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Abstract. Brain networks characterize the temporal and/or spectral
connections between brain regions and are inherently represented by
multi-way arrays (tensors). In order to discover the underlying factors
driving such connections, we need to derive compact representations from
brain network data. Such representations should be discriminative so
as to facilitate the identification of subjects performing different cog-
nitive tasks or with different neurological disorders. In this paper, we
propose SEMIBAT, a novel semi-supervised Brain network Analysis app-
roach based on constrained Tensor factorization. SEMIBAT (1) leverages
unlabeled resting-state brain networks for task recognition, (2) explores
the temporal dimension to capture the progress, (3) incorporates classi-
fier learning procedure to introduce supervision from labeled data, and
(4) selects discriminative latent factors for different tasks. The Alter-
nating Direction Method of Multipliers (ADMM) framework is utilized
to solve the optimization objective. Experimental results on EEG brain
networks illustrate the superior performance of the proposed SEMIBAT
model on graph classification with a significant improvement 31.60 %
over plain vanilla tensor factorization. Moreover, the data-driven factors
can be readily visualized which should be informative for investigating
cognitive mechanisms. The software related to this paper is available at
https://www.cs.uic.edu/~bcaol/code/semibat.zip.
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1 Introduction

Brain networks (a.k.a, connectome [25]) obtained from neuroimaging data have
been commonly employed to study neuropsychiatric disorders [3,15,27,30]. Con-
nectivity patterns are usually embedded within the graph structures by a set
of vertices and edges where vertices correspond to regions of interest in the
brain and edges represent the connectivity strength or correlation between brain
regions. Considering the temporal and spectral domain, original brain networks
are typically represented in multi-way arrays (i.e., tensors) which make the con-
ventional vector-based classification algorithms inapplicable. Moreover, directly
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Fig. 1. The framework of tensor-based brain network analysis.

reshaping tensors into vectors would result in the curse of dimensionality, and
the number of brain network samples is usually small, thereby making it chal-
lenging to train an effective classifier in a high dimensional feature space with a
limited number of samples.

In order to apply conventional machine learning algorithms and train pattern
classifiers, it is preferable to first derive vector representations from the brain
network data. In general, researchers have proposed to extract two types of fea-
tures: (1) graph-theoretical measures [13,27] and (2) subgraph patterns [6,17].
However, the expressiveness of these features is limited to the predefined formu-
lations. To explore a larger space of potentially informative features to represent
brain networks, it motivates us to learn latent representations from the brain
network data. It is desirable to let the latent representations be discriminative
so that brain networks with different labels can easily be separated. Learning
such representations is a non-trivial task due to the following problems:

(P1) Although labeled brain network data for specific tasks or diseases are usu-
ally costly to obtain, brain networks under resting-state from healthy subjects
are recorded in many neuroimaging experiments. How can we leverage the
unlabeled data, i.e., resting-state brain networks, to facilitate classification?

(P2) Existing studies usually compute time-averaged brain networks before fur-
ther analysis [28] which may result in formidable information loss. How can
we directly fully utilize the temporal information in our model?

(P3) In order to obtain discriminative representations, we should incorporate
the classifier training procedure into the representation learning process for
leveraging the supervision information. How can we effectively fuse these two
procedures together?

(P4) Different classes (or tasks) are usually associated with different subsets of
the latent factors. How can we achieve feature selection in the latent space?

In this paper, we propose SEMIBAT, a semi-supervised Brain network Analy-
sis approach based on constrained Tensor factorization. The proposed framework
is illustrated in Fig. 1. The contributions of this work are fourfold:

— We leverage unlabeled resting-state brain networks together with labeled data
to collectively learn a latent space, which alleviates the problem that labeled
brain network data for specific tasks or diseases are usually very limited.

— We model brain networks through partially symmetric tensor factorization
which is suitable for inherently undirected graphs, e.g., EEG brain networks.
The temporal dimension is modeled as one of modes in the fourth-order tensor.
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— We blend representation learning and classifier training into a unified optimiza-
tion problem, which allows classifier parameters to interact with discriminative
latent factors by leveraging the supervision information.

— We incorporate the f3 ; norm to conduct feature selection in the latent space,
thereby identifying discriminative latent factors for different tasks.

