A Linear-Space Algorithm for the Substring
Constrained Alignment Problem

Yoshifumi Sakai®*

Graduate School of Agricultural Science, Tohoku University,
1-1, Amamiyamachi, Tsutsumidori, Aobaku, Sendai 981-8555, Japan
sakai@biochem.tohoku.ac. jp

Abstract. In a string similarity metric adopting affine gap penalties,
we propose a quadratic-time, linear-space algorithm for the following
constrained string alignment problem. The input of the problem is a pair
of strings to be aligned and a pattern given as a string. Let an occurrence
of the pattern in a string be a minimal substring of the string that is
most similar to the pattern. Then, the output of the problem is a highest-
scoring alignment of the pair of strings that matches an occurrence of
the pattern in one string and an occurrence of the pattern in the other,
where the score of the alignment excludes the similarity between the
matched occurrences of the pattern. This problem may arise when we
know that each of the strings has exactly one meaningful occurrence of
the pattern and want to determine a putative pair of such occurrences
based on homology of the strings.

1 Introduction

Constructing a highest-scoring alignment is a common way to analyze how two
strings are similar to each other [7], because it is well known that, using the
dynamic programming technique, we can obtain such an alignment of an arbi-
trary m-length string A and an arbitrary n-length string B in O(mn) time [10].
As a more appropriate analysis of the similarity in the case where we know that
a common pattern string P occurs both in A and B and that these occurrences
should be matched in the alignment, Tsai [12] proposed the constrained longest
common subsequence (LCS) problem. This problem consists of finding an arbi-
trary LCS containing P as a subsequence, where an LCS can be thought of as
a highest-scoring alignment in a certain simple similarity metric. Chin et al. [4]
showed that this problem is solvable in O(mnr) time and O(nr) space, where
r is the length of P and m > n > r. Recently, as one of the generalized con-
strained LCS problems, Chen and Chao [2] proposed the STR-IC-LCS problem,
which consists of finding an arbitrary LCS of A and B that contains P as a
substring, instead of as a subsequence. Deorowicz [5] showed that this problem
is solvable in O(mn) time and O(mn) space. The difference between the align-
ments found in these problems is whether the score of the alignment takes the
similarity between the matched occurrences of P in X and Y into account or
not. The STR-IC-LCS problem may arise when we know that each of the strings
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has exactly one meaningful occurrence of the pattern and want to determine a
putative pair of such occurrences based on homology of the strings.

In comparing strings over an alphabet set with various levels of symbol sim-
ilarity, such as amino acid sequences of proteins, however, the LCS metric is
sometimes too naive to adopt as a similarity metric. In the present article, we
consider generalized similarity metrics, including the metric based on an amino
acid substitution matrix with affine gap penalties, which is widely used to esti-
mate the similarity between amino acid sequences [7]. This similarity metric
is also adopted by another generalized constrained LCS problem, the regular
expression constrained alignment problem [1,3,9], in which the pattern P is
given as a regular expression.

The present article propose an O(mn)-time, O(n)-space algorithm for the
problem consisting of finding a highest-scoring alignment of A and B that
matches an occurrence of P in A and an occurrence of P in B. In this prob-
lem, we treat an arbitrary minimal substring of a string most similar to P as
an occurrence of P in the string and ignore the similarity between the matched
occurrences of P when estimating the score of the alignment. The proposed algo-
rithm achieves the same asymptotic execution time and required space as the
algorithm for the (non-constrained) alignment problem based on the divide-and-
conquer technique of Hirschberg [8]. Furthermore, since the problem we consider
is identical to the STR-IC-LCS problem if we adopt the LCS metric, the proposed
algorithm improves space complexity of the STR-IC-LCS problem achieved by
the algorithm of Deorowicz [5] from quadratic to linear.

