
Chapter 2

Selection of the Regularization Parameter

2.1 General Considerations

The success of all currently available regularization techniques relies heavily on the

proper choice of the regularization parameter. Although many regularization

parameter selection methods (RPSMs) have been proposed, very few of them are

used in engineering practice. This is due to the fact that theoretically justified

methods often require unrealistic assumptions, while empirical methods do not

guarantee a good regularization parameter for any set of data. Among the methods

that found their way into engineering applications, the most common are Morozov’s

Discrepancy Principle (abbreviated as MDP) [morozov84, phillips62], Mallows’

CL [mallows73], generalized cross validation (abbreviated as GCV) [wahba90],

and the L-curve method [hansen98]. A high sensitivity of CL and MDP to an

underestimation of the noise level has limited their application to cases in which

the noise level can be estimated with high fidelity [hansen98]. On the other hand,

noise-estimate-free GCV occasionally fails, presumably due to the presence of

correlated noise [wahba90]. The L-curve method is widely used; however, this

method is nonconvergent [leonov97, vogel96]. An example of image restoration

using different values of regularization parameters is shown in Figs. 2.1, 2.2, 2.3,

2.4, and 2.5. The Matlab code for this example was provided by Dr. Curt Vogel of

Montana State University in a personal communication. The original image is

presented in Fig. 2.1, and the observed blurred image is in Fig. 2.2.

Figures 2.3 and 2.4 represent reconstructed images with too small and too large

regularization parameters, respectively. These two images illustrate the importance

of the regularization parameter selection for proper image restoration. For compar-

ison, Fig. 2.5 represents the image reconstructed using a “good” value of regular-

ization parameter.
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2.2 Discrepancy Principle

The discrepancy principle is the most widely used method which requires a priori

knowledge of some of the noise properties such as the power of the noise. The

regularization parameter value is chosen as a solution of the equation

Fig. 2.1 Original image

Fig. 2.2 Observed blurred

image

Fig. 2.3 Reconstructed

image with a very small

regularization parameter

(λ¼ 10–20)
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Y � Dxλk k2 ¼ ε, where ηk k2 � ε: ð2:1Þ

The ε is the upper bound on the variance of the noise.

The regularization parameter λ is chosen such that the corresponding residual

(left-hand side) of Eq. (2.1) is less than or equal to the a priori specified bound

(right-hand side) for the noise level in the response. Since a smaller λ corresponds to
less stable solutions, the λ for which the residual equals the specified noise level is

chosen. There is no reason to expect a residual less than the noise level. In modeling

from data, a residual less than the noise level in the response corresponds to

overfitting, which is a term for learning noise in the training data. The regularization

method with λ chosen according to the discrepancy principle in Eq. (2.1) is

convergent and of optimal order [engl00, morozov84]. Application of the discrep-

ancy principle requires solving the following nonlinear equation with respect to λ as
shown in [golub97].

Y � D DTDþ λI
� ��1

DTY
��� ���

2
¼ ε: ð2:2Þ

Fig. 2.4 Reconstructed

image with a very large

regularization parameter

(λ¼ 10)

Fig. 2.5 Reconstructed

image with a good value of

regularization parameter

(λ¼ 0.0007)
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For λ> 0, the identity

I � D DTDþ λI
� ��1

DT ¼ λ DDT þ λI
� ��1 ð2:3Þ

holds. Hence, Eq. (2.2) can be rewritten as

Yλ DDT þ λI
� ��1

��� ���
2
¼ ε ð2:4Þ

or

Yλ DDT þ λI
� ��1

h iT
� Yλ DDT þ λI

� ��1
h i

¼ ε; ð2:5Þ

and after elementary matrix algebra, we arrive at the following nonlinear equation

for λ.

λ2YT DDT þ λI
� ��2

Y ¼ ε: ð2:6Þ

Since the derivative of the left-hand side is equal to

2λYTD DTDþ λI
� ��3

DTY; ð2:7Þ

the function λ2YT DDT þ λI
� ��2

Y is strictly increasing for λ> 0, and Eq. (2.6) has a

unique positive solution.

A very important property of the discrepancy principle is its convergence or

regularity, which means that as error kηk2 in the data goes to zero, the λ selected by
MDP goes to zero; hence, the approximated regularized solution xλ converges to the
exact solution or true image xexact. Normally, the literature on inverse problems

analyzes the rates of convergence of xλ to xexact. The faster the method converges,

the better its behavior.

