Configurable Fault Trees

Christine Jakobs®™) | Peter Troger, and Matthias Werner

Operating Systems Group, TU Chemnitz, Chemnitz, Germany
christine. jakobs,peter.troeger{@informatik.tu-chemnitz.de
J p g

Abstract. Fault tree analysis, as many other dependability evaluation
techniques, relies on given knowledge about the system architecture and
its configuration. This works sufficiently for a fixed system setup, but
becomes difficult with resilient hardware and software that is supposed to
be flexible in its runtime configuration. The resulting uncertainty about
the system structure is typically handled by creating multiple depend-
ability models for each of the potential setups.

In this paper, we discuss a formal definition of the configurable
fault tree concept. It allows to express configuration-dependent variation
points, so that multiple classical fault trees are combined into one repre-
sentation. Analysis tools and algorithms can include such configuration
properties in their cost and probability evaluation. The applicability of
the formalism is demonstrated with a complex real-world server system.

Keywords: Fault tree analysis : Reliability modeling - Structure
formulas - Configurable - Uncertainty

1 Introduction

Dependability modeling is an established tool in all engineering sciences. It helps
to evaluate new and existing systems for their reliability, availability, maintain-
ability, safety and integrity. Both research and industry have proven and estab-
lished procedures for analyzing such models. Their creation demands a correct
and detailed understanding of the (intended) system design.

For modern complex combinations of configurable hardware and software,
modeling input is available only late in the development cycle. In the special
case of resilient systems, assumptions about the logical system structure may
be even invalidated at run-time by reconfiguration activities. The problem can
be described as uncertainty of information used in the modeling attempt. Such
sub-optimal state of knowledge complicates early reliability analysis or renders it
even impossible. Uncertainty is increasingly discussed in dependability research
publications, especially in the safety analysis community. Different classes of
uncertainty can be distinguished [16], but most authors focus on structural or
parameter uncertainty, such as missing event dependencies [18] or probabilities.

On special kind of structural uncertainty is the uncertain system configura-
tion at run-time. From the known set of potential system configurations, it is
unclear which one is used in practice. This problem statement is closely related

© Springer International Publishing Switzerland 2016
I. Crnkovic and E. Troubitsyna (Eds.): SERENE 2016, LNCS 9823, pp. 13-27, 2016.
DOI: 10.1007/978-3-319-45892-2_2

14 C. Jakobs et al.

to classical phased mission systems [2] and feature variation problems known
from software engineering.

Configuration variations can be easily considered in classical dependability
analysis by creating multiple models for the same system. In practice, however,
the number of potential configurations seems to grow heavily with the increas-
ing acceptance of modularized hardware and configurable software units. This
demands increasing effort in the creation and comparison of all potential system
variations. Alternatively, the investigation and certification of products can be
restricted to very specific configurations only, which cuts down the amount of
functionality being offered.

We propose a third way to tackle this issue, by supporting configurations as
explicit uncertainty in the model itself. This creates two advantages:

— Instead of creating multiple dependability models per system configuration,
there is one model that makes the configuration aspect explicit. This simply
avoids redundancy in the modeling process.

— Analytical approaches can vary the uncertain structural aspect to determine
optimal configurations with respect to chosen criterias, such as redundancy
costs, performance impact or resulting reliability.

The idea itself is generic enough to be applied to different modeling tech-
niques. In this paper, we focus on the extension of (static) fault tree modeling
for considering configurations as uncertainty.

This article relies on initial ideas presented by Troger et al. [23]. In com-
parison, we present here a complete formal definition with some corrections that
resulted from practical experience with the technique. We focus on the structural
uncertainty aspect only and omit the fuzzy logic part from the original proposal
here.

2 Clarifying Static Fault Trees

Fault trees are an ordered, deductive and graphical top-down method for depend-
ability analysis. Starting from an undesired top event, the failure causes and their
interdependencies are examined.

A fault tree consists of logical symbols which either represent basic fault
events, structural layering (intermediate events) or interdependencies between
root causes (gates). Classical static fault trees only offer gates that work inde-
pendent of the ordering of basic event occurence. Later extensions added the
possibility for sequence-dependent error propagation logic [26].