2 Preliminaries

A string is a sequence of symbols. For any string X, | X| denotes the length of
X, X[i] denotes the symbol in X at position ¢, and X (i',i] denotes the substring
of X at position between i’ + 1 and 7. The concatenation of string X’ followed
by string X" is denoted by X’ X”.

Let X be an alphabet set of a constant number of symbols. Let - denote a gap
symbol that does not belong to X. A gap is a string consisting only of more than
zero gap symbols. We use + and / to represent the first and last gap symbols in a
gap of length more than one, respectively, and * to represent the only gap symbol
in a gap of length one. In what follows, we use - to represent a gap symbol in
a gap of length more than two other than the first and last gap symbols. Let
I'={+-,/,%} and let Y = X UT. Let a gapped string of a string X over X be
a string over Y obtained from X by inserting a concatenation of zero or more
gaps at position between ¢ and 7+ 1 for each index ¢ with 0 < ¢ < |X|. Although
concatenations of two or more gaps inserted in a string may look uncommon, we
adopt this definition of a gapped string for a technical reason mentioned later.
We sometimes use the index representation, denoted I ¢, of a gapped string X of
a substring of X, in which X[i] is represented as index ¢ and any gap symbol
in I' that appears in the concatenation of gaps inserted in X at position between
i and 7 + 1 is represented as y with subscript i.
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For any strings X and Y over X, an alignment of X and Y is a pair of a
gapped string X of X and a gapped string Y of Y with | X| = |Y| such that X|[q]
or Y[q] is not a gap symbol in I" for any index ¢ with 1 < ¢ < |X| (= |Y]). Let
a symbol similarity score table s consist of values s(a,b) indicating how much
a is similar to b for all ordered pair (a,b) of symbols in Y other than pairs
of gap symbols in I'. A typical setting, adopted in affine gap penalty metrics,
is s(a,+) = s(a,*) = s(+,a) = s(*,a) = gip + gep and s(a,-) = s(a,/) =
s(=,a) = s(/,a) = gep for any symbol a in X, where gip is a gap insertion
penalty representing the penalty for each insertion of a gap and gep is a gap
extension penalty representing the penalty for each one-symbol extension of a
gap. How well an alignment ()~( , 17) makes a connection between symbols in X
and symbols in Y is estimated by the score s(X,Y) = D 1<q<|X| 5(X|[q], Y[q]) of
the alignment. For any strings X and Y over X, let how much X is similar to
Y be defined as Sim(X,Y) = max g y) s(X,Y), where (X,Y) ranges over all
alignments of X and Y. We define an occurrence of a pattern in a string as a
minimal substring of the string that is most similar to the patter in the sense of
the following definition.

Definition 1. For any strings X and Y over X, let a substring X’ of X be an
occurrence of Y in X if Sim(X',Y) > Sim(X",Y) for any substring X" of X
and Sim(X',Y) > Sim(X",Y) for any substring X" of X’ with |X"| < |X"|.

The present article considers the following problem.

Definition 2. Given strings, A of length m, B of length n, and P of length
r, over X with m > n > r, let the substring constrained alignment (StrCA)
problem consist of finding an arbitrary pair of an occurrence Ay of P in A and
an occurrence By.. of P in B such that

Sim(Apreﬁ Bpref) + Sim(Asuffa Bsuff)

is maximum, where A = AprerAoccAsut and B = Bpet BoceBsugt- (If arbitrary
highest-scoring alignments of Apcr and Bprer and of Agug and Bs,g are necessary
after the StrCA problem is solved, we can obtain such alignments in O(mn) time
and O(n) space based on the divide-and-conquer technique of Hirschberg [8].)

3 Algorithm

This section proposes an O(mn)-time, O(n)-space algorithm for the StrCA prob-
lem. In order to design the proposed algorithm, we introduce several lemmas each
with no proof, due to limitation of space. However, they can be proven easily in
a straightforward manner.

