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Abstract. In order to improve the performance of prediction of protein folding
problem, we introduce a relatively new chaotic clonal genetic algorithm (abbre-
viated as CCGA) to solve the 2D hydrophobic-polar lattice model. Our algorithm
combines three successful components—(i) standard genetic algorithm (SGA),
(ii) clonal selection algorithm (CSA), and (iii) chaotic operator. We compared
this proposed CCGA with SGA, artificial immune system (AIS), and immune
genetic algorithm (IGA) for various chain lengths. It demonstrated that CCGA
had better performance than other methods over large-sized protein chains.
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1 Introduction

Protein folding (PF) is a physical process for a protein chain acquires its 3-dimensional
structure [1, 2]. It imposes a challenge to biologists since the problem has an extremely
large search space [3]. A successful solution to PF requires to solve two important prob-
lems [4]: (i) a series of free residues for the protein chain and (ii) an efficient optimization
procedure. Now since the PF data are easily available, the latter is the most difficult
thing.

Traditional optimizers will not work for the PF problem, because the model
(See Sect. 2) is multimodal and non-differential. Besides, the problem is NP-hard [5].
Hence, advanced global optimizers are introduced to solve it.

The genetic algorithm (GA) and particle swarm optimization [6] are one of the most
popular global optimizations. Moreover, swarm intelligence approaches [7]: biogeog-
raphy-based optimization [8], firefly algorithm [9], artificial bee colony [10], and bacte-
rial chemotaxis optimization [11], have attracted interest from scholars in many fields.
Nevertheless, massive researchers had investigated the PF problems merely with GA,
since the encoding in GA is more suitable for PF problems.
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Lin and Hsieh [12] presented a Taguchi-genetic algorithm (TGA). Huang, Yang and
He [13] employed GA and optimal second structure. Narayanan, Krishnakumar and Judy
[14] proposed an enhanced MapReduce framework using parallel genetic algorithm
(PGA). However, GA may still encounter problems in converging into global optimal.
To improve its performance, we introduced a novel chaotic clonal genetic algorithm
(abbreviated as CCGA) in this study. Below we will show how the mechanism of CCGA
and how it can be applied to solve PF problem.

2 Two Dimensional Hydrophobic-Polar Model

The hydrophobic-polar (HP) protein folding model [15] is a simplified version for
exampling structures of protein folds in space. It stems from the fact that hydrophobic
interactions between amino acids residues drive proteins to fold into native structure
[16]. In this model, protein chains are composed of two types of residues, viz., polar (P)
and hydrophobic (H) [17]. Figure 1 offers an example of a 10-residue chain with energy
of —4.

. hydrophobic
|| hydrophilic

—— protein sequence

””” hydrophobic interaction

Fig. 1. A 10-residue chain of HPHPPHPHPH

Figure 2 indicates that protein chains can turn at each residue position 90" to either
left (L) or right (R) or continue (C) ahead. The first interaction is always set as ‘C’.
Hence, the protein chain can be presented as ‘CLCLLRCCL’. Note that clashes (i.e.,
residues overlap at the same position) is not allowed. In all, our object is to minimize
the following expression

E=n(-1) ey

where n represents the number of hydrophobic interactions, E the energy function.

C
e »0 >0 R
L
(@) C (b)L (©R

Fig. 2. Turning directions of a chain (C = Continue, L = Left, R = Right)
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3 Materials

The materials consisted of five chains with residues sizes of 20, 36, 48, 64, and 85,
respectively. Their information are listed in Table 1. The minimum energy was obtained
by exhaustion method. The protein sequences can be found in Table 1 in reference
[18].

Table 1. Five protein chains

Index 1 2 3 4 5
Size 20 36| 48| 64| 85
Energy |-9 |-14|-23 | -40 |-52

4 Our Optimizor

4.1 Standard Genetic Algorithm

The individuals of standard genetic algorithm (SGA) are encoded as chromosomes
[19, 20]. A set of those chromosomes is termed “population” [21]. A random popu-
lation is created initially to represent solution candidates to PF problem. The energy
function is associated with the objective function to measure each candidate [22]. At
each step, selection, crossover, mutation, and evaluation are implemented in sequence
as in Fig. 3a.

‘ Evaluate each individual ‘

‘ Evaluate new individuals ‘

For each indiviaul
Fitness Value

Top Bottom

Crossover
Chaotic mutation

¥ ‘ Combine next generation ‘

‘ Update the population ‘
Receptor Edit

tisfy Termination
Condition? ermination?