Statistical literature on the selection of a regularization parameter is more

concerned about asymptotic behavior of different methods as the number of

samples N goes to infinity.

To apply MDP, we must have a priori knowledge about the noise level in the

response. Since the noise level is usually unknown, we use an estimate of the noise

level. One of the methods for noise estimation is described in [wahba90] and

consists in monitoring the function

σ̂ 2
η ¼

Y � Dxλk k22
trace I � D DTDþ λI

� ��1
D

� � : ð2:8Þ
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The plateau of this function can serve as a good estimate of the noise variance.

However, in practice the variance of the residuals of the least square solution is

often used as a quick estimate of the noise level.

Unfortunately, MDP is very sensitive to an underestimation of the noise level.

This limits its application to cases in which the noise level can be estimated with

high fidelity [hansen98]. The MDP belongs to a posteriori methods for the selection

of a regularization parameter. A posteriori RPSM requires the noise level to be

either known or reliably estimated. Such an estimate of the noise level can be hard

to obtain.

2.3 L-Curve

An alternative approach to regularization parameter selection uses noise-level-free

RPSMs. Noise-level-free RPSMs are also referred to as heuristic RPSMs. We are

now going to consider some of these methods. The method which attracted the

attention of researchers recently is the L-curve method [hansen93]. The method is

based on the plot of the logarithm of the solution norm xλ versus the logarithm of the

norm of the residuals. In many cases, such a curve has a characteristic L shape. It is

then argued that the optimal regularization parameter has to be selected at the point

of maximum curvature of the curve or its “elbow.” Mathematically, the L-curve

criterion seeks to maximize the curvature

CL λð Þ ¼ ρ0η
00 � ρ

00
η0

ρ0ð Þ2 þ η0ð Þ2
� �3=2 ¼ max, where ð2:9Þ

ρ λð Þ ¼ log Y � D DTDþ λI
� ��1

DY
��� ���

2
¼ log λ DDT þ λI

� ��1
Y

��� ���
2
and ð2:10Þ

η λð Þ ¼ log DTDþ λI
� ��1

DTY
��� ���

2
: ð2:11Þ

The differentiation is with respect to λ. A typical L-curve is presented in Fig. 2.6. To

obtain the curve, we used Hansen’s regularization toolbox [hansen94].

The L-curve method recently suffered major theoretical as well as practical

setbacks. It was shown in [leonov97, vogel96] that the method is generally not

convergent, and in practice the L-curve may not have an “elbow” or have

several ones.
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2.4 Mallow’s CL

The other heuristic method which was proposed in statistical literature is the

Mallow’s CL or unbiased prediction risk estimation method. In the following

derivations, we closely follow [vogel02]. Let’s call the difference between the

regularized image and true image an estimation error

ελ ¼ xλ � xtrue: ð2:12Þ

Obviously, this quantity is unknown and not computable due to the unavailability of

the true image xtrue. The observed image represents convolution of the true image

with point spread function plus some additive noise as in

Y ¼ Dxtrue þ η: ð2:13Þ

Let’s define the predictive error as the difference between two quantities

pλ ¼ Dxλ � Dxtrue: ð2:14Þ

We can express the regularized image xλ as

xλ ¼ DTDþ λI
� ��1

DTY ð2:15Þ
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Fig. 2.6 The generic form of the L-curve
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or

xλ ¼ DTDþ λI
� ��1

DT Dxtrue þ ηð Þ; ð2:16Þ

and, hence, the predictive error can be expressed as

pλ ¼ H � Ið ÞDxtrue þ Hη; ð2:17Þ

where H is the hat or influence matrix

H ¼ D DTDþ λI
� ��1

DT: ð2:18Þ

As shown in [wahba90], the mean value of the mean squared predictive error can be

written as

E
1

n
pλk k2

� �
¼ 1

n
H � Ið ÞDf truek k2 þ σ2

n
trace Hð Þ: ð2:19Þ

Notice that this value is not computable either; however, we can introduce the

training error as

rλ ¼ Df λ � Y: ð2:20Þ

As shown in [vogel02],

E
1

n
rλk k2

� �
¼ E

1

n
pλk k2

� �
� 2

σ2

n
trace Hð Þ þ σ2; ð2:21Þ

hence,

E
1

n
pλk k2

� �
¼ E

1

n
rλk k2

� �
þ 2

σ2

n
trace Hð Þ � σ2: ð2:22Þ

The CL function is given as

CL ¼ 1

n
rλk k2 þ 2

σ2

n
trace Hð Þ � σ2; ð2:23Þ

hence, the CL function is an unbiased estimator for the mean squared predictive

error

E CLð Þ ¼ E
1

n
pλk k2

� �
: ð2:24Þ
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In the case of a correctly specified point spread function and Gaussian noise, CL is