Beside the commonly understood AND- and OR gates, there are some non-
obvious cases in classical fault tree modeling.

One is the XOR-gate that is typically only used with two input elements.
Pelletrier and Hartline [19] proposed a more general interpretation we intend to
re-use here:

Configurable Fault Trees 15

P(t) =3 | o)~ | [T = Pie)) (1)
- =

The formula for an XOR-gate sums up all variants where one input event is
occurring and all the other ones are not. This fits to the linguistic definition of
fault trees as model where “exactly one input event occurs” at a time [1].

The second interesting case is the Voting OR-gate, which expresses an error
propagation when k-out-of-n input failure events occur. Equations for this gate
type often assume equal input event probabilities [14], rely on recursion [17],
rely on algorithmic solutions [4] or calculate only approximations [12,13] for the
result. We use an adopted version of Heidtmanns work to calculate an exact
result with arbitrary input event probabilities:

P =3 0 (1) X IR 2

i=k IeN; iel

As usual, if £ = 1, the Voting OR-gate can be treated as an OR-gate. For
k = n, the AND-gate formula can be used.

3 Configurable Fault Trees

Configurable fault trees target the problem of modeling architectural variation.
It is assumed that the amount of possible system configurations is fixed and that
it is only unknown which one is used. A configuration is thereby defined as set
of decisions covering each possible architectural variation in the system. Opting
for one possible configuration creates a system instance, and therefore also a
dependability model instance. A system may operate in different instances over
its complete life-time.

3.1 Variation Points

The configuration-dependent wvariation points are expressed by additional fault
tree elements (see Table 1):

A Basic Fvent Set (BES) is a model element summarizing a group of basic
events with the same properties. The cardinality is expressed through natural
numbers k£ and may be explicitly given by the node itself, or implicitly given by
a parent RVP element (see below). It can be a single number, list, or range of
numbers.

The parent node has to be a gate. The model element helps expressing an
architectural variation point, typically when it comes to a choice of spatial redun-
dancy levels. A basic event set node with a fixed & is equivalent to k basic event
nodes.

16 C. Jakobs et al.

Table 1. Additional symbols in configurable fault trees.

Intermediate Event Set (IES): Set of intermediate events having identical

@ Basic Event Set (BES): Set of basic events with identical properties. Car-
dinality is shown with a # symbol.
‘IJ subtrees. Cardinality is shown with a # symbol.

\, Feature Variation Point (FVP): 1-out-of-N choice of a subtree, depending
“~--~* on the configuration of the system.

Redundancy Variation Point (RVP): Extended Voting OR-gate with a
configuration-dependent number of redundant units.

\'\ | Inclusion Variation Point (IVP): Event or event set that is only part of
the model in some configurations, expressed through dashed lines.

An Intermediate Fvent Set (IES) is a model element summarizing a group of
intermediate events with the same subtree. When creating instances of the con-
figurable fault tree, the subtree of the intermediate event set is copied, meaning
that the replicas of basic events stand for themselves. A typical example would
be a complex subsystem being added multiple times, such as a failover cluster
node, that has a failure model on its own. An intermediate event set node with
a fixed k is equivalent to x transfer-in nodes.

A Feature Variation Point (FVP) is an expression of architectural variations
as choice of a subtree. Each child represents a potential choice in the system
configuration, meaning that out of the system parts exactly one is used.

An interesting aspect are event sets as FVP child. Given the folding semantic,
one could argue that this violates the intended 1-out-of-N configuration choice
of the gate, since an instance may have multiple basic events being added as one
child [23]. This argument doesn’t hold when considering the resolution time of
parent links. The creation of an instance can be seen as recursive replacement
activity, were a chosen FVP child becomes the child of a higher-level classical
fault tree gate. Since the BES itself is the child node, the whole set of ‘unfolded’
basic events become child nodes of the classical gate. Given that argument, it is
valid to allow event sets as FVP child.

A Redundancy Variation Point (RVP) is a model element stating an unknown
level of spatial redundancy. As extended Voting OR-gate, it has the number of
elements as variable N and a formula that describes the derivation of k from a
given N (e.g. K = N — 2). All child nodes have to be event sets with unspecified
cardinality, since this value is inherited from the configuration choice in the parent
RVP element. N can be a single number, list or range of numbers. A RVP with a
fixed N is equivalent to a Voting OR-~gate. If a transfer-in element is used as child
node, the included fault tree is inserted as intermediate event set.

