4. Then, for each possible value of K

{8,10,12,14}
9 , K

{8,10,12,14}
8 and

K
{8,10,12,14}
7 , we do the following:

(a) For each possible value of the 232 values of m, compute Y m
8 [8]⊕Y m

8 [10]⊕
Y m
8 [12] ⊕ Y m

8 [14] = m[0] ⊕ m[1] ⊕ m[2] ⊕ m[3] ⊕ K
{8,10,12,14}
9 and denote

this value as tm8 .
(b) For any value of the 224 values of Y8[8]‖Y8[10]‖Y8[12]‖Y8[14] satisfying

tm8 , we deduce Xm
8 [8],Xm

8 [10],Xm
8 [12],Xm

8 [14] from the corresponding S-
boxes. Then, using the guessed value of K

{8,10,12,14}
8 , compute Y m

7 [8] ⊕
Y m
7 [10]⊕Y m

7 [12]⊕Y m
7 [14] = Zm

7 [8]⊕Zm
7 [10]⊕Zm

7 [12]⊕Zm
7 [14] = Xm

8 [8]⊕
Xm

8 [10] ⊕ Xm
8 [12] ⊕ Xm

8 [14] ⊕ K
{8,10,12,14}
8 and denote this value as tm7 .

(c) Then, for any value of the 224 values of Y7[8]‖Y7[10]‖Y7[12]‖ Y7[14] sat-
isfying tm7 , we deduce Xm

7 [8],Xm
7 [10],Xm

7 [12],Xm
7 [14] from the corre-

sponding S-boxes. Then, using the guessed value of K
{8,10,12,14}
7 , compute

Y m
6 [8]⊕Y m

6 [10]⊕Y m
6 [12]⊕Y m

6 [14] = Zm
6 [8]⊕Zm

6 [10]⊕Zm
6 [12]⊕Zm

6 [14] =
Xm

7 [8]⊕Xm
7 [10]⊕Xm

7 [12]⊕Xm
7 [14]⊕K

{8,10,12,14}
7 and denote this value

as tm6 .
(d) For any value of the 224 values of Y6[8]‖Y6[10]‖Y6[12]‖Y6[14] satisfying

tm6 , we deduce Xm
6 [8],Xm

6 [10],Xm
6 [12],Xm

6 [14] from the corresponding S-
boxes. Then, calculate the parity of:

0x0E • (Xm
6 [8] ⊕ Xm

6 [10] ⊕ Xm
6 [12] ⊕ Xm

6 [14])

If the parity is 0 (resp. 1), increment (resp. decrement) the corresponding
counter Ul by the value of Um.

5. For l such that the value of Ul is maximal, output the value of the correspond-
ing K

{8,10,12,14}
9 ‖ K

{8,10,12,14}
8 ‖K

{8,10,12,14}
7 as the correct key information.

Attack complexity. The number of known plaintext/ciphertext pairs N
required to perform the attack is estimated by the following formula, which
is adopted from Corollary 1 in [22]:

N =

(
Φ−1(Ps) + Φ−1(1 − 2−a−1)

2

)2

× 4
CO2

, (1)
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where Ps is the probability of success, CO is the correlation of the linear hull,
Φ−1 is the inverse cumulative function of the standard normal distribution, and a
is the advantage of the adversary over the exhaustive search and equals k−log2 d
if the correct key was ranked among the top d candidates out of the 2k possible
candidates of an k-bit key.

In our attack, we guess 120 bits, set the advantage a to 120, i.e., the cor-
rect key information is the first one of the list of candidates and set the prob-
ability of success to 0.95. Then, the number of plaintext/ciphertext pairs N
equals 25.68 × 4

2−114.93 = 2122.61. The time complexity of the attack is domi-
nated by steps 2 and 4.(d). Therefore, the time complexity of the attack equals
2122.61 × 4

16×8 + 224 × 232 × 224 × 224 × 224 × 4
16×8 ≈ 2123.03 8-round ARIA

encryptions. The memory complexity of the attack is attributed to storing the
counters Ul, where the size of each counter is set to 123 bits. Hence, the memory
complexity of the attack is 2120 × 123

128 ≈ 2119.94 128-bit blocks.

ARIA-192/256. The attack on 8-round ARIA-128 can be extended to 9-round
ARIA-192 (resp. 11-round ARIA-256) with the post whitening key by utilizing
the same 5-round linear hull and having 4 (resp. 6) analysis rounds. The attack
procedure is similar to the attack on ARIA-128, except that in step 3, we initialize
2160 (resp. 2240) counters Ul, where in this case, 0 ≤ l ≤ 2160 − 1 (resp. 0 ≤
l ≤ 2240 − 1) and represents the possible value of the 20 (resp. 30) bytes of
K

{8,10,12,14}
r+1 ‖Yr[8]‖Yr[10]‖Yr[12]‖Yr[14], where 6 ≤ r ≤ 9 (resp. 6 ≤ r ≤ 11) and

we add 1 (resp. 3) more sub-step(s) in step 4 to accommodate the additional
round(s).

In this case, for an advantage a of 160 (resp. 240) and Ps of 0.95, the number
of known plaintext/ciphertext pairs N is 26.06 × 4

2−114.93 = 2122.99 for ARIA-192
and is 26.6 × 4

2−114.93 = 2123.53 for ARIA-256. The time complexity of the attack
is 2122.99× 4

16×9 +232×232×224×224×224×224× 4
16×9 ≈ 2154.83 9-round ARIA

encryptions for ARIA-192 and is 2123.53 × 4
16×11 + 248 × 232 × 224 × 224 × 224 ×

224 ×224 ×224 × 4
16×11 ≈ 2218.54 11-round ARIA encryptions for ARIA-256. The

size of each counter of Ul is set to 123 (resp. 124) bits, therefore, the memory
complexity of the attack is 2160 × 123

128 ≈ 2159.94 128-bit blocks for ARIA-192 and
2240 × 124

128 ≈ 2239.95 128-bit blocks for ARIA-256.

