Frequency Measures and Graphical
Representation of Data

In Chap. 1, we highlighted that different variables contain different levels of informa-
tion. When summarizing or visualizing one or more variable(s), it is this information
which determines the appropriate statistical methods to use.

Suppose we are interested in studying the employment opportunities and starting
salaries of university graduates with a master’s degree. Let the variable X denote the
starting salaries measured in €/year. Now suppose 100 graduate students provide
their initial salaries. Let us write down the salary of the first student as xj, the
salary of the second student as x», and so on. We therefore have 100 observations
X1, X2, ..., X100. How can we summarize those 100 values best to extract meaningful
information from them? The answer to this question depends upon several aspects
like the nature of the recorded data, e.g. how many observations have been obtained
(either small in number or large in number) or how the data was recorded (either
exact values were obtained or the values were obtained in intervals). For example, the
starting salaries may be obtained as exact values, say 51,500 €/year, 32,350 €/year,
etc. Alternatively, these values could have been summarized in categories such as low
income (<30,000 €/year), medium income (30,000-50,000 €/year), high income
(50,000-70,000 €/year), and very high income (>70,000 €/year). Another approach
is to ask whether the students were employed or not after graduating and record the
data in terms of “yes” or “no”. It is evident that the latter classification is less detailed
than the grouped income data which is less detailed than the exact data. Depending on
which conceptualization of “starting salary” we use, we need to choose the approach
to summarize the data, that is the 100 values relating to the 100 graduated students.

2.1 Absolute and Relative Frequencies

Discrete Data. Let us first consider a simple example to illustrate our notation.
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Example 2.1.1 Suppose there are ten people in a supermarket queue. Each of them
is either coded as “F” (if the person is female) or “M” (if the person is male). The
collected data may look like

M,EM,EM,M,M,E M, M.

There are now two categories in the data: male (M) and female (F). We use a; to refer
to the male category and a; to refer to the female category. Since there are seven male
and three female students, we have 7 values in category a;, denoted asn; = 7, and 3
values in category a», denoted as ny = 3. The number of observations in a particular
category is called the absolute frequency. It follows that n| = 7 and n, = 3 are the
absolute frequencies of a1 and a», respectively. Note that ny + ny = n = 10, which
is the same as the total number of collected observations. We can also calculate
the relative frequencies of ¢ and a3 as f1 = f(a)) = 7L = % =0.7=70% and
fo= flap) = ';—2 = % = 0.3 = 30 %, respectively. This gives us information about
the proportions of male and female customers in the queue.

We now extend these concepts to a general framework for the summary of data
on discrete variables. Suppose there are k categories denoted as ayp, az, ..., ax
withn;(j = 1,2, ..., k) observations in category a ;. The absolute frequency 7 ; is
defined as the number of units in the jth category a ;. The sum of absolute frequencies
equals the total number of units in the data: Zl;zl n;j = n. The relative frequencies
of the jth class are defined as

szf(aj)z%, j=1,2,... k. @.1)

The relative frequencies always lie between 0 and 1 and ZI;:1 fi=1

Grouped Continuous Data. Data on continuous variables usually has a large number
(k) of different values. Sometimes k may even be the same as n and in such a case
the relative frequencies become f; = % for all j. However, it is possible to define
intervals in which the observed values are contained.

Example 2.1.2 Consider the following n = 20 results of the written part of a driving
licence examination (a maximum of 100 points could be achieved):

28, 35,42, 90, 70, 56, 75, 66, 30, 89, 75, 64, 81, 69, 55, 83, 72, 68, 73, 16.