2 Preliminaries

Table1 lists some basic symbols that will be used throughout the paper. We
introduce the concept of tensors which are higher order arrays that generalize
the notions of vectors (the first-order tensors) and matrices (the second-order
tensors), whose elements are indexed by more than two indices. Each index
expresses a mode of the data and corresponds to a coordinate direction. The
number of variables in each mode indicates the dimensionality of a mode. The
order of a tensor is determined by the number of its modes. An mth-order tensor
can be represented as X = (z;, ... ;, ) € RIvXIm where I; is the dimension of
X along mode . An overview of tensor notation and operators is given as follows
which will be used to formulate the problem.

Table 1. Overview of tensor notation and operators.

Notation | Interpretation

a scalar

a vector

A matrix

X tensor, set or space

Xk matricization of tensor X along mode k
* Hadamard product (elementwise product)
o tensor product (outer product)

Xk mode-k product

® Kronecker product

® Khatri-Rao product

11l norm of a vector, matrix or tensor

|- cardinality of a set

Definition 1 (Tensor Product). The tensor product X oY of a tensor
X € ROXxIm gnd another tensor Y € RO *Ln js defined by (X o

: . i :r = Z; ; o/ :r
y)zl,.“,zm,zl,...,zm, iEzl,...,zmyzl,...,zm, .

Tensor product is also referred to as outer product in some literature [9,29].
An mth-order tensor is a rank-one tensor if it can be defined as the tensor
product of m vectors.
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Definition 2 (Mode-k Product). The mode-k product X Xy A of a tensor
X € RIvxIm gnd q matriv A € R7*Tx 4s of size Iy x -+ X I_q x J X Ipyq1 ¥
o+ X I and is defined by (X Xy A)ilgu-’ik—lsj7ik+l7~~,im = Zz‘I::l Ligyeoosim A+

Definition 3 (Kronecker Product). The Kronecker product of two matrices
A e R™*7 B e REXL s of size IK x JL and is defined by

a11B-~-a1JB
A®B=

CLIlB a[JB

Definition 4 (Khatri-Rao Product). The Khatri-Rao product of two matri-
ces A € RI*XKE B ¢ RI*K s of size IJ x K and is defined by A ® B =
(a1 ®b1,-++ ,ax @bk ) where ay,- -+ ,ar,b1, -+ ,bg are the columns of matrices
A and B, respectively.

Definition 5 (Partially Symmetric Tensor). A rank-one mth-order tensor
X € RIvxIm s partially symmetric if it is symmetric on modes iy, ...,i; €
{1,...,m} and can be written as the tensor product of m vectors: X =xMo-..o
x(M) where x(11) = ... = x(#)

Definition 6 (Mode-k Matricization). The mode-k matricization of a ten-
sor X € RIvxIm s denoted by X (k) and arranges the mode-k fibers to be
the columns of the resulting matriz. The dimension of X s RxxT - where
J=11 - Ix_1Ip41- - L. Each tensor element (i1, ,i,,) maps to the matrix

element (ix, 5): j =1+ Y0ty p(ip = 1)y with Jp =T1"21 0 Iy

3 SEMIBAT Framework

3.1 Problem Formulation

Let D = {Gq,- -+ ,Gy} denote a dynamic graph dataset of brain networks where
|D| = n is the number of graph objects. All graphs in the dataset share a given set
of vertices V' which corresponds to a brain parcellation scheme. Suppose the brain
is parcellated via an atlas into |V| = m regions, and the temporal dimensionality
is t. A brain network G; can be represented by a partially symmetric tensor Z; €
R™*m*t We assume that the first [ graphs within D are labeled and Y € R/*¢
is the class label matrix where ¢ is the number of class labels. Y (i,5) = 1 if
G; belongs to the j-th class, otherwise Y (i,7) = 0. For convenience, we also
denote the labeled graph dataset by D; = {G1,---,G;}, and the unlabeled
graph dataset as D, = {Gi41,- -+ ,Gn}, D = D;UD,. In our experiments, brain
networks under emotion regulation tasks compose labeled graphs, while those
under resting-state compose unlabeled graphs.
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3.2 Tensor Modeling

We first address the problem (P1) discussed in Sect.1 by stacking the brain
network dataset D of n graphs, i.e., {Z;}",, as a tensor X € RmM>mxtxn
Through joint tensor factorization, unlabeled graphs in D, could facilitate the
representation learning of labeled graphs in D; by affecting latent factors.