theoretically optimal. It should be noted that CL requires the estimation of the noise

variance

σ2 ¼ var ηð Þ; ð2:25Þ

and, what is even more important, the CL performance depends heavily on the

accuracy of this estimate. The image reconstructed using CL as parameter selection

method is shown in Fig. 2.7.

2.5 Generalized Cross Validation

To overcome the inconvenience of noise estimation, Wahba [wahba90] suggested a

noise-free method for the selection of a regularization parameter which is currently

widely used—generalized cross validation (GCV). GCV is a rotation-invariant

version of ordinary leave-one-out cross validation. The ordinary cross validation

is known not to be invariant under data transformations, and GCV fixes this

problem. The GCV seeks for a minimum of the following function:

GCV λð Þ ¼
1
n Y � Dxλk k22

1

n
trace I � Hð Þk k

	 
2 : ð2:26Þ

We can see that the GCV function is the ratio of two functions—the mean sum of

squares 1
n Y � Dxλk k22 and a penalty function 1

n trace I � Hð Þk k� �2
which is often

called the effective degrees of freedom and is used to quantify the amount of

information in ill-posed problems. The GCV function has a number of nice prop-

erties such as convergence to the optimal regularization parameter as n goes to

infinity, and convergence rates for this method are also available. GCV is derived

under the assumption of white Gaussian noise, and, if this condition fails to hold,

Fig. 2.7 Reconstructed

image with regularization

parameter selected with CL

(λ¼ 0.0007)
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the GCV may produce grossly under regularized solutions. The GCV function itself

can also have very flat minima, thus leading to numerical difficulties in determining

a unique value of regularization parameter. A typical GCV function is plotted in

Fig. 2.8. An image reconstructed using GCV for the selection of the regularization

parameter is shown in Fig. 2.9.

2.6 Information Approach to the Selection
of a Regularization Parameter

There are two potential problems with all the methods that we considered so far.

First of all, if the true relationships between the observed image Y and original

image X are not linear or if the response function is not known exactly, then we have

what is called functional misspecification. The second problem is the assumption of

white Gaussian noise in the data which is rarely a valid assumption in image
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Fig. 2.8 A typical GCV

function

Fig. 2.9 Reconstructed

image using GCV for the

selection of regularization

parameter (λ¼ 0.0007)
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processing applications. This second type of misspecification is called distribu-

tional misspecification. Both these misspecifications affect the estimation of the

covariance matrix of the restored image which is implicitly used by many methods

to select the regularization parameter. We now consider the information approach

to regularization parameter selection, which is robust to the model misspecification

and also robust to the underestimation of the regularization parameter. However,

first, we have to consider some theoretical preliminaries such as Kullback-Leibler

(abbreviated KL) distance (Fig. 2.10).

When the parameters of a specified model f(Xi, Yi; b) are estimated by the

maximum penalized likelihood (MPL) method (see Appendix D), each particular

choice of the penalty operator and regularization parameter yields some approxi-

mating density f̂λ � f Xi,Yi; b̂λ
� �

. The closeness of this approximating density f̂λ to

the unknown true density g(Xi,Yi), assuming such exists, can be evaluated by the

Kullback-Leibler [kullback51] (abbreviated as KL) information (or distance) that

measures the divergence between the densities

KL f̂λ ; g
� � � EW,Z log

g

f̂λ

( )
¼
ð
� � �
ð
log

g w; zð Þ
f w, z; b̂λ
� �

� g w; zð Þ dw1, dw2, . . . , dwmdz:

ð2:27Þ

The regularization parameter can be selected to minimize the mean KL distance.

The mean KL distance is the KL distance averaged over all possible data sets

D which can be used to obtain the approximating density f̂λ .

