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Abstract. Recent approaches for instance-aware semantic labeling have
augmented convolutional neural networks (CNNs) with complex multi-
task architectures or computationally expensive graphical models. We
present a method that leverages a fully convolutional network (FCN)
to predict semantic labels, depth and an instance-based encoding using
each pixel’s direction towards its corresponding instance center. Subse-
quently, we apply low-level computer vision techniques to generate state-
of-the-art instance segmentation on the street scene datasets KITTI and
Cityscapes. Our approach outperforms existing works by a large margin
and can additionally predict absolute distances of individual instances
from a monocular image as well as a pixel-level semantic labeling.

1 Introduction

The task of visual semantic scene understanding is mainly tackled from two
opposing facets: pixel-level semantic labeling [4,21,22] and bounding-box object
detection [11,12,23,24]. The first assigns each pixel in an image with a seman-
tic label segmenting the semantically connected regions in the scene. Such
approaches work well with non-compact (background) classes such as buildings
or ground, yet they do not distinguish individual object instances. Object detec-
tion aims to find all individual instances in the scene and describes them via
bounding boxes. Therefore, the latter provides a rather coarse localization and
is restricted to compact (object) classes such as cars or humans.

Recently, instance-level semantic labeling gained increasing interest [8,19,34,
35]. This task is at the intersection of both challenges. The aim is to combine

Fig. 1. Example scene representation as obtained by our method: instance segmenta-
tion, monocular depth estimation, and pixel-level semantic labeling.
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Fig. 2. From a single image, we predict 3 FCN outputs: semantics, depth, and instance
center direction. Those are used to compute template matching score maps for semantic
categories. Using these, we locate and generate instance proposals and fuse them to
obtain our instance segmentation.

the detection task with instance segmentation. Such a representation allows for
a precise localization, which in turn enables better scene understanding. Espe-
cially in the domain of robotics and autonomous vehicles, instance-level semantic
segmentation enables an explicit occlusion reasoning, precise object tracking and
motion estimation, as well as behavior modeling and prediction.

Most state-of-the-art methods build upon a fully convolutional network
(FCN) [21]. Recent approaches typically add post-processing, for example, based
on conditional random fields (CRFs) [34,35]. Other methods score region pro-
posals for instance segmentation [7,14] or object detection [11,12,23,24], or use
a multi-stage neural network for these tasks [8,19].

In this work, we focus on street scene understanding and use a single monoc-
ular image to simultaneously obtain a holistic scene representation, consisting of
a pixel-level semantic labeling, an instance-level segmentation of traffic partici-
pants, and a 3D depth estimation for each instance. We leverage an FCN that
yields powerful pixel-level cues consisting of three output channels: a semantic
class, the direction to the object center (where applicable) and the object dis-
tance (where applicable). Scene understanding is mainly due to the network and
post-processing with standard computer vision methods is sufficient to obtain a
detailed representation of an instance-aware semantic segmentation, c.f. Figs. 1
and 2. Our method significantly outperforms state-of-the-art methods on the
street scene datasets KITTI [10] and Cityscapes [6].

2 Related Work

For the task of instance-level semantic labeling, there exist two major lines of
research. The first leverages an over-complete set of object proposals that are
either rejected, classified as an instance of a certain semantic class, and refined
to obtain an instance segmentation. Common to all such methods is that the
performance is depending on the quality of these proposals, since they cannot



16 J. Uhrig et al.

recover from missing instances in the proposal stage. Generally, such approaches
tend to be slow since all proposals must be classified individually. These proper-
ties cause inaccurate proposals to limit the performance of such methods [6,16].
Our method belongs to the category of proposal-free methods, where the seg-
mentation and the semantic class of object instances are inferred jointly.

Proposal-Based Instance Segmentation. Driven by the success of deep
learning based object detectors such as R-CNN [12] or its variants [11,24,25],
recent methods rely on these detections for instance segmentation. Either the
underlying region proposals, such as MCG [2], are directly used as instance seg-
ments [6,7,14], or the bounding boxes are refined to obtain instance masks [5,13].
Instead of bounding boxes, [18] uses a layered pictorial structure (LPS) model,
where shape exemplars for object parts are mapped to the image in a probabilis-
tic way. This yields an initial proposal for the object’s pose and shape, which
is refined using appearance cues. Using a bank of object detectors as proposals,
[32] infers the instance masks via occlusion reasoning based on discrete depth
layers. In [30], pixel-level semantic labels are used to score object candidates and
vice versa in an alternating fashion, while also reasoning about occlusions and
scene geometry. Based on proposals that form a segmentation tree, an energy
function is constructed in [29] and its solution yields the instance segmentation.