We can summarize the results in class intervals such as 0-20, 21-40, 41-60, 61-80,
and 81-100, and the data can be presented as follows:

Class intervals 0-20 | 2140 | 41-60 | 61-80 | 81-100
Absolute frequencies|| ny =1 |np =3 (n3=3 | na=9 | n5=4

Relative frequencies || f| = % fr= % f3= % fa= % fs = %

We have Z;zl nj =20=nand Z?:l fi=1
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Table 2.1 Frequency distribution for discrete data

Class intervals (a;) ay ar ai
Absolute frequencies (1) ni ny ny
Relative frequencies (f;) fi f fr

Now, suppose the n observations can be classified into k class intervals
. . . . k
ay,ay,...,ag,whereaj(j =1,2,...,k)contains n; observations with ijl nj=
n. The relative frequency of the jthclassis f; = n;/n and lezl fi = 1. Table 2.1
displays the frequency distribution of a discrete variable X.

Example 2.1.3 Consider the pizza delivery service data (Example 1.4.2, Appen-
dix A.4). We are interested in the pizza deliveries by branch and generate the respec-
tive frequency table, showing the distribution of the data, using the table command
in R (after reading in and attaching the data) as

table (branch) # absolute frequencies r%
table(branch)/length(branch) # relative frequencies

aj Centre East West
nj 421 410 435

fil| 2 ~ 0.333] 1% ~ 0323 52 ~ 0.344

We have n = > ; n; = 1266 deliveries and > ; f; = 1. We can see from this table
that each branch has a similar absolute number of pizza deliveries and each branch
contributes to about one-third of the total number of deliveries.

2.2 Empirical Cumulative Distribution Function

Another approach to summarize and visualize the (frequency) distribution of vari-
ables is the empirical cumulative distribution function, often abbreviated as
“ECDF”. As the name itself suggests, it gives us an idea about the cumulative rela-
tive frequencies up to a certain point. For example, say we want to know how many
people scored up to 60 points in Example 2.1.2. Then, this can be calculated by
adding the number of people in the class intervals 0-20, 21-40, and 41-60, which
corresponds tony + ny + n3 = 1 + 3 + 3 = 7 and is the cumulative frequency. If
we want to know the relative frequency of people obtaining up to 60 points, we have
to add the relative frequencies of the people in the class intervals 0-20, 2140, and
41-60as fi + fo+ f5 =55+ 35+ 35 = -
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Before discussing the empirical cumulative distribution function in a more general
framework, let us first understand the concept of ordered values. Suppose the values
of height of four people are observed as x; = 180 cm, x, = 160 cm, x3 = 175 cm,
and x4 = 170 cm. We arrange these values in an order, say ascending order, i.e. first
the smallest value (denoted as x(1)) and lastly the largest value (denoted as x4)). We
obtain

xy =x2=160cm, x@) =x4 =170 cm,
x3) =x3=175cm, xu =x; =180 cm.

The values x(1y, x(2), X(3), and x(4) are called ordered values for which x(j) < x¢2) <
X(3) < X4) holds. Note that x; is not necessarily the smallest value but x(jy is

necessarily the smallest value. In general, if we have n observations x1, x2, ..., X,
then the ordered data is x(1) < x@2) < -+ < X(n).
Consider n observations x1, X2, ..., X, of a variable X, which are arranged in

ascending order as x(j) < x(2) < -+ < X() (and are thus on an at least ordinal scale).
The empirical camulative distribution function F (x) is defined as the cumulative
relative frequencies of all values a;, which are smaller than, or equal to, x:

Fx)= Y f(@a)). 22)

ajfx

This definition implies that F(x) is a monotonically non-decreasing function, 0 <
F(x) <1, limy— _s F(x) = 0 (the lower limit of F is 0), limy_, y F(x) = 1 (the
upper limit of F is 1), and F(x) is right continuous.

2.2.1 ECDF for Ordinal Variables

The empirical cumulative distribution function of ordinal variables is a step function.