The algorithm we propose is based on the dynamic programming technique.
We use edge-weighted directed acyclic graphs (DAGs) to represent dynamic pro-
gramming (DP) tables as follows.



18 Y. Sakai

Definition 3. Let G be an arbitrary edge-weighted DAG. For any edge e in G,
let w(e) denote the weight of e. We also use w(u,v) to denote w(e) if e is from
vertex u to vertex v. For any path 7 in G, let the weight w(7) of m be the sum
of w(e) over all edges e in 7. For any vertex v in G, let to(v) denote the set of all
vertices u such that G has an edge from w to v. If no such vertices u exist, then
v is a source vertex. Any vertex u not appearing in to(v) for any vertex v in G is
a sink vertex. We focus only on edge-weighted DAGs having exactly one source
vertex and one sink vertex. For any vertex v in G, we use dp(v) to denote the
value of v in the DP table with respect to G. This value is defined recursively
as dp(v) = 0, if v is the source vertex, or dp(v) = max,eqo(v)(dp(u) + w(u,v)),
otherwise. Hence, dp(v) represents the weight of any heaviest path from the
source vertex to v.

To solve the StrCA problem, we utilize an edge-weighted DAG, called the
StrCA DAG, that reduces the StrCA problem to the problem of finding an
arbitrary one of certain edges through which a heaviest path from the source
vertex to the sink vertex passes. Applying the same idea as the algorithm of
Deorowicz [5] for the STR-IC-LCS problem to this DAG, we can immediately
obtain an algorithm for the SrtCA problem. However, as mentioned later, the
algorithm proposed in the present article uses this DAG in a different way in
order to save a great deal of space required.

The StrCA DAG is defined as a certain variant of the following edge-weighted
DAG, called the alignment DAG, which is based on an idea similar to the algo-
rithm of Gotoh [6] for the alignment problem with affine gap penalties. This
DAG is designed such that any two-edge path corresponds to a pair of consec-
utive positions in some alignment of two strings and vice versa. The reason for
the uncommon definition of a gapped string is because of a close relationship
between paths in the DAG and alignments of substrings of the strings.

Definition 4. For any strings X and Y over X, let the alignment DAG, denoted
G(X,Y), for X and Y be the edge-weighted DAG counsisting of vertices

h(i,j) for all index pairs (4,) with 0 <¢ < |X| and 0 < j < |Y|, and

- d(z j) for all index pairs (4,7) with 0 <7 < |X| and 0 < j < |Y],
7)
v(i,7) for all index pairs (i,7) with 0 <4 < |X| and 0 < 5 < |Y]

and edges

— e(i,7) of weight s(X[i], Y[j]) from d(i — 1,5 — 1) to d(4, ),

— e(+;,7) of weight s(+,Y[j]) from d(¢,5 — 1) to h(i,J),

— e(=4,7) of weight s(-,Y[j]) from h(i,j — 1) to h(i, ),

— e(/4,7) of weight s(/,Y[j]) from h(i,j — 1) to d(i,J),

— e(*;,7) of weight s(x,Y[j]) from d(¢,j — 1) to d(s, j),

— e(i,+;) of weight s(X[i],+) from d(i — 1, j) to v(¢, j),

— e(i,-;) of weight s(X[i], =) from v(i —1,7) to v(i, j),

— e(i,/;) of weight s(X[i],/) from v(i — 1,7) to d(4,j), and
(ir%)) (X[i], ) from d(i — 1.5) to d(i. )

— e(i, *;) of weight s(X|[i],*) from d(i — 1, 7) to d(q,



A Linear-Space Algorithm for the Substring Constrained Alignment Problem 19

for all possible index pairs (4, j). Let the ith row of G(X,Y") consist of all vertices
d(i,7) with 0 < 5 <Y, h(i,j) with 0 < j < |Y], and v(4,j) with 0 < j < |Y].