Recently, [8] extended the R-CNN for instance segmentation with a multi-
task network cascade. A fully convolutional network combined with three classi-
fication stages produces bounding-box proposals, refines these to segments, and
ranks them to obtain the final instance-level labeling. They achieve excellent
performance on PASCAL VOC [9] and MS COCO [20].

Proposal-Free Instance Segmentation. Pixel-level semantic labeling based
on neural networks has been very successful [4,17,21,33,36]. This triggered inter-
est in casting also instance segmentation directly as a pixel labeling task. In [27],
the network predicts for each pixel, whether it lies on an object boundary or not,
however, requiring a rather delicate training. Using a long short-term memory
(LSTM) network [15], instance segmentations can be sequentially sampled [26].

In [34,35], instances are encoded via numbers that are further constrained
to encode relative depth ordering in order to prevent arbitrary assignments. An
FCN predicts these IDs at each pixel and a subsequent Markov Random Field
(MRF) improves these predictions and enforces consistency. However, such a
method is limited to scenes, where a clear depth ordering is present, e.g. a single
row of parking cars, and the maximum number of instances is rather low.

The proposal-free network (PFN) [19] is a CNN that yields a pixel-level
semantic labeling, the number of instances in the scene, and for each pixel the
parameters of a corresponding instance bounding box. Based on these predic-
tions, instances are obtained by clustering. The network has a fairly complex
architecture with many interleaved building blocks, making training quite tricky.
Further, the overall performance highly depends on the correct prediction of the
number of instances in the scene. In street scenes, there can be hundreds of
instances per image [6]. Thus, the number of training samples per number of
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instances is low, mistakes in their estimation can be critical, and the available
cues for clustering might not correlate with the estimated number of instances.

In this work, we focus on urban street scenes. Besides each pixel’s semantic
class, our network estimates an absolute depth, which is particularly useful for
instance separation in street scenes. We encode instances on a pixel-level by
the direction towards their center point. This representation is independent of
the number of instances per image and provides strong signals at the instance
boundaries.

3 Method

3.1 FCN Feature Representation

Our network extends the FCN-8s model [21] with three output channels that
together facilitate instance segmentation. All channels are jointly trained as
pixel-wise discrete labeling tasks using standard cross-entropy losses. Our pro-
posed representation consists of (1) a semantic channel that drives the instance
classification, (2) a depth channel to incorporate scale and support instance
separation, and (3) a 2D geometric channel to facilitate instance detection and
segmentation.

We chose the upscaling part of our FCN such that we can easily change the
number of classes for each of the three proposed channels without re-initializing all
upsampling layers. To this end, after the largest downsampling factor is reached,
we use Deconvolution layers together with skip layers [21] to produce a represen-
tation of % of the input resolution with a depth of 100 throughout all intermedi-
ate layers. The number of channels of this abstract representation is then reduced
through 1 x 1 convolutions to the proposed semantic, depth, and instance center
channels. To reach full input resolution, bilinear upsampling is applied, followed
by a separate cross-entropy loss for each of our three output channels.

Semantics. To cope with different semantic classes, we predict a semantic label
for each input pixel, c.f. Fig. 3a. These predictions are particularly important as
they are the only source of semantic information in our approach. Further, the
predicted semantic labels allow us to separate objects from background as well
as objects of different classes from each other.
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(a) Semantic label. (b) Depth class. (¢) Instance direction.

Fig. 3. Ground truth examples of our three proposed FCN channels. Color overlay (a)
as suggested by [6], (b) represents depth per object from red (close) to blue (distant),
(c) represents directions towards corresponding instance centers. (Color figure online)
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Depth. Urban street scenes typically contain objects at various distances [6].
To guide the post-processing in terms of objects at different scales, we predict a
depth label for each object pixel. We assign all pixels within an object instance
to a constant depth value, e.g. the median over noisy measurements or the center
of a 3D bounding box, c.f. Fig. 3b. These depth estimates also support instance
separation, which becomes apparent when considering a row of parking cars,
where the depth delta between neighboring cars is a full car length instead of a
few centimeters in continuous space. The depth values are discretized into a set
of classes so that close objects have a finer depth resolution than distant objects.