Example 2.2.1 Consider a customer satisfaction survey from a car service company.
The 200 customers who had a car service done within the last 30 days were asked to
respond regarding their overall level of satisfaction with the quality of the car service
on a scale from 1 to 5 based on the following options: 1 = not satisfied at all, 2 =
unsatisfied, 3 = satisfied, 4 = very satisfied, and 5 = perfectly satisfied. Based on
the frequency of each option, we can calculate the relative frequencies and then
plot the empirical cumulative distribution function, either manually (takes longer)
or by using R (quick):

Satisfaction level (a;)|j=1|j=2| j=3 | j=4 | j=5
nj 4 16 90 70 20
fi 4/200{16,/200| 90/200 | 70/200 | 20/200
F; 4/200{20/200(110/200{180/200|200/200
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Fig.2.1 ECDF for the satisfaction survey

The F;’s are calculated as follows:
Fi=fi, B=fi+tf+f,
B=fi+tfi, F=AH++f/+ fa
The ECDF for this data can be obtained by summarizing the data in a vector and

using the plot.ecdf () function in R, see Fig. 2.1:

sv <- c(rep(1,4),rep(2,16) ,rep(3,90) ,rep(4,70) ,rep(5,20)) r%
plot.ecdf (sv)

The ECDF can be used to obtain the relative frequencies for values contained in
certain intervals as

H(c < x <d) = relative frequency of values x withc < x <d.

It further follows that:
H(x <aj) = F(aj) (2.3)
H@ <aj)=H(x <aj) - fa)) = Flaj) - fa;)  (24)
H(x>aj)=1-Hx <aj)=1-F(aj) (2.5)
Hx>aj))=1-H(X <aj)=1-F(aj)+ f(a;) (2.6)
H(aj, < x <ajp) = F(a;,) — F(aj) + f(aj) @.7)
H(aj, <x <aj) = F(ap) — F(aj) (2.8)
H(aj, <x <aj,) = F(aj,) — F(a;) — f(a},) 2.9)

H(aj, <x <aj) = F(ap,) — F(aj) — f(aj,) + f(a;) (2.10)
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Example 2.2.2 Suppose, in Example 2.2.1, we want to know how many customers
are not satisfied with their car service. Then, using the data relating to the responses
“1” and “2”, we observe from the ECDF that (16 + 4)/200 % = 10 % of the cus-
tomers were not satisfied with the car service. This relates to using rule (2.3):
H(X <2)=F(2) =0.1or 10 %. Similarly, the proportion of customers who are
more than satisfied can be obtained using (2.5) as H(X >3)=1—-H(x <3) =
1—110/200 = 0.45 % or 45 %.

2.2.2 ECDF for Continuous Variables

In general, we can apply formulae (2.2)—(2.10) to continuous data as well. However,
before demonstrating their use, let us consider a somewhat different setting. Let us
assume that a continuous variable of interest is only available in the form of grouped
data. We may assume that the observations within each group, i.e. each category
or each interval, are distributed uniformly over the entire interval. The ECDF then
consists of straight lines connecting the lower and upper values of the ECDF in each
of the intervals. To understand this concept in more detail, we introduce the following
notation:

k number of groups (or intervals),

ej_1 lower limit of jth interval,

ej upper limit of jth interval,

dj = ej — e;j_1 width of the jth interval,

nj number of observations in the jth interval.

Under the assumption that all values in a particular interval are distributed uni-
formly within this interval, the empirical cumulative distribution function relates to a
polygonal chain connecting the points (0, 0), (e, F(e1)), (e2, F(e2)), ..., (ex, D).
The ECDF can then be defined as

0, X < e
Fx) = F(ej_l)-l—g—;(x—ej_l), x €lej-1,€)) 2.11)
1, X > e

with F(ep) = 0. The idea behind (2.11) is presented in Fig. 2.2. For any interval
[ej—1, ), the respective lower and upper limits of the ECDF are F'(e;) and F(e;_1).
If we assume values to be distributed uniformly over this interval, we can connect
F(ej) and F(e;_1) with a straight line. To obtain F'(x) with x > ¢; | and x < e},
we simply add the height of the ECDF between F(e;_1) and F(x) to F(e;j_1).