Lemma 1. Any path m = e(21, 1)e(i2, J2) - - €(ip, Jp) in G(X,Y) from d(7',j)
to d(i, j) bijectively corresponds to the alignment (X,Y) of X[i' +1..i] and Y [j’ +
1..j] with I ¢ =712+ and Iy = J1J2 - - - Jp. Furthermore, for any such pair of
a path © and an alignment (X,Y), w(n) = s(X,Y) holds.

Before presenting the StrCA DAG, we show that all occurrences of a pattern
in a string can be found in quadratic time and linear space, if we use the following
variant of the alignment DAG. This DAG is based on an idea similar to the
algorithm of Smith and Waterman [11] for the local alignment problem.

Definition 5. For any strings X and Y over X, let the occurrence DAG, denoted
Goce(X,Y), of Y in X be the edge-weighted DAG obtained from G(X,Y) by
adding two vertices src and snk, bypass edges in(i') of weight zero from src to
d(i’,0) for all indices ¢’ with 0 < ¢/ < |X|, and bypass edges out(i) of weight
zero from d(i,|Y]) to snk for all indices ¢ with 0 < ¢ < |X|. For any vertex v
in Goee(X,Y) other than src, let i'(v) be the greatest index ' such that some
heaviest path from src to v passes through bypass edge in(i’).

Lemma 2. Substring X (i',i] is an occurrence of Y in X if and only if some
heaviest path in Goee(X,Y) from src to snk passes through out(i), i'(d(i,|Y])) =
i, and no substrings X (i',4"] with i’ <i"” <i are occurrences of Y in X.

Lemma 3. For any vertex v in Goec(X,Y) other than src, i’ (v) is equal to the
mazimum of i’ (u) over all vertices u in to(v) with dp(v) = dp(u)+w(u,v), where
we treat i'(u) =i if u = src and v =d(i’,0).

Let DPocc(i) and I'(i) denote the array of DP table values dp(v) and the
array of indices ¢’'(v) for all vertices v in the ith row of Goec(X,Y), respec-
tively. It then follows from the recurrence relation of DP table value dp(v) given
in Definition 3 that DPg..(4) can be constructed in O(]Y]) time from scratch,
if i = 0, or from DPc.(i — 1), otherwise. Similarly, we can obtain I’ (i) in O(|Y|)
time from scratch, if i = 0, or from DPgc.(i — 1), I'(i — 1), and DP(i)occ, other-
wise, based on Lemma 3. Thus, we obtain Algorithm findOcc(X,Y") presented in
Fig.1 as an O(|X||Y|)-time, O(|Y|)-space algorithm that enumerates all occur-
rences of Y in X. In this algorithm, lines 1 through 4 prepare dp(snk), the weight
of any heaviest path from src to snk, as the value of variable dpgy. Using this
value, each iteration of lines 7 through 9 applies Lemma 2, where index variable
7' in line 8 is maintained so as to indicate that, if i/ > 0, then some substring
X (i',4"] with i < " < i is an occurrence of Y in X.

Lemma 4. For any strings X andY over X, Algorithm findOcc(X,Y") enumer-
ates all occurrences X (i',i] of Y in X in ascending order with respect to i and,
hence, with respect to i’ in O(|X||Y]) time and O(|Y|) space.

Now we present the StrCA DAG, together with the properties crucial to
designing the proposed algorithm.
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Let dp,,, = 0;
for each index ¢ from 0 to | X]|,
construct DPocc(); delete DPocc(i — 1) if 7 > 1,
let dpsnk = max(dpsnk7 dp(d(7‘7 ‘YD) + w(OUt(l)))v
let i = —1;
for each index 4 from 0 to | X|,
construct DPocc(i) and I'(i); delete DPocc(i — 1) and I'(i — 1) if i > 1;
if dp(d(s,|Y])) = dp,,, and i’ < 7' (d(i,|Y])), then
let 7' =4'(d(3,|Y])); report that X (i',1] is an occurrence of Y in X.