Direction. Object instances are defined by their boundary and class. Therefore,
it seems natural to train an FCN model to directly predict boundary pixels.
However, those boundaries represent a very delicate signal [1] as they have a
width of only one pixel, and a single erroneously labeled pixel in the training
data has a much higher impact compared to a region-based representation.

We introduce a class-based representation which implicitly combines infor-
mation about an instance’s boundary with the location of its visible center. For
each object pixel we compute the direction towards its corresponding center and
discretize this angle to a set of classes, c.f. Fig. 3c. This information is easier to
grasp within a local region and is tailored for an FCN’s capability to predict
pixel-wise labels. Especially for pixels on the boundary between neighboring
objects, our representation clearly separates the instances as predictions have
nearly opposite directions. Since we predict the center of the visible area of an
object and not its physical center, we can handle most types of occlusions very
well. Furthermore, instance centers have a distinct pattern, c.f. Fig. 3c, which we
exploit by applying template matching, as described in Sect. 3.2. Even though
our proposed representation does not directly yield instance IDs, it is well defined
even for an arbitrary number of instances per image.

To obtain an accurate direction estimation for each pixel, we assign the aver-
age direction by weighting all direction vectors with their respective FCN score
(after softmax normalization). This allows us to recover a continuous direction
estimation from the few discretized classes.

3.2 Template Matching

To extract instance centers, we propose template matching on the direction
predictions, where templates are rectangular and contain the distinct pattern
visible in Fig. 3c. We adjust the template’s aspect ratio depending on its semantic
class, so we can better distinguish between pedestrians and vehicles. In order to
detect also distant objects with consistent matching scores, we scale the size of
the templates depending on the predicted depth class.

To reduce induced errors from confusions between objects of similar semantic
classes, we combine multiple semantic classes into the categories human, car,
large vehicle, and two wheeler.

Normalized cross-correlation (NCC) is used to produce a score map for each
category by correlating all pixels with their respective template. These maps
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indicate the likelihood of pixels being an instance center, c.f. Fig.2. In the fol-
lowing, we predict instances for each category separately. After all instances are
found, we assign them the majority semantic class label.

3.3 Instance Generation

Instance Centers. To determine instance locations, we iteratively find maxima
in the generated template matching score maps via non-maximum suppression
within an area that equals the template size. This helps avoid multiple detections
of the same instance while incorporating typical object sizes. Those maxima
represent our temporary instance centers, which are refined and merged in the
following steps.

Instance Proposals. Each pixel with a predicted direction from the FCN is
assigned to the closest temporary instance center where the relative location
and predicted direction agree. Joining all assigned pixels per instance hypothesis
yields a set of instance proposals.

Proposal Fusion. Elongated objects and erroneous depth predictions cause
an over-segmentation of the instances. Thus, we refine the generated instances
by accumulating estimated directions within each proposal. When interpreting
direction predictions as vectors, they typically compensate each other within
instance proposals that represent a complete instance, i.e. there are as many
predictions pointing both left and right. However, incomplete instance proposals
are biased to a certain direction. If there is a neighboring instance candidate
with matching semantic class and depth in the direction of this bias, the two
proposals are fused.

To the remaining instances we assign the average depth and the most fre-
quent semantic class label within the region. Further, we merge our instance
prediction with the pixel-level semantic labeling channel of the FCN by assign-
ing the argmax semantic label to all non-instance pixels. Overall, we obtain a
consistent scene representation, consisting of object instances paired with depth
estimates and pixel-level labels for background classes.

4 Experiments

4.1 Datasets and Metrics

We evaluated our approach on the KITTI object detection dataset [10] extended
with instance-level segmentations [3,35] as well as Cityscapes [6]. Both datasets
provide pixel-level annotations for semantic classes and instances, as well as depth
information, which is essential for our approach. For the ground truth instance
depths we used the centers of their 3D bounding box annotation in KITTT and the
median disparity for each instance in Cityscapes based on the provided disparity
maps. We used the official splits for training, validation and test sets.