Configurable Fault Trees 17

An Inclusion Variation Point (IVP) is an event or event set that, depending
on the configuration, may or may not be part of the model. In contrast to house
events, the failure probability is known and only the occurrence in the instance
is in doubt. An IVP is slightly different to the usage of an FVP, since the former
allows configurations where none of the childs is a part of the failure model. In this
case, the parent gate is (probably recursively) vanished from the model instance.

Classical Voting OR-gates with an IVP child can no longer state an explicit
N, since this is defined from the particular configuration. This is the only mod-
ification of classical fault tree semantics reasoned by our extension.

3.2 Mathematical Representation

A configuration can be understood as a set of mappings from a variation point node
to some specific choice. Depending on the node type, an inclusion variation point
can be enabled or disabled, one child has to be selected at a feature variation point,
or N and therefore also k is specified for a redundancy variation point.

Event sets, whether BES or IES, are a folded group that translate to single
events in one instance. Since there is no difference between an event and an event
set with cardinality of one, it is enough to discuss the formal representation of
the latter only. The cardinality of event sets is represented through # in the
model, while in the mathematical description & is used.

The formal representation of classical AND and OR gates needs to include
the cardinality x of a potential BES or IES child:

P(t) =[] Pi#)";ri €N (3)
i=1
Pit)y=1-]]0 - P(@®)]*r €N (4)
i=1
For classical XOR gates, we rely on Eq. 1 as starting point. In addition, the
k value of child nodes also has to be considered:

n

o o fro B0

for kg, ki € N; Pi(t) #1

The summation term goes over each gate (i = 1 to n) and declares a sum-
mation part for the output = true case in the truth table for this gate. As the
child can be a BES with a cardinality greater than one, there would be one
summation part for each cardinality, which can be rewritten as k; times the
output = true line in the truth table. Also the product part of the formula needs
to be exponentiated. All other combinations are eliminated from the calculation.

To make the equation valid for general use in algorithms, the event proba-
bility processed at the very moment has to be divided once from the product

18 C. Jakobs et al.

part of the formula. This makes it unnecessary to clarify which event given what
cardinality is processed at the moment. Such an approach is only valid as long as
the component probability is smaller than one, which seems to be a reasonable
assumption in dependability modeling.

The Voting OR-gate has to be analyzed by calculating all possible failure
combinations. With Eq. 2 in mind, a reduced calculation is possible. When using
BES nodes as child, the different instances according to the cardinality have to
be considered. This is done by defining first a set of sub-sets N, which represents
the combinations of the event indexes and the cardinality indexes. Given that,
we redefine the specification of IV; to be the set of all combinations of sub-sets
of N,:

P =30+ (7)Ao (©

i=k IEN; icl

For special cases k =1 or k = N, the according equations for OR and AND
gates can be used respectively.

The FVP represents a variable point in the calculation that is defined by one
sub-equation and the k value for a given instance. This allows to represent the
FVP with a single indexed variable.

The RVP expresses uncertainty about the needed level of redundancy. It is an
extended form of the Voting OR-gate. The structural uncertainty is represented
by the possibilities for the IV value that influence the k-formula. A new variable
is therefore defined which gets the different results as a value, so that the impact
of the redundancy variation is kept till the end of the analysis. An RVP with a
single value for N is a Voting OR-gate.

The IVP states an uncertainty about whether the events or underlying sub-
trees will be part of the system or not. It is formally represented by a variable
that can either stand for the event probability or the neutral probability in case
the IVP acts as non-included.

4 Use Case Example

The use case example is a typical high-performance server system available in
multiple configurations!. The main tree is shown in Fig.1. Two subtrees are
included by the means of standard transfer-in gates. We only show a qualitative
fault tree here, but the formula representations can be used to derive quantitative
results, too.

It should be noted that intermediate events only serve as high-level descrip-
tion of some event combination, although they map to higher-order configura-
tions in the example case.