Example 2.2.3 Consider Example 2.1.3 of the pizza delivery service. Suppose we
are interested in determining the distribution of the pizza delivery times. Using
the function plot.ecdf () in R, we obtain the ECDF of the continuous data, see
Fig. 2.3a. Note that the structure of the curve is a step function but now almost looks
like a continuous curve. The reason for this is that when the number of observations is
large, then the lengths of class intervals become small. When these small lengths are
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Fig.2.2 Illustration of the A
ECDF for continuous data
available in groups/intervals*®

F(z) i

Y

joined together, they appear like a continuous curve. As the number of observations
increases, the smoothness of the curve increases too. If the number of observations
is not large, e.g. suppose the data is reported as a summary from the drivers, i.e.
whether the delivery took <15 min, between 15 and 20 min, between 20 and 25 min,
and so on, then we can construct the ECDF by creating a table summarizing the data
features as in Table 2.2.

Figure 2.3b shows the ECDF based on the grouped data evaluated in Table 2.2. It
is interesting to see that the graphs emerging from the use of the grouped data and
ungrouped data are similar in this specific example.

Suppose we are interested in calculating how many deliveries were completed
within the desired time limit of 30 min, with a tolerance of maximum 10 %
deviation, i.e. a deviation of 3 min. We can evaluate the ECDF at x = 33 min.

Table 2.2 The values needed to calculate the ECDF for the grouped pizza delivery time data in
Example 2.2.3

Delivery time j ej_1 ej nj fi F(ej)

[0; 10] 1 0 10 0 0.0000 0.0000
(105 15] 2 10 15 3 0.0024 0.0024
(15; 20] 3 15 20 21 0.0166 0.0190
(20; 25] 4 20 25 75 0.0592 0.0782
(25; 30] 5 25 30 215 0.1698 0.2480
(30; 35] 6 30 35 373 0.2946 0.5426
(35; 40] 7 35 40 350 0.2765 0.8191
(40; 45] 8 40 45 171 0.1351 0.9542
(45; 50] 9 45 50 52 0.0411 0.9953
(50; 55] 10 50 55 6 0.0047 1.0000
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Fig.2.3 Empirical cumulative distribution function for pizza delivery time

Basedon (2.11), we calculate H(X < 33) = F(33) = F(30) + f(6)/5(33 — 30) =
0.2480 4 0.2946/5 - 3 = 0.42476. Thus, we conclude, based on the grouped data,
that only about 42 % of the deliveries were completed in the desired time frame.

2.3 Graphical Representation of a Variable

Frequency tables and empirical cumulative distribution functions are useful in provid-
ing a numerical summary of a variable. Graphs are an alternative way to summarize
a variable’s information. In many situations, they have the advantage of conveying
the information hidden in the data more compactly. Similarly, someone’s mood can
be more easily understood when looking at a smiley © than by reading an essay about
one’s mood in a long paragraph.

2.3.1 Bar Chart

A simple tool to visualize the relative or absolute frequencies of observed values of
a variable is a bar chart. A bar chart can be used for nominal and ordinal variables,
as long as the number of categories is not very large. It consists of one bar for each
category. The height of each bar is determined by either the absolute frequency or
the relative frequency of the respective category and is shown on the y-axis. If the
variable is measured on an ordinal level, then it is recommended to arrange the bars
on the x-axis according to their ranks or values. If the number of categories is large,
then the number of bars will be large too and the bar chart, in turn, may not remain
informative.
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Fig.2.4 Bar charts

Example 2.3.1 Consider Example 2.1.1 in which ten people, queueing in a supermar-
ket, were classified as being either male (M) or female (F). The absolute frequencies
for males and females are n; = 7 and ny = 3, respectively. Since there are two cate-
gories, M and F, two bars are needed to construct the chart—one for the male category
and another for the female category. The heights of the bars are determined as either
ny =7andny =3 or fj = 0.7 and f> = 0.3. These graphs are shown in Fig. 2.4.