We evaluated the segmentation based on the metrics proposed in [35] and [6].
To evaluate the depth prediction, we computed the mean absolute error (MAE),
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the root mean squared error (RMSE), the absolute relative difference (ARD),
and the relative inlier ratios (J1, d2, d3) for thresholds §; = 1.25 [31]. These
metrics are computed on an instance level using the depths in meters. We only
considered instances that overlap by more than 50 % with the ground truth.

4.2 Network Details

For Cityscapes, we used the 19 semantic classes and combined the 8 object classes
into 4 categories (car, human, two-wheeler, and large vehicle). For KITTI, only
car instance segmentations are available. For both datasets, we used 19 depth
classes and an explicit class for background. We chose ranges for each depth
class and template sizes differently for each dataset to account for different char-
acteristics of present objects and used camera settings [6]. This is necessary as
distances and semantic classes of objects differ remarkably. Details are provided
in the supplementary material. The instance directions were split into 8 equal
parts, each covering an angle of 45° for both datasets.

We use the 8-stride version of an FCN, which is initialized using the ImageNet
dataset [28]. After initializing the upsampling layers randomly, we fine-tune the
network on KITTI and Cityscapes to obtain all three output channels.

4.3 Ablation Studies

We evaluated the influence of each proposed component by leaving out one or more
components from the complete processing pipeline (Ours). The performance was
evaluated on the respective validation sets and is listed in Tables 1 and 2 (top) for
both datasets.

For Ours-D, we removed the depth channel and chose the template size scale-
agnostic. It turned out that a rather small template size, which leads to a large
number of instance proposals, produces the best results. This is possible when
post-processing heavily relies on correct direction predictions, which induces suc-
cessful instance fusion. However, the performance is significantly worse in most

Table 1. Evaluation of our variants on KITTI val (top) and comparison with base-
lines (Best [34]/[35]) on KITTI test (bottom) using metrics from [35]. For AvgFP and
AvgFN lower is better, all other numbers are in percent and larger is better. Miz [35]
shows the best results per metric from all baseline variants.

Method Set IoU MWCov MUCov AvgPr AvgRe AvgFP AvgFN InsPr InsRe InsF1

Ours-D-F val 79.4 41.5 43.4 92.8 54.4 0.042 1.33 16.6 29.8 214
Ours-F val 82.2 35.9 35.7 83.6 86.7 0.158 0.100 31.4 69.5 43.3
Ours-D val 79.6 82.4 79.9 89.9 54.6 0.017 1.33 96.0 42.8 59.2
Ours val 82.2 80.7 76.3 83.7 86.7 0.100 0.100 91.8 82.3 86.8
Best [34] test 77.4 67.0 49.8 82.0 61.3 0.479 0.840 48.9 43.8 46.2
Best [35] test 77.0 69.7 51.8 83.9 57.5 0.375 1.139 65.3 50.0 56.6
Mix [35] test 77.6 69.7 53.9 83.9 63.4 0.354 0.618 65.3 52.2 56.6

Ours test 84.1 79.7 75.8 85.6 82.0 0.201 0.159 86.3 74.1 79.7
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Table 2. Evaluation on Cityscapes val (top) and test (center) using metrics in [6].
Further, we compare the performance for the most frequent label car, where we include
KITTI test (bottom). All numbers are in percent and larger is better.

Variant Dataset Labels AP AP%°% APpt00m ApS0m
Ours-D-F CS val all 2.4 5.7 3.6 4.9
Ours-F CS val all 7.0 175 11.1 12.8
Ours-D CS val all 6.8 15.8 10.9 14.2
Ours CS val all 99 225 15.3 17.5
MCG+R-CNN [6] CS test all 4.6 129 7.7 10.3
Ours CS test all 89 21.1 15.3 16.7
MCG+R-CNN [6] CS test car 105 26.0 17.5 21.2
Ours CS test car 225 378 36.4 40.7
Ours KITTI test car 41.6 69.1 49.3 49.3
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Fig. 4. Example results of our instance segmentation (right) and corresponding ground
truth (middle) on KITTI. We even detect objects at very large distances.

metrics on both datasets compared to our full system, which shows that the depth
information is an essential component of our approach. When the fusion compo-
nent was also removed (Ours-D-F), a larger template size was needed to prevent
an over-segmentation. However, performance dropped by an even larger margin
than for Qurs-D. In our last variant we kept the depth information but directly
used the instance proposals as final instance predictions (Ours-F). The perfor-
mance was even slightly worse than Ours-D, which shows that all our components
are important to obtain accurate object instances. These observations are consis-
tent on both datasets.