The server has a hot swap power supply, so the machine fails if both power
supplies are failing at the same time. The cardinality is defined by the BES node
itself, so:

! https://www.thomas-krenn.com/en/wiki/2U_Intel_Dual- CPU_RI2212+ Server.

https://www.thomas-krenn.com/en/wiki/2U_Intel_Dual-CPU_RI2212+_Server

Configurable Fault Trees

T
Server

Failure
Ao L L
U S U
i] i i i i
) J) J) J
\N__f, \N__f, \N__f,
Hot Swap Supermicro RAM RAID 1-Port 2-Port 4-Port
Power X10DRC- Failure Failure LAN LAN LAN
Supply LN4+ (Ttan1) (Tian2) (Tiana)
(hotswap) Main-
board

(mainboard))
N

Y
2

Q [y
S?
W
CPU Con-
figuration
(chx u)
'

’
’

H
H
920 W H
(pur) :
72— qmmmm————— B bl LR E T

eYeXe

E5-2623v3 E5-2603v3 E5-2609v3 1 E5-2620v3 E5-2643v3 E5-
4-Core 6-Core 6-Core 6-Core 6-Core 2630Lv3
3,0 GHz 1,6 GHz 1,9 GHz 2,4 GHz 3,4 GHz 8-Core
(cpuss2s) (cpuzeos) (cpuz609) (Cpu'zefzo) (CP“2643) 1,8 GHz
#2 2 #2 #2 #2 (Cp'u?;(:;tm)

0000

E5-2630v3 E5-2640v3 E5-2650v3 E5-2670v3 E5-2690v3 E5-2695v3

8-Core 8-Core 10-Core 12-Core 12-Core 14-Core

2,4 GHz 2,6 GHz 2,3 GHz 2,3 GHz 2,6 GHz 2,3 GHz

(Cpu2r;.'m) ((fpu2:;4r)) (Clmz(;su) ((‘T)llz(, 0) (Cpumqn) ((fpuztaos)
#2 #2 #2 #2 #2

Fig. 1. Main tree for RI12212+ server

hotswap = pwr?

19

(7)

For the CPU variation point, a variable is defined based on the current con-

figuration choice, expressed by the function ch():

CPU2623, Kepu = 2, if Ch(Tcpu) =

Tepu = CPU2603, Kepu = 2, if Ch(Tcpu) =2

(®)

The server can be optionally equipped with additional LAN cards, which is

described in a similar way.

20 C. Jakobs et al.

A\

RAM

Failure
2R
I'I ‘\\
‘__‘/’
RAM
Config-
uration
(Tram)
'
T T T TEE T, [:
: H . '
T T D v
4GB 8 GB 16 GB 32 GB
Modules Modules Modules Modules
(msdgb) (ms8gb) (ms16gb) (ms32gb)
'J.\ Y
'I \\ 'I \\
/ A ’ Y
‘__‘/’ ‘__‘/
Stan‘dard Stan‘dard
Pre- Pre-
mium mium

' '
' '
' '
' '
' '
' '
' '
' '
16GB
ECC
DDR4
(m16gb)

Ay oya
o} XeoXe

oD

4GB ECC '
DDR4 '
#2:4
8GB ECC 8GB ECC 32GB 32 GB
DDR4 DDR4 ECC ECC
(m8gb) Premium DDR4 DDR4
#2,24 (m8gbp) Premium (m32gb)
#2 (m32gbp) #24

#2,4.8,16,24
Fig. 2. Subtree for server RAM configurations
As for the CPU, the RAM can be configured in many different ways (see

Fig.2). The failure events for single modules are expressed as event sets with a
direct list of cardinalities. This is reflected in the related equation system:

o m4gb, Hm4gb = 2; lf Ch(Tm4gb) =1

Tmdgb = . (9)
mAdgb, Kmags = 4; if ch(Tmagy) =1

msdghb =1 — (1 — mdgb)~mis® (10)

e m8gb, Kmsgp = 2; if ch(Tmggy) =1 (1)
TEEE T m8gh, kimsgy = 24; if ch(Tmggy) = 1

1 — (1 — m8gb)rimssr;

Tmssgb = { if ch(Tmsggy) = 1 (12)
1 — (1 — m8gbp)?;if ch(Timssgn) = 2

ms8gb = Timsagh (13)

Configurable Fault Trees 21

msdgb;if ch(Tranm)

=1
ms8gb; if ch(tranr) = 2

TRAM = (14)

ms16gb;if ch(tran) =3
ms32gb; if Ch(TRAM) =4

The RAID subtree (see Fig.3) in combination with the hard disc subtree
(ommitted due to space restrictions) expresses configuration modes of the RAID
controller, were each of them relies on some predefined variation for the number
of discs.