Example 2.3.2 Consider the data in Example 2.1.3, where the pizza delivery times
for each branch are recorded over a period of 1 month. The frequency table forms the
basis for the bar chart, either using the absolute or relative frequencies on the y-axis.
Figure 2.5 shows the bar charts for the number and proportion of pizza deliveries per
branch. The graphs can be produced in R by applying the barplot command to a
frequency table:

barplot (table(branch)) R
barplot (table (branch)/length(branch))

Remark 2.3.1 Instead of vertical bars, horizontal bars can be drawn using the optional
argument horiz=TRUE in the barplot command.
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Fig.2.5 Bar charts for the pizza deliveries per branch

2.3.2 Pie Chart

Pie charts are another option to visualize the absolute and relative frequencies of
nominal and ordinal variables. A pie chart is a circle partitioned into segments,
where each of the segments represents a category. The size of each segment depends
upon the relative frequency and is determined by the angle f; - 360°.

Example 2.3.3 To illustrate the construction of a pie chart, let us consider again
Example 2.1.1 in which ten people in a supermarket queue were classified as being
either male (M) or female (F): M, F, M, E, M, M, M, F, M, M. The pie chart for this
data will have two segments: one for males and another one for females. The relative
frequencies are f1 = 7/10 and f> = 3/10, respectively. The size of the segment
for the first category (M) is fj - 360° = (7/10) - 360° = 252°, and the size of the
segment for the second category (F) is f> - 360° = (3/10) - 360° = 108°. The pie
chart is shown in Fig. 2.6a.

Example 2.3.4 Consider again Example 2.2.1, where 200 customers were asked
about their level of satisfaction (5 categories) with their car service. The pie chart
for this example consists of five segments representing the categories 1, 2, 3, 4,
and 5. The size of the jth segmentis f; - 360°, j =1, 2, 3, 4, 5. For example, for
category 1, there are 4 out of 200 customers, who are not satisfied at all. The angle
of the segment “not satisfied at all” therefore is f; - 360° = 4/200 - 360° = 7.2°.
Similarly, we can calculate the angle of the other segments and obtain a pie chart as
shown in Fig. 2.6b using the pie command in R

pie(table(sv)) R
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Fig.2.6 Pie charts

Remark 2.3.2 Note that the area of a segment is not proportional to the absolute
frequency of the respective category. Instead, the area of the segment is proportional
to the angle f; - 360° (and depends also on the radius of the whole circle). It has been
argued that this may cause improper interpretations as the human eye may catch the
segment’s area more easily than the angle of a segment. Pie charts should therefore
be used with caution.

2.3.3 Histogram

If a variable consists of a large number of different values, the number of categories
used to construct bar charts will consequently be large too. A bar chart may thus not
give a clear summary when applied to a continuous variable. Instead, a histogram is
the appropriate choice to represent the distribution of values of continuous variables.
It is based on the idea to categorize the data into different groups and plot the bars
for each category with height h; = f;/d;, where d; = e; — e; | denotes the width
of the jth class interval or category. An important consideration for this concept is
that the area of the bars (=height x width) is proportional to the relative frequency.
This means that the widths of the bars need not necessarily to be the same because
different widths can be adjusted with different heights of the bars.

Example 2.3.5 Consider Example 2.1.2, where n = 20 people were divided into five
class intervals 0-20, 2140, 41-60, 61-80, and 81-100 based on their performance
in a written driving licence examination. The frequency table is given as
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Class intervals|| 0-20 21-40 | 41-60 61-80 | 81-100
Absolute freq || n1 =1 | np=3 | n3=3 | na=9 | ns=4
1

Relativefreq || fi= 55 | =135 | 3=55 | fa=15 | [5= 35
Height f;/d; ||h1 = 355 |2 = 755 |3 = 355 |ha = 705 | hs = 70

Fig.2.7 Histogram for the
scores of the people
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The histogram for this grouped data set has five categories and therefore it has
five bars. Since the widths of class intervals are the same, the heights of the bars
are proportional to the relative frequency of the respective category. The resulting
histogram is displayed in Fig. 2.7.