Fig. 2. CP factorization. The fourth-order partially symmetric tensor X is approx-
imated by k rank-one tensors. The f-th factor tensor is the tensor product of four
vectors, i.e., B. foB. foT. s o A. . The temporal dimension is omitted in the plot.

Note that X is a fourth-order partially symmetric tensor (symmetric on the
first two modes) and it naturally models the temporal dimension discussed as
the problem (P2). We assume that X' can be decomposed into k factors in the
following manner

XZCX1BX2BX3TX4A (1)

where B € R™** is the factor matrix for vertices, T € R*** is the factor
matrix for time points, A € R™** is the factor matrix for graphs, and C €
RF**k i5 a fourth-order identity tensor, i.e., C(iy, -+ ,i4) = 6(iy = -+ = iy).
Basically, Eq. (1) is a CANDECOMP/PARAFAC (CP) factorization [16] as
shown in Fig. 2. It is desirable to discover distinct latent factors to obtain more
concise and interpretable results, and thus we include orthogonality constraints
ATA =11

One of the targets is task recognition based on the brain network data. We
assume that there is a matrix of regression coefficients W € R¥*¢ which assigns
graphs with labels based on the graph factor matrix A, i.e., Y = DAW where
D= [lel, le(nfl)] c Rixn

An intuitive idea is to first learn latent representations of brain networks and
then train a classifier on them in a serial two-step manner, which however would
make these two procedures independent with each other and fail to introduce
the supervision information to the representation learning process. Moreover,
the advantage is established in [5] of directly searching for classification-relevant
structure in the original data, rather than solving the supervised and unsuper-
vised problems independently. To address the problem (P3) discussed in Sect. 1,

1 'We considered adding non-negativity constraints to enhance interpretability, but our
preliminary results showed that it would degrade performance.
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vertex (m)

graph (n)
=

Fig. 3. Partially coupled matrix Y and tensor X. The temporal dimension is omitted
in the plot.

we propose to incorporate the classifier learning process (i.e., W) into the frame-
work of learning latent feature representations of graphs (i.e., A). In this manner,
the weight matrix W and the feature matrix A can interact with each other in
the same learning framework. Note that it is similar to coupled matrix and ten-
sor factorization [2], however X and Y are coupled only in part of the graph
mode, as shown in Fig. 3.

In summary, the proposed brain network analysis framework can be mathe-
matically formulated as solving the following optimization problem

min_ [|[X —C x1 B xa B x3T x4 A% +a |DAW — Y||Z +) [WT|2,
B, T, AW N——

factorization error classification loss regularization
st. ATA=1 (2)
—_—

orthogonality

where |[WT||3; is the sparsity-promoting regularization term that controls the
complexity of W and has the effects of feature selection thereby addressing the
problem (P4), and «, A are positive parameters which control contributions of
classification loss and regularization, respectively.

3.3 Optimization Framework

The model parameters that have to be estimated include B € R™** T ¢ Rt*F,
A € R™* and W € RF*¢, The optimization problem in Eq. (2) is non-convex
with respect to B, T, A and W together. There is no closed-form solution for
the problem. We now introduce an alternating scheme to solve the optimization
problem. The key idea is to optimize the objective with respect to one variable,
while fixing others, and decouple constraints using an Alternating Direction
Method of Multipliers (ADMM) scheme [4]. The algorithm will keep updating
the variables until convergence. First, we define the following notations

E=POTOACEC R(m*t*n)xk7 F=BOTOACc R(m*t*n)xk
G=BoPOoOAE R(m*m*n)xk’ H=BoPoTc R(m*m*t)xk
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where P € R™** is the auxiliary variable.

Update the vertex factor matrix B while fixing T, A and W. Note that
X is a partially symmetric tensor and the objective function in Eq. (2) involves a
fourth-order term w.r.t. B which is difficult to optimize directly. To obviate this
problem, we use a variable substitution technique and minimize the following
objective function

. . T2
min X1 —BE ||
st.P=B (3)

The augmented Lagrangian function for problem in Eq. (3) is
v 1
£(B.P) = [Xq) ~ BET3 + LB P~ 7|} (@

where T € R™** are Lagrange multipliers, v is the penalty parameter which can
be adjusted efficiently according to [19].