Fig. 1. Algorithm findOcc(X,Y)

1:  Obtain all occurrences of P in B by executing Algorithm findOcc(B, P);
let ' = 0; let i = 0;
for each occurrence A(ip,ip] of P in A reported by Algorithm findOcc(A, P),
which is executed along with iterations of this sentence,
while 7/ < p,
compute DPper(i'); delete DPpyer(i’ — 1) if 3" > 1;
increase i’ by one;
while i <ip, or i <m if A(ip,ip] is the last occurrence of P in A,
compute DPg,(i) and TR(7); delete DPqug(i—1) and TR(i—1) if i > 1;
increase ¢ by one;
output (A(i',4], B(j', j]), where the edge in tr(dsus(m,n)) obtained as an ele-
ment of TR(m) is from dpret(i', ') t0 dsus (4, 7).

Fig. 2. Algorithm solveSrtCA(A, B, P)

Definition 6. Let Gper and Ggug be copies of G(A, B) and let vertices in them
be indicated by subscripts pref and suff, respectively. Let the StrCA DAG,
denoted Ggirca, be the edge-weighted DAG obtained from Gpres and Geug by
adding a transition edge of weight zero from dpyef (7', §7) to dsus (4, j) for any pair
of an occurrence A(i’,i] of P in A and an occurrence B(j',j] of P in B and
adding a dummy transition edge of weight —oo from dpe (0, 0) to dsus (0, 0). For
any vertex v in Gguft, let tr(v) represent an arbitrary transition edge through
which some heaviest path from dp,er(0,0) to v passes.

Lemma 5. Substring pair (A(i',i], B(j',7]) is a solution of the StrCA prob-
lem if and only if the transition edge from dpper(i',5') to dsum(i,j) is passed
through by some heaviest path in Gsyca from dprer(0,0) to dsug(m,n). Hence,
tr(dsug(m, n)) gives a solution of the StrCA problem.

Lemma 6. For any vertex v in Gsug and any vertez u in to(v) with dp(v) =
dp(u) +w(u,v), tr(u) is an instance of tr(v), where we treat the transition edge
from w to v as tr(u) if u is a vertex in Gpyer.

The proposed algorithm solves the StrCA problem based on Lemma 5. The
key idea to achieve linear-space computation of tr(ds.g(m,n)) is to successively
focus on which transition edge some heaviest path in Ggypoa from dper(0, 0)
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to each vertex v in Ggug passes through. According to the recurrence relation
of tr(v) given in Lemma 6, the algorithm determines tr(v) for each vertex v
in Ggug and forget previously determined ¢r(u) no longer in use successively.
This is unlike in the case of the algorithm adopting an approach similar to
the quadratic-space algorithm of Deorowicz [5] for the STR-IC-LCS problem,
which simultaneously determines how much any heaviest path from dpef(0,0)
to dsur(m, n) passing through each of all transition edges weighs.

Let DPpei(t’) denote the array of DP table values dp(v) for all vertices v
in the ¢'th row of Gprer and let DPguq(2) and TR(i) denote the array of DP
table values dp(v) and the array of transition edges ¢r(v) for all vertices v in
the ith row of Gsum, respectively. Then, DP (i) can be constructed in O(n)
time from scratch, if i/ = 0, or from DPp.f(i’ — 1), otherwise. Furthermore,
DPgug(i) and TR(7) can be constructed in O(n) time from scratch, if ¢ = 0, or
otherwise from DPg.g(i—1) and TR(i— 1), together with DPp.¢(¢') if A has an
occurrence A(i', 4] of P for some index i’. Thus, we eventually obtain Algorithm
solveStrCA(A, B, P) presented in Fig. 2 as the proposed algorithm for the StrCA
problem, which satisfies the following theorem.

Theorem 1. The StrCA problem is solvable in O(mn) time and O(n) space by
executing Algorithm solveStrCA(A, B, P).
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