Y
(a) SGA [23] (b) Proposed CCGA

Fig. 3. Diagram of algorithms
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4.2 Two Improvements

The first improvement is we introduce the clonal selection mechanism from clonal
selection algorithm (CSA), which is inspired by clonal selection theory of acquired
immunity, which offers explanation how B and T lymphocytes enhances their response
to antigens. CSAs are commonly applied to optimization fields, such as node detection
[24], scheduling [25], feature selection [26], weight training [27], advanced intelligence
turning [28], etc.

The next improvement is we introduce the chaos theory, because reproduction
operator in clonal selection algorithm (CSA) and crossover operator in standard
genetic algorithm (SGA) cannot generate any new variants to the current chromo-
some. To introduce mutations, we employed a chaotic number generator 7, on current

chromosome:

My < 4n,(1—n,) )

where ny € (0, 1) and ny ¢ {0.25,0.5,0.75}. Figure 4 shows why the initial value of n,
cannot be the value of either 0.25, or 0.5, or 0.75.
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(a) n(0)=0.01 (b) n(0)=(0.25,0.5,0.75)

Fig. 4. Time series of chaotic number

4.3 Our Chaotic Clonal Genetic Algorithm

The chaotic clonal genetic algorithm (CCGA) was proposed with above two improve-
ments. On one hand, the chaotic operator of Eq. (2) was employed to add mutation to
current chromosomes, with the aim of guaranteeing the dynamic ergodicity within solu-
tion space. On the other hand, the clonal selection and receptor edit mechanisms were
included, so that a chromosome with larger affinity will have more chances to be repro-
duced meanwhile the population size keep unchanged.

The diagram of CCGA was pictured in Fig. 3b. At each step, all the chromo-
somes are sorted with regards to the fitness values. Afterwards, the whole set was
segmented into two parts: top part and bottom part as shown in Fig. 5.
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Clone operations will perform over the top part, and crossover and chaotic mutation

operations will perform over the bottom part.

Current Gen Next Gen
Rank | Antibody Antibody
Clone
Top > Cloned
Set
NI2+1 <
Crosso.ver Crossed
/Mutation &
Bottom >
"| Mutated
Set

5 Experiments and Results

5.1 Parameter Setting

We compared the CCGA with standard genetic algorithm (SGA) [29], artificial immune
system [30], and immune genetic algorithm [31]. Table 2 presented their parameters.
Here S denotes the number of chromosomes, and MAX represents maximum iterative
steps. Their values are equivalent for all algorithms for fair comparison. Besides,
r denotes the receptor editing frequency, e denotes the chromosome elimination rate, C

Fig. 5. Diagram of two parts

denotes for the crossover rate, and M denotes the mutation rate.

Table 2. Parameters setting

Approach C M r e S MAX
SGA [29] 03 ]0.08 |- - 1000 50000
AIS [30] — 1 23 25 % | 1000 50000
IGA [31] 03 |0.15 |- 10% | 1000 50000
CCGA (Proposed) |03 |0.15 |23 25 % | 1000 50000

5.2 Algorithm Comparison

Table 3 lists the results of all four algorithms. We used “success rate (SR)” to measure
all methods, which is defined as the ratio of success runs among all 100 runs.
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Table 3. SR of different algorithms

Index 1 2 3 4 5

SGA [29] 9% 2% 0% 0%|0%
AIS [30] 100% 99 % | 81 % | 12 % | 0 %
IGA [31] 100% |78 % 22 % | 6% |1 %
CCGA (Proposed) | 98 % |95 % |77 % |14 % | 3 %

(Bold means the best)

Table 3 showed that CCGA achieves SR of 98 %, 98 %, 77 %, 14 %, and 3 % for all
five protein-chains. It indicates that the CCGA has similar performance on small-size
chains, but as the chain become longer (Index =4 & 5), the proposed CCGA has better
performance than SGA [29], IGA [31], and AIS [30]. The best structures found by
CCGA are shown in Fig. 6.

(@I=1 b)I1=2 ©1=3

(d)I=4 e1=5

Fig. 6. The ideal solutions (I = Index)

6 Conclusions and Future Directions

We proposed a new global optimization method—chaotic clonal genetic algorithm
(abbreviated as CCGA) based on GA, CSA, and chaotic operator. Experiment results
show the superiority of CCGA to recent methods. Future work is composed of two folds.
We shall try to increase the prediction performance for large-size chain, and we shall
test other advanced global optimization algorithms, such as hybridization of swarm
intelligence methods [32, 33].
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