By setting the derivative of Eq. (4) w.r.t. B to zero, we obtain the closed-form
solution

B = (2X()E +vP + T)(2E"E + vI)~* (5)

To efficiently compute ETE, we consider the following property of the Khatri-
Rao product of two matrices [16]

ETE=PoToOA)TPOTOA) =PTP+TTT+ATA (6)
Similarly, the auxiliary matrix P can be optimized successively
P =(2XF +vB-7)2F"F +vI)"! (7)
The Lagrange multipliers T can be updated using gradient ascent
Y —7T+vP-B) (8)

Update the temporal factor matrix T while fixing B, A and W. Since
there is no constraint on T, we directly obtain the closed-form solution

T =(X3»G)(G'G)™ 9)

Update the graph factor matrix A while fixing B, T and W. By variable
substitution, we need to minimize the following objective function

min X~ AH"[}: + | DAW - Y}

st. QTA=1, Q=A (10)
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The augmented Lagrangian function for problem in Eq. (10) is
L(A,Q) = |Xu) — AH" |} + o| DAW — Y%
¢ Lo ¥ T Loz
PIA-—Q— 0|2+ Z1-QTA - ~w 11
+OIA - Q- solh+ - QTA- JuE ()
where @ € R™* and ¥ € R¥** are Lagrange multipliers, ¢ and 1 are penalty

parameters. By setting the derivative of Eq. (11) w.r.t. A to zero, we obtain the
Sylvester equation

XA+AY =Z
X =¢QQ"

Y = 2HTH + 2aWWT + ¢I

Z=2XH+2aD"YWT + (¢ +9)Q + & — Q¥ (12)

which can be solved by several numerical approaches, e.g., the lyap function in
MATLAB.
The closed-form update for Q is

Q= (WAAT +¢I) (6 + ¥)A - P — AFT) (13)
The Lagrange multipliers @ and ¥ can be updated by
P—O+4(Q—A), ¥—V+h(QTA-T) (14)

Update the weight matrix W while fixing B, T and A. According to the
analysis of the ¢3; norm in [22], we need to minimize the following objective
function

L(W) = |[DAW — Y||%Z +7|W?|21 = |[DAW — Y||% +4tr(WRWT) (15)

where {2 € R®*¢ is an auxiliary diagonal matrix of the f5 ; norm. The diagonal
elements of (2 are computed as 2(i,7) = 1 where ¢ is a smoothing

2V IIW ()13 +e

term which is usually set to a small constant.
By setting the derivative of Eq. (15) w.r.t. W to zero, we obtain the Sylvester
equation
XW 4+ WY =27
X =2A"D"DA
Y =0
Z =2A"DTY (16)
Based on the above analysis, we develop the optimization framework for brain

network analysis based on tensor factorization, as described in Algorithm 1. The
code has been made available at the author’s homepage?.

2 https://www.cs.uic.edu/~bcaol /code/semibat.zip.
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Algorithm 1. SEMIBAT
Input: X, Y, a, A
Output: B, T, AW
1: Set Umaz = Pmaz = Pmaz = 105, p = 1.15
2: Initialize B, T,A,W ~(0,1),7 =0 =¥ =0,0=¢ =1 = 10°°
3: repeat
: Update B and P by Eq. (5) and Eq. (7)

4

5:  Update T by Eq. (9)

6: Update A and Q by Eq. (12) and Eq. (13)

7:  Update W by Eq. (16)

8: Update 7', & and ¥ by Eq. (8) and Eq. (14)

9: v min(pv, Vimas), @ — MNP, Gimar), ¥ — min(pth, Prnas)
10: until convergence

3.4 Time Complexity

Each ADMM iteration consists of simple matrix operations. Therefore, rough
estimates of its computational complexity can be easily derived [18].

— The estimate for the update of B according to Eq. (5) is: (1) O(m?ntk) for
the computation of the term 2X)E + vP + 7', (2) O((m + n + t)k?) for the
computation of the term 2ETE + vI due to Eq. (6), O(k?) for its Cholesky
decomposition, and (3) O(mk?) for the computation of the system solution
that gives the updated value of B. An analogous estimate can be derived for
the update of P and T which cost O(k® + (m + n + t)k? + m2ntk).