Example 2.3.6 Recall Example 2.2.3 and the variable “pizza delivery time”. Table 2.3
shows the summary of the grouped data and the values needed to calculate the his-
togram. Figure 2.8a shows the histogram with equal widths of delivery time intervals.
We see a symmetric distribution of the pizza delivery times, but many delivery times
exceeding the target time of 30 min. If the histogram is required to have different
widths for different bars, i.e. different delivery time intervals for different categories,
then it can also be constructed as shown in Fig. 2.8b. This representation is different
from Fig. 2.8a. The following commands in R are used to construct the histograms
for absolute and relative frequencies, respectively:

hist(time) # show abs. frequencies R
hist(time, freq=F) # show rel. frequencies

Remark 2.3.3 The R command truehist () from the library MASS presents an alter-
native to the hist () command. The default specifications are somewhat different,
and many users prefer it to the command hist.
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Table 2.3 Values needed to calculate the histogram for the grouped pizza delivery time data

Delivery time j ej—1 ej dj fi hj
[0; 10] 1 0 10 10 0.0000 0.00000
(10; 15] 2 10 15 5 0.0024 0.00047
(15; 20] 3 15 20 5 0.0166 0.00332
(205 25] 4 20 25 5 0.0592 0.01185
(25; 30] 5 25 30 5 0.1698 0.03397
(305 35] 6 30 35 5 0.2946 0.05893
(35; 40] 7 35 40 5 0.2765 0.05529
(405 45] 8 40 45 5 0.1351 0.02701
(45; 50] 9 45 50 5 0.0411 0.00821
(50; 55] 10 50 55 5 0.0047 0.00094
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Fig.2.8 Histogram for pizza delivery time

2.4 Kernel Density Plots

A disadvantage of histograms is that continuous data is categorized artificially. The
choice of the class intervals is crucial for the final look of the graph. A more elegant
way to deal with this problem is to smooth the histogram in the sense that each obser-
vation may contribute to different classes with different weights, and the distribution
is represented by a continuous function rather than a step function. A kernel density
plot can be produced by using the following function:
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Fig.2.9 Construction of kernel density plots

A 1 — X —X;
f"(x):EZK( ; ) h >0, 2.12)

=1
where n is the sample size, & is the bandwidth, and K is a kernel function, for
example

1 e
K(x) = { ; f—l=x=<I (rectangular kernel)

0 elsewhere

3 2
s(1—x7) ifjx| <1 .
s
K(x) ’ 0 elsewhere. (Epanechnikov kernel)

To better understand this concept, consider Fig. 2.9a. The tick marks on the x-axis
represent five observations: 3, 6, 7, 8, and 10. On each observation x; as well as its
surrounding values, we apply a kernel function, which is the Epanechnikov kernel in
the figure. This means that we have five functions (grey, dashed lines), which refer to
the five observations. These functions are largest at the observation itself and become
gradually smaller as the distance from the observation increases. Summing up the
functions, as described in Eq. (2.12), yields the solid black line, which is the kernel
density plot of the five observations. It is a smooth curve, which represents the data
distribution. The degree of smoothness can be controlled by the bandwidth %, which
is chosen as 2 in Fig. 2.9a.
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Fig.2.10 Kernel density plot for delivery time

The choice of the kernel may affect the overall look of the plot. Above, we have
given the functions for the rectangular and Epanechnikov kernels. However, another
common function for kernel density plots is the normal distribution function, which
is introduced in Sect. 8.2.2, see Fig. 2.9b for a comparison of different kernels. The
kernel which is based on the normal distribution is called the “Gaussian kernel” and
is the default in R, where a kernel density plot can be produced combining the plot
and density commands:

example <- c(3,6,7,8,10) R
plot(density(example, kernel='gaussian'))

Please note that kernel functions are not defined arbitrarily and need to satisfy cer-
tain conditions, such as those required for probability density functions as explained
in Chap. 7, Theorem 7.2.1.