λ̂ KL ¼ arg min
λ

EDKL f̂λ ; g
� �
 �

: ð2:28Þ

Such a choice guarantees that, on the average, the corresponding approximating

density will be closest among those considered in the sense of the minimum KL

distance. We can decompose the mean KL distance into a “systematic error” and a

“random error”:

Fig. 2.10 Reconstructed

image with regularization

parameter selected with

ICOMPRPS (λ¼ 0.0007)
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EDKL f̂λ ; g
� � ¼ ED EW,Zlog

g

f̂ λ

( )

¼ ED EW,Zlog
g

f *
f *

f *λ

f *λ
f̂ λ

( )

¼ EW,Zlog
g

f *
þ EW,Zlog

f *

f *λ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Systematic Error

þED EW,Zlog
f *λ
f̂ λ

( )
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Random Error

;

ð2:29Þ

where f * � f W, Z; b*
� �

, and b* is a solution of

EW,Z
∂
∂b

LL W,Z
��b� �� �

¼ 0; ð2:30Þ

or the limiting value of the maximum likelihood (ML) estimator f *λ � f W,Z; b*λ
� �

,

and b�λ is a solution of

EW,Z
∂
∂b

PLL W,Z
��b� �� �

¼ 0, ð2:31Þ

or the limiting value of the MPL estimator.

The systematic error, which can also be termed the bias, consists of two terms.

The first term represents the error of modeling and vanishes when the model is

correctly specified. The second term represents the error due to using a penalization

and vanishes when the maximum likelihood method of estimation is used. The

random error, also called the variance, arises due to the inaccuracy of the model’s

parameter estimation because of a limited number of observations. When the model

is correctly specified and the ML method is used, only the variance term contributes

to the mean KL distance. However, as we know, the variance in a case of

ill-conditioned data sets can be very large and make the approximating density

useless. Although penalization introduces a bias, it also drastically reduces the

variance, allowing for a trade-off which may reduce the mean KL distance. This

means that, on the average, with a properly chosen regularization parameter, the

penalized model can be closer to the true model.

From the definition of the KL distance, it can be seen that, since ED{EW,Z log g}

does not depend on the model f̂λ , minimization of the mean KL distance is

equivalent to maximization of the mean expected log likelihood (abbreviated as

MELL) which is defined as

MELL λð Þ � ED EW,Zlog f̂λ

 �

; ð2:32Þ
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where, as before, W and Z have the same joint distribution as Xi and Yi and are

independent of them. That is why the mean expected log likelihood is extensively

used in statistical model selection as a powerful tool for evaluating the model

performance and for choosing one model from the competing models. In a

pioneering work, [akaike73] introduced the MELL as a model selection method

and justified the use of ML for parameter estimation.

In the Gaussian case (when Z
��W is normally distributed) and with a correctly

specified model, maximization of the mean expected log likelihood is equivalent to

minimization of the mean predictive error (abbreviated as MPE). As with MPE, the

mean expected log likelihood is not computable because of the unknown true

distribution, but it can be estimated by plugging the empirical distribution into

Eq. (2.32). By this means, the so-called average log likelihood (abbreviated as

ALL) is obtained as follows:

ALL b̂ λ

� � ¼ 1

n

Xn
i¼1

log f Yi

��Xi; b̂ λ

� �
: ð2:33Þ

Despite the fact thatALL bð Þ ! ELL bð Þasn ! 1, due to the law of large numbers,

the ALL, evaluated at MPLE b̂λ, is a biased estimator of the MELL of the MPL

model, i.e., ED ALL b̂λ
� � 6¼ MELL λð Þ. This bias should be corrected when we use

MELL as an RPSM. In the next section, one of the methods for bias correction is

presented. This method is usually used for deriving information model selection

criteria as in [akaike73, sakamoto86, bozdogan87, konishi96, shibata89].

An information-based RPSM is given as the maximization of the mean expected

log likelihood (Eq. 2.32) of maximum penalized likelihood models

λ̂MELL ¼ arg max
λ

MELL λð Þf g: ð2:34Þ

As already mentioned, the MELL is not computable and can be estimated by the

ALL. The ALL, evaluated at the MPLE, is a biased estimator of MELL. To quantify

the bias of ALL in estimating the MELL, we first define the expected penalized log

likelihood (abbreviated as EPLL) as

EPLL bð Þ � EW,ZPLL W,Z
��b� � ð2:35Þ

and expand it in a Taylor series at b̂λ around b�λ , which is the limiting value of the

MPLE b̂λ as n ! 1.
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EPLL b̂ λ