— Considering I < n and cis usually a small constant, the estimate for the update
of A according to Eq. (12) is: (1) O(n?k) for the computation of the term X,
(2) O((m+n+t)k?) for the computation of the term Y, (3) O(nk?+m?*ntk-+n?)
for the computation of the term Z, and (4) O(nk? +n?%k) for the computation
of the Sylvester equation [14].

— The estimate for the update of Q according to Eq. (13) is O(nk? +n2k + n?).

— The estimate for the update of W according to Eq. (16) is O(nk? + n2k).

Overall, the updates of all model parameters require O(k3 + (m +n +t)k? +
(m2nt + n?)k + n3) arithmetic operations in total.

4 Experiments

4.1 Data Collections

Data were collected from 22 healthy participants at the University of Illinois at
Chicago (UIC) and from 11 healthy participants at the University of Michigan
(UMich), respectively. Each participant underwent an emotion regulation task,
while UIC participants further underwent an eight-minute resting-state record-
ing session which served as unlabeled data. During the ERT session, participants
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Fig. 4. Average brain networks during NEUTRAL, MAINTAIN and REAPPRAISE. (Color
figure online)

were instructed to look at pictures displayed on the screen. Emotionally neu-
tral pictures (e.g., landscape, everyday objects) and negative pictures (e.g., car
crash, natural disasters) would appear on the screen for seven seconds in random
orders. One second after the picture on display, a corresponding auditory guide
would instruct the participant to look: viewing the neutral pictures; to maintain:
viewing the negative pictures as they normally would; or to reappraise: view-
ing the negative pictures while attempting to reduce their emotion response by
re-interpreting the meaning of pictures. All EEG data were recorded using the
Biosemi system equipped with an elastic cap with 34 scalp channels. A detailed
description about data acquisition and preprocessing is available in [28].

Overall, the dataset contains n = 121 EEG brain network samples that are
based upon m = 34 vertices and ¢t = 130 time points. The target is to train
a classifier on the UIC source (66 training samples and 22 unlabeled samples)
to predict which task (NEUTRAL, MAINTAIN, or REAPPRAISE) a subject in the
UMich source (33 test samples) is performing. The average brain networks are
shown in Fig. 4 where the x and y axes represent the vertex id, and the color of the
cell represents the strength of the connection between vertex x and y. Although
the group difference appears to be significant, it is non-trivial to identify the
tasks for each individual. It will be validated in the experiments that simply using
edge values as features to train a classifier could not lead to a good classification
performance.

4.2 Compared Methods
The compared methods are summarized as follows:

— SEMIBAT: the proposed semi-supervised brain network analysis approach
based on constrained tensor factorization.

— BAT-RIDGE: replacing the f5 ; norm in SEMIBAT with a regular ridge term.

— BAT-supv: a fully supervised variant of SEMIBAT without leveraging the
unlabeled data.

— BAT-uUNSUPV: an unsupervised variant of SEMIBAT that first learns latent
representations of brain networks and then trains a classifier on them in a
serial two-step manner.

— BAT-3D: applying SEMIBAT on time-averaged brain networks.
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— ALS: plain vanilla tensor factorization using alternating least squares without
any constraint [8].

— SUBGRAPH: a discriminative subgraph selection method for uncertain graph
classification [7,17].

— CC: extracting local clustering coefficients as features, one of the most popular
graph-theoretical measures that quantify the cliquishness of the vertices [24].

— EDGE: using edge values as features by flatting adjacency matrices of brain
networks into vectors.

For a fair comparison, we used a regularized regression in SEMIBAT as the
base classifier for all the compared methods. The parameters o and A were tuned
in the range of 2719, ...,210 the rank k was tuned in the range of 1,...,20. The
accuracy with the best parameter configuration was reported, as well as the
corresponding precision, recall and F'1 score.