Example 2.4.1 Let us consider the pizza data which we introduced earlier and in
Appendix A.4. We can summarize the delivery time by using a kernel density plot
using the R command plot(density(time)) and compare it with a histogram,
see Fig. 2.10a. We see that the delivery times are symmetric around 35 min. If we
shorten the bandwidth to a half of the default bandwidth (option adjust=0.5), the
kernel density plot becomes more wiggly, which is illustrated in Fig. 2.10b.


http://dx.doi.org/10.1007/978-3-319-46162-5_8
http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_7
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2.5 Key Points and Further Issues

Note:

v" Bar charts and histograms are not the same graphical tools. Bar charts
visualize the categories of nominal or ordinal variables whereas his-
tograms visualize the distribution of continuous variables. A bar chart
does not require to have ordered values on the x-axis, but a histogram
always requires the values on the x-axis to be on a continuous scale and
to be ordered. The interpretation of a histogram is simplified if the class
intervals are equally sized, since then the heights of the rectangles of
the histogram are proportional to the absolute or relative frequencies.

v" The ECDF can be used only for ordinal and continuous variables, see
Sect. 7.2 for the theoretical background of the cumulative distribution
function.

v' A pie chart summarizes observations from a discrete (nominal, ordi-
nal or grouped continuous) variable. It is only useful if the number of
different values (categories) is small. It is to be kept in mind that the
area of each segment is not proportional to the absolute frequency of
the respective category. The angle of the segment is proportional to the
relative frequency of the respective category.

V" Other possibilities to visualize the distribution of variables are, for exam-
ple, box plots (Sect. 3.3) and stratified plots (Sects. 4.1.3,4.3.1, and 4.4).

2.6 Exercises

Exercise 2.1 Consider the results of the national elections in South Africa in 2014
and 2009:

Party Results 2014 (%) Results 2009 (%)
ANC (African National Congress) 62.15 65.90

DA (Democratic Alliance) 22.23 16.66

EFF  (Economic Freedom Fighters) 6.35 -

IFP  (Inkatha Freedom Party) 2.40 4.55

COPE (Congress of the People) 0.67 7.42

Others 6.20 5.47

(a) Summarize the results of the 2014 elections in a bar chart. Do it manually and
by using R.

(b) How would you compare the results of the 2009 and 2014 elections? Offer a
simple solution that can be represented in a single plot. Construct this plot in R.


http://dx.doi.org/10.1007/978-3-319-46162-5_7
http://dx.doi.org/10.1007/978-3-319-46162-5_3
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
http://dx.doi.org/10.1007/978-3-319-46162-5_4
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Exercise 2.2 Consider a variable X describing the time until the first goal was scored
in the matches of the 2006 football World Cup competition. Only matches with at
least one goal are considered, and goals during the xth minute of extra time are
denoted as 90 + x:

6 24 90+1 8 4 25 3 8 8 34 25 24 18 6
23 10 28 4 63 6 60 5 40 2 22 26 23 26
44 49 34 2 33 9 16 55 23 13 23 4 8 26
70 4 6 60 23 90+5 28 49 6 57 33 56 7

(a) What is the scale of X?

(b) Write down the frequency table of X based on the following categories: [0, 15),
[15, 30), [30, 45), [45, 60), [60, 75), [75, 90), [90, 96).

(c) Draw the histogram for X with intervals relating to the groups from the frequency
table.

(d) Now use R to reproduce the histogram. Compare the histogram to a kernel
density plot of your choice.

(e) Calculate the empirical cumulative distribution function for the grouped data.

(f) Use R to plot the ECDF (via a step function) for

(i) the original data and
(ii) the grouped data.

(g) Consider the grouped data. Now assume that the values within each interval are
distributed uniformly. Determine the proportion of first goals which occurred

(1) in the first half, i.e. during the first 45 min,
(i1) in the last 10 min or during the extra time,
(iii) between the 20th and 65th min, i.e. what is H(20 < X < 65)?