� � � EPLL b*λ
� �þ ∂

∂bEPLL b*λ
� �
 �T

b̂ λ � b*λ
� �

þ 1

2
b̂ λ � b*λ
� �T ∂2

∂b∂bT
EPLL b*λ

� �( )
b̂ λ � b*λ
� �

¼ EPLL b*λ
� �� 1

2
b̂ λ � b*λ
� �T

J b̂ λ � b*λ
� �

;

ð2:36Þ

where

J � � ∂2

∂b∂bT
EPLL b*λ

� �
: ð2:37Þ

Next, we expand the average penalized log likelihood (abbreviated as APLL)

defined as

APLL bð Þ � 1

n

Xn
i¼1

LL Xi,Yi

��b� �� λp bð Þ ð2:38Þ

in a Taylor series at b�λ around b̂ λ as

APLL b*λ
� � � APLL b̂ λ

� �þ ∂
∂bAPLL b̂ λ

� �
 �T
b*λ � b̂ λ

� �
þ 1

2
b*λ � b̂ λ

� �T ∂2

∂b∂bT
APLL b̂ λ

� �( )
b*λ � b̂ λ

� �
� APLL b̂ λ

� �� 1

2
b*λ � b̂ λ

� �T
J b*λ � b̂ λ

� �
ð2:39Þ

We used the fact that

∂
∂b

APLL b̂ λ

� � ¼ 0 ð2:40Þ

and that, by the law of large numbers, as n ! 1

∂2

∂b∂bT
APLL b*λ

� �( )
! ∂2

∂b∂bT
EPLL b*λ

� �( )
; ð2:41Þ

and, since b̂ λ ! b*λ as n ! 1, we have

∂2

∂b∂bT
APLL b̂ λ

� �( )
! ∂2

∂b∂bT
EPLL b*λ

� �( )
: ð2:42Þ
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Using EDEPLL b*λ
� � ¼ EDAPLL b*λ

� �
and combining Eqs. (2.36) and (2.39), we

obtain

EDEPLL b̂ λ

� � � EDAPLL b̂ λ

� �� ED b*λ � b̂ λ

� �T
J b*λ � b̂ λ

� �n o
: ð2:43Þ

Since

EDEPLL b̂ λ

� � ¼ EDELL b̂ λ

� �� λEDp b̂ λ

� �
and ð2:44Þ

EDAPLL b̂ λ

� � ¼ EDALL b̂ λ

� �� λEDp b̂ λ

� �
; ð2:45Þ

we have

EDELL b̂ λ

� � � EDALL b̂ λ

� �� ED b*λ � b̂ λ

� �T
J b*λ � b̂ λ

� �n o
� EDALL b̂ λ

� �� 1

n
trace IJ�1

� �
;

ð2:46Þ

where we use the asymptotic normality of the maximum penalized likelihood

estimator and the trace result from Appendix D to obtain

ED b*λ � b̂ λ

� �T
J b*λ � b̂ λ

� �n o
¼ 1

n
trace IJ�1

� �
: ð2:47Þ

Therefore, an unbiased estimator of the mean expected log likelihood is defined as

TMELL b̂ λ

� � � ALL b̂ λ

� �� 1

n
trace Î Ĵ

�1
� �

; ð2:48Þ

where

Î ¼ 1

n

Xn
i¼1

∂
∂b

PLL Xi, Yi

��b̂ λ

� � ∂

∂bT
PLL Xi,Yi

��b̂ λ

� �
and ð2:49Þ

Ĵ ¼ �1

n

Xn
i¼1

∂2

∂b∂bT
PLL Xi,Yi

��b̂ λ

� �
; ð2:50Þ

and the corresponding RPSM is

λ̂MELL ¼ argmax
λ

ALL b̂ λ

� �� 1

n
trace Î Ĵ

�1
� �� �

: ð2:51Þ

A number of RPSMs can follow from this. When the model is Gaussian, correctly

specified, and X is fixed, the well-known Mallows’ (1973) CL method is obtained.
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λ̂ CL ¼ argmin
λ

1

n
Y � Xb̂ λ

�� ��2 þ 2σ2

n
trace XTX XTX þ nλIm

� ��1
� �� �

: ð2:52Þ

When the model is Gaussian and σ2 is treated as a nuisance parameter, and J and I are
estimated as

Ĵ ¼ � 1

σ2
1

n

Xn
i¼1

XiX
T
i þ λIm

 !
and ð2:53Þ

Î ¼ 1

nσ4

Xn
i¼1

r2ols iXiX
T
i ; ð2:54Þ

Shibata’s (1989) regularization information criterion (abbreviated as RIC) is

obtained, and the corresponding RPSM is

λ̂ RIC ¼ argmin
λ

1

n
Y � Xb̂ λ

�� ��2 þ 2σ2

n

Xn
i¼1

r2ols i
σ2

Hii

( )
; ð2:55Þ

where H ¼ X XTX þ nλIm
� ��1

XT and rols i ¼ Yi � XT
i b̂ .