4.3 Classification Performance

Experimental results in Table 2 show the classification performance of compared
methods on distinguishing the three tasks. EDGE serves as the basis for compar-
ison that treats a brain network as a collection of edges, thereby blinding the
connectivity structures of brain networks, which surprisingly outperforms CC.
Although clustering coefficients have been widely used to identify Alzheimer’s
disease [13,27], they appear to be less useful for distinguishing the emotion regu-
lation tasks. SUBGRAPH achieves a better performance by extracting connectivity
patterns within brain networks.

Factorization models demonstrate themselves with significantly better accu-
racy. According to the low-rank assumption, a low-dimensional latent factor of
each graph is obtained by first stacking all the brain network data and then fac-
torizing the constructed tensor. ALS is a direct application of the alternating least

Table 2. Classification performance. N, M and R stand for tasks: NEUTRAL, MAINTAIN
and REAPPRAISE, respectively. The best performance on each metric is in bold.

Methods Evaluation metrics

Accuracy | Precision Recall F1
N M R N M R
SEMIBAT 0.758 0.833 | 0.889 |0.667 |0.833|0.667 | 0.833  0.765
BAT-rRIDGE | 0.697 0.909 | 0.700 | 0.600 |0.833 0.583 |0.750 |0.706
BAT-supv 0.697 0.714 |10.750 | 0.700|0.833  0.750|0.583 | 0.706
BAT-uNsupv | 0.576 0.818 | 0.600 |0.467 |0.750 | 0.500 |0.583 |0.588

BAT-3D 0.545 0.857 1 0.538 |0.500 |0.500 |0.583 |0.667 |0.559
ALS 0.576 0.750 |0.636 |0.462 |0.750 |0.583 |0.500 |0.588
SUBGRAPH 0.515 0.800 | 0.500 |0.444 |0.667 |0.333 | 0.667 |0.529
CC 0.364 0.286 | 0.667 |0.391 |0.167 |0.333 | 0.750 |0.382

EDGE 0.455 0.462 |0.700 |0.385 |0.500 | 0.583 |0.417 |0.471
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squares technique to the standard tensor factorization problem without incor-
porating any constraint or supervision. A significant improvement of 31.60 % by
SEMIBAT over ALS can be observed, mainly due to the fact that the unsuper-
vised ALS approach fails to interact with the classifier training procedure which
shows comparable performance with BAT-UNSUPV. It indicates the importance
of addressing the problem (P3) discussed in Sect. 1. Moreover, SEMIBAT outper-
forms BAT-RIDGE thereby demonstrating that it is critical to apply feature selec-
tion in the tensor factorization framework (i.e., the problem (P4)). The advan-
tages of SEMIBAT over BAT-supv and BAT-3D are attributed to leveraging
unlabeled resting-state brain network data (i.e., the problem (P1)) and model-
ing the temporal dimension (i.e., the problem (P2)), respectively.

>
2)
g
=1
Q
5]
<

Accuracy
o
v
o

a (log scale) 9 6  (log scale) 0 5 1k0 15 20
Fig. 5. Sensitivity w.r.t. « and . Fig. 6. Sensitivity w.r.t. k.

4.4 Parameter Sensitivity

In all experiments, the regularization parameter A was tuned for all the baselines,
the rank k£ was tuned for all the factorization models, and a was tuned for
SEMIBAT and its variants. We first investigate the influence of & and A in
SEMIBAT and present the results in Fig.5. It illustrates that neither a small
nor a large a or A would be preferred, and in general, a good choice of « and
A can be found in the range of 2°,...,27 and 2°,...,22, respectively. Moreover,
experimental results of factorization models with different k£ are shown in Fig. 6.
In general, a small k& would rarely be a wise choice, and the best performance
can usually be achieved around k = 17.

4.5 Factor Analysis

We first investigate the factor matrices derived from SEMIBAT in a row-wise
manner. Note that initially with the best parameter configuration as reported
in the last section where k = 17, we obtain a 17-dimensional feature vector for
each brain network (i.e., A(,:)) and each time point (i.e., T(i,:)). For visualiza-
tion we use t-SNE [21] to reduce them into a 2-dimensional space. In Fig. 7, we
show the distribution of brain networks, where there are 99 points representing
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Fig. 7. Embedding of brain networks. Fig. 8. Embedding of time points. (Color
figure online)

33 samples from each of the three tasks (22 resting-state samples are omit-
ted). A relatively clear separation between NEUTRAL and REAPPRAISE can be
observed, while MAINTAIN usually mix with the other two conditions which
make the classification problem challenging. Figure 8 illustrates the distribution
of time points, where there are 130 points and each of them represents an exact
time point indicated by the color. Basically, adjacent time points are colored
similarly. From this figure, we can see that continuous time points form distinct
clusters and brain activities change over time, so it is important to capture the
temporal dimension explicitly.