The determination of 745, works similarly to the approach shown with 7.,
(see Eq.8). The more interesting aspect is the representation of the different
RAID configurations.

RAID
Failure

/
—— -
RAID RAID Cache
Controller Config- Vault
uration Module
(TRAID) (Teache)
CUTTT ey S b ety
: ! : : : : !
raid0 raidl raid raid6 raidl0 raid50 raid60
zL N N N N ’ N
'll \ 'l \ 'l \ 'Il \ 'll \ 'll \ 'II \
\
ly) ') ly S ') ly S ly) ' pl
Saen” Saen” Saen” ~———’ Saen” Saen” Saen”
Nraido : Nraiay : Nraigs Nraids : Nraiaro Nraidso Nraideo :
2-12 2—-12 3—12 4—12 2—-6 2—-4 1-2
k:1 k: N k:2 k:3 k:1 k:N-1 k:N-1
' ' ' ' ' ' '
Discs Discs Discs Discs subraidl subraid5 subraid6

' ' '
N: 2, k: 2 N: 3 k: 2 N:4, k: 3
' ' '

Discs Discs Discs

Fig. 3. Sub tree for server RAID configurations.

22 C. Jakobs et al.

RAID 0 and RAID 1 are special cases. In the RAID 0 case, the variation
point can be interpreted as OR-gate. For RAID 1, the variation point can be
interpreted as AND-gate:

[1 - (]- - Tdisc)2}; if Ch(NTaidO) =2
[1 - (1 - Tdisc)s]; if Ch(NraidO) =3

raid) = < (15)
[1 — (1 — Tdisc)m]; if Ch(NTa’idO) =12

(Tdisc)2) if Ch(Nraidl)

(Tdisc)3; if Ch(Nraidl)
raidl = ¢ (16)

=2
=3

(Tdisc)12§ if Ch(Nraidl) =12

RAID 5 and RAID 6 are based on striping and parity bits and fail if two
respectively three disks fail. Since both RAID types lead to the same mathemat-
ical representation, we show only one here:

= Tdiscl,1Tdisc1,2 T Tdiscl,1Tdiscl,3+
Tdiscl,2Tdisc1,3 — 2 * (Tdisc1,1Tdise1,2
Tdiscl,3); if Ch(NraidE}) =3

= Tdisc1,1Tdiscl,2T

Tdiscl,1Tdisc1,3 t Tdiscl,1Tdiscl,4+

raidd = < Tdiscl,2Tdisc1,3 + Tdisc1,2Tdiscl 4T (17)
Tdisel,3Tdisc1,4 — 2+ (Tdise1,1Tdisel,2

Tdiscl,3 t Tdisc1,1Tdisc1,2Tdiscl,4+

Tdiscl,1Tdisc1,3Tdiscl,4 + Tdisc1,2

Tdiscl,3Tdisc1,4) + 3(Tdisc1,1Tdisc1,2

Tdiscl,3Tdisc1,4); if Ch(Nypaigs) =4

RAID 10, 50 and 60 are based on two levels. The lower one is an RAID 1, 5
or 6 and the upper one is RAID 0. We show the RAID 10 case as example, the
others are comparable:

Configurable Fault Trees 23

subraidl = 73;,, (18)