4.4 Instance Evaluation

KITTI. We clearly outperform all existing works on KITTI (Best [34]/[35]),
c.f. Table1l (bottom). Compared to the better performing work Best [35], we
achieve a margin of 37 % relative improvement averaged over all metrics. Even
when comparing our single variant with the best numbers over all existing vari-
ants for each metric individually (Miz [35]), we achieve a significantly better
performance. We also evaluated our approach using the metrics introduced in
[6] to enable comparisons in future publications, c.f. Table2 (bottom). Qualita-
tive results are shown in Fig. 4.
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(a) Input Image (b) Instance Ground Truth (c) Instance Prediction
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Fig. 5. Example results of our instance segmentation and corresponding ground truth
(rows 1-3) on Cityscapes. We also include the three FCN output channels (row 5) and
their ground truth (row 4). It can be seen that even distant objects are segmented well
and the approach can handle occlusions.

Cityscapes. On the Cityscapes dataset, our approach outperforms the baseline
MCG+R-CNN [6] in all proposed metrics as evaluated by the dataset’s submis-
sion server, c.f. Table2 (center). We nearly double the performance in terms of
the main score AP. Compared to the performance on KITTI, c.f. Table2 (bot-
tom), the numbers are significantly lower, indicating the higher complexity of
scenes in Cityscapes. Qualitative results are shown in Fig. 5.

4.5 Depth Evaluation

As shown in Table 3, the average relative and mean absolute error of our pre-
dicted instances are as low as 7.7 % and 1.7m, respectively, on the KITTI dataset.
On the Cityscapes dataset, which contains much more complex scenes, with
many and distant object instances, we achieve 11.3% and 7.7m, respectively.
These results are particularly impressive, since we used only single monocular

Table 3. Instance-based depth evaluation on KITTI test and Cityscapes validation.
MAE and RMSE are in meters, the others in percent. MAE, RMSE, and ARD denote
error metrics, where smaller is better, §; represent accuracy, where higher is better.

Dataset MAE RMSE ARD 6, 42 03
KITTTI (test) 1.7 2.8 7.7 95.1 99.3 99.8
Cityscapes (val) 7.7 24.8 11.3 86.2 95.1 97.7
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Table 4. Semantic pixel-level evaluation on Cityscapes test compared to baselines and
using the corresponding metrics [6]. All values are in percent and larger is better.

Method ToUclass 1I0Uclass IoUcategory 1l0Ucategory
FCN 8s [6] 65.3 41.7 85.7 70.1
Dilationl0 [33] 67.1 42.0 86.5 71.1
Ours 64.3 41.6 85.9 73.9

images as input for our network. We hope that future publications compare their
depth estimation performance using the proposed metrics.

4.6 Evaluation of Semantic Class Labels

Our method also yields a pixel-level semantic labeling including background
classes that we evaluate on Cityscapes, c.f. Table4. We compare to two base-
lines, FCN 8s [21] that uses the same FCN architecture as our approach and Dila-
tion10 [33], which is the currently best performing approach on Cityscapes [6].
It can be seen that our approach is on par with the state-of-the-art although
this work focuses on the harder instance segmentation task.

5 Conclusion

In this work, we present a fully convolutional network that predicts pixel-wise
depth, semantics, and instance-level direction cues to reach an excellent level of
holistic scene understanding. Instead of complex architectures or graphical mod-
els for post-processing, our approach performs well using only standard computer
vision techniques applied to the network’s three output channels. Our approach
does not depend on region proposals and scales well for arbitrary numbers of
object instances in an image.

We outperform existing works on the challenging urban street scene datasets
Cityscapes [6] and KITTI [34,35] by a large margin. On KITTI, our approach
achieves 37 % relative improvement averaged over all metrics and we almost dou-
ble the performance on Cityscapes. As our approach can reliably predict absolute
depth values per instance, we provide an instance-based depth evaluation. Our
depth predictions achieve a relative error of only a few meters, even though the
datasets contain instances in more than one hundred meters distance. The main
focus of this work is instance segmentation, but we also achieve state-of-the-art
performance for pixel-level semantic labeling on Cityscapes, with a new best
performance on an instance-based score over categories.
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