4.2 Recovering the Master Key

In this subsection, we show how the recovered bytes of information from the
round keys can be used to recover the master key in all versions of ARIA.

ARIA-128. In the attack on 8-round ARIA-128, we recover 3 bytes of informa-
tion from K9,K8, and K7. Recall that in ARIA-128, KR is all zeros and KL is
the 128-bit master key and at the same time it is W0. In order to recover the
master key, we do the following:
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– First, we guess 15 bytes of W0, i.e., all the bytes except W0[7]. These bytes
enable us to compute W1[0],W1[2], W1[4], with 6 other bytes, which gives us
the first 5 bits of bytes 8, 10, and 12 of (W1 ≪ 61).

– From the key schedule, we know that K9 = W0 ⊕ (W1 ≪ 61). As we recover
K

{8,10,12,14}
9 , i.e., K9[8]⊕K9[10]⊕K9[12]⊕K9[14], this means that we recover

W0[8]⊕W0[10]⊕W0[12]⊕W0[14]⊕ (W1 ≪ 61)[8]⊕(W1 ≪ 61)[10]⊕(W1 ≪
61)[12] ⊕ (W1 ≪ 61)[14].

– As we guessed W0[8],W0[10],W0[12] and W0[14], recovered
K

{8,10,12,14}
9 and computed the first 5 bits of bytes 8, 10, and 12 of (W1 ≪ 61),

we can deduce the first 5 bits of byte 14 of (W1 ≪ 61) which in turn enables
us to deduce the last 5 bits of SB(W0[7]).

– Afterwards, we guess the 3 first bits of SB(W0[7]) which means that we have
2123 candidates for W0 or rather the master key.

– Then, we run the key schedule and use the remaining 3 bits of K
{8,10,12,14}
9 and

the two bytes of K
{8,10,12,14}
8 and K

{8,10,12,14}
7 to discard the wrong guesses

and so we end up with 2104 candidates for the master key which we can test
using 2 plaintext/ciphertext pairs.

The time complexity of the master key recovery phase is dominated by the last
step and equals 2123× 3

8+2×2104 ≈ 2121.59 8-round ARIA encryptions as we need
to compute 3 rounds of ARIA for the 2123 candidates to deduce W2 and W3
and then test the remaining 2104 candidates using 2 plaintext/ciphertext pairs.
Therefore the total time complexity of the attack is 2123.03 + 2121.59 ≈ 2123.48.

ARIA-192. In the attack on 9-round ARIA-192, we recover 4 bytes of informa-
tion from K10,K9,K8, and K7. In order to recover the master key, we do the
following:

– First, we guess the 16 bytes of W0 and calculate Fo(W0, CK1). Then, to be
able to compute bytes 8, 10, 12 and 14 of (W1 ≪ 61), we guess 29 bits of KR
as the 8 right bytes of KR are zeros.

– We use the recovered K
{8,10,12,14}
9 to discard the wrong guesses of W0 and

the 29 bits guessed from KR and so we have 2149 for W0 along with the 29
bits of KR.

– Next, we guess the remaining 35 bits of the master key, i.e., the remaining 35
bits of KR so we have 2184 candidates for the master key.

– Then, we run the key schedule to compute W1,W2, and W3 and use the
3 bytes of K

{8,10,12,14}
10 , K

{8,10,12,14}
8 and K

{8,10,12,14}
7 to discard the wrong

guesses and we end up with 2160 candidates which we test using 2 plain-
text/ciphertext pairs.

The time complexity of the master key recovery phase equals 2184× 3
9 +2×2160 ≈

2182.42 9-round ARIA encryptions, hence the total time complexity of the attack
is 2154.83 + 2182.42 ≈ 2182.42.

ARIA-256. In the attack on 11-round ARIA-256, we recover 6 bytes of infor-
mation from K12,K11,K10,K9,K8, and K7. In order to recover the master key,
we do the following:
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– First, we guess the 16 bytes of W2 and 14 bytes of W3 and use the recovered
K

{8,10,12,14}
7 and K

{8,10,12,14}
11 , both of them are deduced from W2 and W3,

to calculate the remaining two bytes of W3 which means that we have 2240

candidates for both W2 and W3.
– Next, starting from W2 and W3, we run the key schedule to compute W0 and

W1 and use the other 4 bytes of K
{8,10,12,14}
12 , K

{8,10,12,14}
10 , K

{8,10,12,14}
9 and

K
{8,10,12,14}
8 to discard the wrong guesses and we end up with 2208 candidates

for the master key which we test using 2 plaintext/ciphertext pairs.

The time complexity of the master key recovery phase is 2240 × 3
11 + 2 × 2208 ≈

2238.13 11-round ARIA encryptions, therefore the total time complexity of the
attack is 2218.54 + 2238.13 ≈ 2238.13.

5 Conclusion

In this paper, we have revisited the security of round-reduced ARIA against
linear cryptanalysis and presented the first 8-round attack on ARIA-128 and
improved the previous 9 and 11-round attacks on ARIA-192/256 by including
the post whitening key. We have achieved these results by constructing a 5-round
linear hull on ARIA using the correlation matrix approach and exploiting the
binary linear transformation layer in the analysis rounds. For all our attacks,
we showed how the recovered bytes of information from the round keys can be
used to recover the master key. This paper shows some weaknesses of reduced
versions of ARIA, but the full round ARIA remains still secure.
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