1 — (1 — subraidl)?];

if ch(Nyaidio0) = 2

raid10 = { [— (1 — subraidl)?]; (19)
(

if ch razle) 3

The FVP node expresses the single choice for one of the RAID configurations:

raid0; if ch(modraid) =1

raidl;if ch(modraid) = 2
Tmodraid = § . (20)

raid60; if ch(modraid) =7

The Cache Vault Module can be added to the server to get a battery-backed
write cache in the RAID controller. It is represented as IVP. Similar to the voter
in a triple modular redundancy setup, it can act both as source of reliability and
additional root cause for a system failure. Since the parent node is an OR-gate,
the value may become 0, since this is the neutral element for OR-parents:

cache; if ch(cache) = 1 (true)
cache — . (21)
0; if ch(cache) = 0 (false)
The complete RAID system then ends up being expressible like this:
=1-[(1-RAID ontroller)’
TRAID [(Controller) (22)

(]- - Tmodraid) ‘ (1 - Tcache)]

At last, the server itself can be evaluated through the OR-gate equation.
Combining all sub parts, the overall server structure formula representing the
configurable fault tree looks like this:

Server Failure =1 — [(1 — hotswap) - (1 — mainboard)-
(1 - Tcpu) . (1 - TRA]\/I) : (1 - Tlanl)' (23)
(1 = Tian2) - (1 = Tiana) - (1 — TrRAID)]

The stated set of expressions represents 4.259.520 possible server configura-
tions, which would otherwise needed to be modeled in single fault trees. Based
on the given expression, it would now be interesting to determine configuration-
dependent and independent cut sets. Furthermore, each configuration may be
related to some costs, f.e. based on the components being involved. The following
section discussed some options for such analysis tasks.

24 C. Jakobs et al.

5 Analyzing Configurable Fault Trees

Configurable fault trees can obviously be analyzed by enumerating all possible
configurations, creating the structure formula for each of them and treating the
resulting set as equation system [23]. By iterating over the complete configuration
space, best and worst cases can be identified in terms of their variation point
settings. Especially if configuration parameters depend on each other, this kind
of analysis can be helpful to deduct system design decisions.

Similarly, it is possible to do an exhaustive analysis of cut sets for each
of the configurations. This allows to identify configuration-dependent and
configuration-independent cuts sets for the given fault tree model as a whole.

An easy addition to the presented concept is a cost function. It may express
component or manufacturing costs, energy needed for operating the additional
component, repair costs if the component fails, or — in case of the top event —
the cost introduced by the occurrence of a failure.

The opposite approach is also possible. Each failure model element can be
extended with a performance factor, which should be maximized for the whole
system. Adding some system part in a configuration may then decrease the failure
probability and decrease the performance at the same time. This again allows
automated trade-off investigations for the system represented by the configurable
fault tree.

A typical analysis outcome in classical fault trees are importance metrics.
They determine basic events that have the largest impact to the failure proba-
bility of the system [8,20]. Classical importance metrics assume a coherent fault
tree that is translated to a linear structure formula. In case of configurable fault
trees, there are two factors that may have impact: Basic events and configura-
tion changes. One algebraic way for such analysis is the Birnbaum reliability
importance measure in its rewritten version for pivotal decomposition [5]. It can
determine the importance of a configurable element in the structure formula.

The creation of a combined importance metric for basic events and config-
uration changes raises some challenges. The reason for the non-applicability of
classical importance measures here is the discontinuity in an importance func-
tion in combination with possibly existing trade-offs between configuration and
basic probabilities. The impact of selecting a specific configurations may depend
on the probability of basic events. A simple example is a feature variation point
that either enables or disables the usage of a Triple Modular Redundancy (TMR)
structure. Depending on the failure probability of the voter and the replicated
modules, the configuration with TMR might decrease or increase the system
failure probability. This leads to an interesting set of new questions:

— Is there a dominating configuration that always provides the best (worst)
result for the overall space of basic event probabilities?

— If so, how can it be identified without enumerating the complete space of
configurations?

— If not, what are the numerical dependencies between configuration choices,
basic event probabilities and the resulting configuration rankings?

Configurable Fault Trees 25

— Given that, how is the importance of a particular event related to configuration
choices?

The answer to these questions as well as a general importance metric is part
of our future work on the topic.

6 Related Work

Ruijters and Stoelinga [21] created an impressive summary of fault tree modeling
approaches and their extensions, covering things such as the expression of timing
constraints or unknown basic probabilities. Although many different kinds of
uncertainty seemed to be discussed for fault trees, we found no consideration of
parametric uncertainty.