(h) Determine the time point at which in 80 % of the matches the first goal was
scored at or before this time point.

Exercise 2.3 Suppose we have the following information to construct a histogram
for a continuous variable with 2000 observations:

Jj ej—1 e dj hj

1 0 1 1 0.125
2 1 4 3 0125
3 4 7 3 0125
4 7 8 1 0.125

(a) Determine the relative frequencies for each interval.
(b) Determine the absolute frequencies.
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Exercise 2.4 A university survey was conducted on 500 first-year students to obtain
knowledge about the size of their accommodation (in square metres).

j| Size of accommodation m?)|F(x)
ej_1 =X =e¢j

1| 8-14 0.25

2| 14-22 0.40

3| 22-34 0.75

4| 34-50 0.97

5| 50-82 1.00

(a) Determine the absolute frequencies for each category.
(b) What proportion of people live in a flat of at least 34 m??

Exercise 2.5 Consider a survey in which 100 people were asked to rate on a scale
from 1 to 10 how much they agree with the statement that “there is too much football
on television”. The results are summarized below:

Score 012345 6 7 8910
Responses|0 1388273011642

(a) Calculate and draw the ECDF of the scores.

(b) Determine F(3) and F(9).

(c) Consider the situation, where the data is summarized in the two categories “dis-
agree” (score < 5) and “agree” (score > 5). What would the ECDF look like
under the approach outlined in (2.11)? Determine F(3) and F(9) for the sum-
marized data.

(d) Explain the differences between (b) and (c).

Exercise 2.6 1t is possible to produce professional graphics in R. However, it is
advantageous to go beyond the default options. To demonstrate this, consider Exam-
ple 2.1.3 about the pizza delivery data, which is described in Appendix A.4.

(a) Set the working directory in R (setwd()), read in the data (read.csv()), and
attach the data. Draw a histogram of the variable “temperature”. Type 7hist,
and view the options. Adjust the histogram so that you are satisfied with (i) axes
labelling, (ii) axes range, and (iii) colour. Now use the 1ines () command to
add a dashed vertical line at 65 °C (which is the minimum temperature the pizza
should have at the time of delivery).

(b) Consider a different approach, which constructs plots by means of multiple lay-
ers using ggplot2. You need an Internet connection to install the package using
the command install.packages(’ggplot2’). Browse through the help
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(d)

pages on http://docs.ggplot2.org/current/. Look specifically at the examples for
ggplot, gplot, scale_histogram, and scale_y_continuous. Try to
understand the roles of “aesthetics” and “geoms”. Now, after loading the library
vialibrary(ggplot2),create a ggplot object for the pizza data, which declares
“temperature” to be the x-variable. Now add a layer with geom_histogram to
create a histogram with interval width of 2.5 and dark grey bars which are
50 % transparent. Change the y-axis labelling by adding the relevant layer using
scale_y_continuous. Plot the graph.

Now create a normal bar chart for the variable “driver” in R. Type ?barplot
and 7par to see the options one can pass on to barchart () to adjust the graph.
Make the graph look good.

Now create the same bar chart with ggplot2. Use gplot instead of ggplot
to create the plot. Use an option which makes each bar to consist of segments
relating to the day of delivery, so that one can see the number of deliveries by
driver to highlight during which days the drivers delivered most often. Browse
through “themes” and “scales” on the help page, and add layers that make the
background black and white and the bars on a grey scale.

— Solutions to all exercises in this chapter can be found on p. 325

*Source Toutenburg, H., Heumann, C., Deskriptive Statistik, Tth edition, 2009,
Springer, Heidelberg


http://docs.ggplot2.org/current/

2 Springer
http://www.springer.com/978-3-319-46160-1

Introduction to Statistics and Data Analysis
With Exercises, Solutions and Applications in R
Heumann, C.; Schomaker, M.; Shalabh

2016, X, 456 p. 89 illus., Hardcover

ISBN: 978-3-319-46160-1
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