Next, we visualize and interpret the factor matrices in a column-wise manner.
A k-factor SEMIBAT model extracts the factors B(:,i), T(:,4) and A(:,4), for
1 =1,...,k, where these factors indicate the signatures of sources in vertex, time
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Fig. 9. The two largest factors in terms of magnitude derived from SEMIBAT model
for task recognition. (Color figure online)
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and graph domain, respectively. We show the two largest factors in terms of mag-
nitude in Fig. 9. In the left panel, points indicate the spatial layout of electrodes
(i.e., vertices) on the scalp, and factor values of electrodes are demonstrated on
a colormap using EEGLAB [10]. The middle panel shows the temporal changes
of the factor. The right panel shows the strength of 66 brain networks in the
training set performing different tasks where red, green and blue stand for NEU-
TRAL, MAINTAIN and REAPPRAISE, respectively. A domain expert can identify
the brain activity pattern in the left panel, the corresponding coefficients of time
points in the middle panel, and the graph difference on such pattern in the right
panel. We can see that different latent factors capture activity of different brain
regions. The first factor appears to highlight a quantitative anterior-posterior
gradient (maximum values of the first factor appear in the occipital lobe) that
is shared across all three conditions, thus may be related to visual processing,
while the second factor, which primarily differentiates neutral from maintain
and reappraisal, predominantly involves electrodes around the frontal-parietal
junction and thus may be related to the late positive potential [11,12].

5 Related Work

Tensor factorization has become an effective technique in many healthcare appli-
cations. For example, Acar et al. identify spatial, spectral and temporal signa-
tures of an epileptic seizure as well as an artifact through the application of ten-
sor models [1]. Davidson et al. propose a constrained alternating least squares
framework for network discovery of fMRI data [9]. Papalexakis et al. present a
scalable solution for the coupled matrix-tensor factorization problem, and find
latent variables that jointly explain both the brain activity and the behavioral
responses [23]. Wang et al. introduce knowledge guided tensor factorization for
computational phenotyping [26]. Ma et al. propose a spatio-temporal tensor ker-
nel approach for whole-brain fMRI image analysis [20]. However, these frame-
works are not directly applicable to partially symmetric tensor factorization or
further task recognition.

For graph classification on brain networks, literatures have been focused on
first deriving vector presentations from the brain network data which are then
fed into conventional pattern classifiers. In general, two types of features are usu-
ally extracted: (1) graph-theoretical measures and (2) subgraph patterns. Wee
et al. extract weighted local clustering coefficients of each brain region in relation
to other regions in brain networks to quantify the prevalence of clustered connec-
tivity around brain regions for diagnosis on Alzheimer’s disease [27]. In addition
to the local network property, Jie et al. use a topology-based graph kernel to mea-
sure the topological similarity between paired fMRI brain networks [13]. Kong et
al. propose a discriminative subgraph feature selection method based on dynamic
programming to compute the probability distribution of discrimination scores for
each subgraph pattern within a set of weighted graphs [17]. In contrast to focusing
on the graph view alone, Cao et al. introduce a subgraph mining algorithm using
side information guidance to find an optimal set of subgraph features for graph clas-
sification [6]. However, the expressiveness of these features is limited to the prede-
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fined formulations. It is critical to explore a larger space of potentially informative
features to represent brain networks through data-driven approaches.

6 Conclusion

This paper presents SEMIBAT, a novel semi-supervised brain network analy-
sis approach based on constrained tensor factorization. It leverages unlabeled
resting-state brain networks for task recognition, explores the temporal dimen-
sion to capture the progress, incorporates classifier learning procedure to intro-
duce supervision from labeled data, and selects discriminative latent factors for
different tasks. ADMM is used to solve the optimization problem. In the experi-
ments on EEG datasets, we demonstrate the superior performance of SEMIBAT
on graph classification tasks over the state-of-art methods.
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