Bobbio et al. [6] addressed the problem of fault trees for big modern systems.
They propose the folding of redundant fault tree parts, but their approach can-
not handle true architecture variations. Buchacker [10] uses finite automata at the
leaves of the fault tree to model interactions of basic events. The automata can be
chosen from a predefined set or custom sub-models. This makes it possible to model
basic events affecting each other, but only in one configuration. Kaiser et al. [15]
introduced the concept of components in fault trees, by modeling each of them in a
separate tree. This supports a modular and scalable system analysis, but does not
target the problem of parametric uncertainties.

An interesting attempt for systems with dynamic behavior is given by Walter
et al. [25]. The proposed textual notation for varying parts may serve as suitable
counterpart for the graphical notation proposed here. In [9], continuous gates are
used to model relationships between elements of a fault tree. This is divergent
to our uncertainty focus, but the approach might be useful as an extension in
future work.

There are several existing approaches for considering uncertainty in impor-
tance measures, which “reflect to what degree uncertainty about risk and reliabil-
ity parameters at the component level influences uncertainty about parameters
at the system level” [11].

Walley [24] gives an overview over different uncertainty measures which can
be used in expert systems. The presented metrics are based on Bayesian proba-
bilities, coherent lower previsions, belief functions and possibility measures. Bor-
gonovo [7] examined different uncertainty importance measures based on Input-
Output correlation or Output variance. Suresh et al. [22] proposed to modify
importance measures for the use with fuzzy numbers. Baraldi et al. [3] proposed
a component ranking by Birnbaum importance in systems with uncertainty in
the failure event probabilities. All these approaches do examine the value of the
output uncertainty which respect to the uncertain input values, which relates to
parameter, but not parametric uncertainty as in our case.

7 Conclusion and Future Work

We presented an approach for expressing different system configurations directly
as part of a fault tree model. The resulting configurable fault tree allows the

26 C. Jakobs et al.

derivation of failure model instances, where each of them describes the depend-
ability of a particular system configuration. Based on clarified semantics for
XOR and Voting OR-gates, we have shown how configurable fault trees can be
represented both graphically and mathematically.

We offer a web-based tool? for evaluating the modeling concept. The under-
lying open source project® is available for public use and further development.

The most relevant next step is the formal definition of analytical metrics that
comply with the configuration idea. Unfortunately, dependencies in the config-
uration space can not yet be expressed explicitly. This flaw already appeared in
the presented use case, where certain CPU models are only usable with certain
RAM constellations. We can imagine to express such dependencies by abusing
house events as ‘switches’, but it doesn’t seem to be appropriate. Instead, we
intend to extend the modeling approach in the future for supporting an explicit
expression of the relations, either at modeling or analysis time.

References

1. DIN EN 61025:2007 Fehlzustandsbaumanalyse (2007)

2. Band, R.A.L., Andrews, J.D.: Phased mission modelling using fault tree analysis.
In: Proceedings of the Institution of Mechanical Engineers (2004)

3. Baraldi, P., Compare, M., Zio, E.: Component ranking by Birnbaum importance
in presence of epistemic uncertainty in failure event probabilities. IEEE Trans.
Reliab. 62, 3748 (2013)

4. Barlow, R.E., Heidtmann, K.D.: Computing k-out-of-n reliability. IEEE Trans.
Reliab. R—33(4), 322 (1984)

5. Birnbaum, Z.: On the importance of different components in a multicomponent sys-
tem. Laboratory of Statistical Research, Department of Mathematics, University
of Washington, Seattle, Washington (1968). No. 54

6. Bobbio, A., Codetta-Raiteri, D., Pierro, M.D., Franceschinis, G.: Efficient analysis
algorithms for parametric fault trees. In: 2005 Workshop on Techniques, Method-
ologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF
2005), pp. 91-105 (2005)

7. Borgonovo, E.: Measuring uncertainty importance: investigation and comparison
of alternative approaches. Risk Anal. 26(5), 1349-1361 (2006)

8. van der Borst, M., Schoonakker, H.: An overview of PSA importance measures.
Reliab. Eng. Syst. Safety 72(3), 241-245 (2001)

9. Brissaud, F., Barros, A., Bérenguer, C.: Handling parameter and model uncertain-
ties by continuous gates in fault tree analyses. Proc. Inst. Mech. Eng. Part O J.
Risk Reliab. 224(4), 253-265 (2010)

10. Buchacker, K.: Modeling with extended fault trees. In: Fifth IEEE International
Symposium on High Assurance Systems Engineering (HASE 2000), pp. 238-246
(2000)

11. Flage, R., Terje, A., Baraldi, P., Zio, E.: On imprecision in relation to uncertainty
importance measures. In: ESREL, pp. 2250-2255 (2011)

2 https://www.fuzzed.org.
3 https://github.com/troeger /fuzzed.

https://www.fuzzed.org
https://github.com/troeger/fuzzed

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Configurable Fault Trees 27

Heidtmann, K.D.: A class of noncoherent systems and their reliability analysis. In:
11th Annual Symposium on Fault Tolerant Computing, pp. 96-98 (1981)
Heidtmann, K.D.: Improved method of inclusion-exclusion applied to k-out-of-n
systems. IEEE Trans. Reliab. R—31(1), 36-40 (1982)

Hoang, P., Pham, M.: Optimal designs of {k, n—k+1}-out-of-n: F systems (subject
to 2 failure modes). IEEE Trans. Reliab. 40(5), 559-562 (1991)

Kaiser, B., Liggesmeyer, P., Méckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software (SCS 2003), vol. 33, pp. 37-46 (2003)

Kennedy, M.C., O’'Hagan, A.: Bayesian calibration of computer models. J. R. Stat.
Soc. Ser. B (Statistical Methodology) 63(3), 425-464 (2001)

Malinowski, J.: A recursive algorithm evaluating the exact reliability of a circular
consecutive k-within-m-out-of-n: F system. Microelectron. Reliab. 36(10), 1389—
1394 (1996)

Pedroni, N., Zio, E.: Uncertainty analysis in fault tree models with dependent basic
events. Risk Anal. 33(6), 1146-1173 (2013)

Pelletier, F.J., Hartline, A.: Ternary exclusive OR. Logic J. IGPL 16(1), 75-83
(2008)

Rausand, M., Hgyland, A.: System Reliability Theory: Models, Statistical Methods
and Applications. Wiley-Interscience, Hoboken (2004)

Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 224(4),
253-265 (2010)

Suresh, P.V., Babar, A.K., Raj, V.V.: Uncertainty in fault tree analysis: a fuzzy
approach. Fuzzy Sets Syst. 83, 135-141 (1996)

Troger, P., Becker, F., Salfner, F.: Fuzztrees - failure analysis with uncertainties. In:
2013 IEEE 19th Pacific Rim International Symposium on Dependable Computing,
pp. 263-272 (2013)

Walley, P.: Measures of uncertainty in expert systems. Artif. Intell. 83(1), 1-58
(1996)

Walter, M., Gouberman, A., Riedl, M., Schuster, J., Siegle, M.: Lares — a novel
approach for describing system reconfigurability in dependability models of fault-
tolerant systems. In: Proceedings of European Safety and Reliability Conference
(ESREL 2009) (2009)

Xiang, F., Machida, F., Tadano, K., Yanoo, K., Sun, W., Maeno, Y.: A static analy-
sis of dynamic fault trees with priority-and gates. In: 2013 Sixth Latin-American
Symposium on in Dependable Computing (LADC), pp. 58-67 (2013)

2 Springer
http://www.springer.com/978-3-319-45891-5

Software Engineering for Resilient Systems
8th International Workshop, SERENE 2016,
Gothenburg, Sweden, September 5-6, 2016,
Proceedings

Crnkovic, I.; Troubitsyna, E. (Eds.)

2016, IX, 149 p. 41 illus., Softcover

ISBM: 978-3-319-45891-5

	Configurable Fault Trees
	1 Introduction
	2 Clarifying Static Fault Trees
	3 Configurable Fault Trees
	3.1 Variation Points
	3.2 Mathematical Representation

	4 Use Case Example
	5 Analyzing Configurable Fault Trees
	6 Related Work
	7 Conclusion and Future Work
	References