When b̂ λ is an M-estimator [huber81], Konishi and Kitagawa [konishi96]

propose an information criterion for choosing the regularization parameter which

is similar to RIC (Eq. 2.55).

We also suggest a RPSM that uses [bozdogan96a, bozdogan96b] an informa-

tional complexity framework to account for interdependencies between parameter

estimates when evaluating the bias of ALL in estimating the MELL. The resulting

method, by means of a more severe penalization of the inaccuracy of estimation,

produces slightly overestimated regularization parameter values as compared to

that given by CL or RIC. Overestimation, however, is in a safe direction and is

shown to be beneficial in situations with a limited number of observations.

Despite its simplicity, the Gaussian correctly specified case is very important,

especially for the numerical solution of integral equations with a method of

regularization, because X is fixed and there is no functional misspecification. In

the Gaussian correctly specified case, the information RPSM (Eq. 2.51) becomes

similar to CL.

The MELL RPSM (Eq. 2.51) reduces to Mallows’ CL under the following condi-

tions: the approximating distribution (model) belongs to the Gaussian family, i.e.,

W � Nm μ;Að Þ and ð2:56Þ

Z
��W � N m Wð Þ, σ2� �

; ð2:57Þ
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and the model is correctly specified, meaning that there exists b0, referred to as the

true regression coefficients (or the true solution), such that

f W,Z; b0ð Þ ¼ g W; Zð Þ; ð2:58Þ

where g(W,Z ) is the actual (true) data-generating distribution and where σ2, the
conditional variance of the output (or noise variance), is treated as a nuisance

parameter. In particular, correct specification implies that

E
Z
��W Z �WTb*

 � ¼ 0 and ð2:59Þ

E
Z
��W Z �WTb*

� �
Z �WTb*
� �Tn o

¼ σ2: ð2:60Þ

The log likelihood in this case is

log f Z
��W; b

� � ¼ log
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � 1

2σ2
Z �WTb
� �T

Z �WTb
� �� �

¼ log
1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p � 1

2σ2
Z �WTb
� �T

Z �WTb
� �

:

ð2:61Þ

Its derivatives with respect to b are

∂
∂b

log f Z
��W; b

� � ¼ 1

σ2
W Z �WTb
� �

; ð2:62Þ
∂

∂bT
log f Z

��W; b
� � ¼ 1

σ2
Z �WTb
� �T

WT, and ð2:63Þ

∂2

∂b∂bT
log f Z

��W; b
� � ¼ � 1

σ2
WWT: ð2:64Þ

Using the quadratic penalty, matrix J becomes

J ¼ � ∂2

∂b∂bT
EW,Z log f *λ � λp b*λ

� �
 �
¼ EW

1

σ2
WWT þ λp0 b*λ

� �
p0 b*λ
� �T� �

¼ 1

σ2
EW WWT

 �þ λp0 b*λ

� �
p0 b*λ
� �T ¼ 1

σ2
EW WWT

 �þ λIm

� � ð2:65Þ

and can be estimated as

Ĵ ¼ 1

σ2
1

n

Xn
i¼1

XiX
T
i þ λIm

 !
¼ 1

nσ2
XTX þ nλIm
� �

: ð2:66Þ
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Matrix I becomes

I ¼ EW,Z
∂
∂b

log f *λ � λp b*λ
� �� � ∂

∂bT
log f *λ � λp b*λ

� �� �� �

¼ EW,Z
∂
∂b

log f *λ
∂

∂bT
log f *λ

� �
� EW,Z

∂

∂bT
log f *λ

� �
EW,Z

∂

∂bT
log f *λ

� �

¼ 1

σ2
EW WWT

 �þ 1

σ4
EW WWT b* � b*λ

� �
b* � b*λ
� �T

WWT
n o

� 1

σ4
EW WWT

 �

b* � b*λ
� �

b* � b*λ
� �T

EW WWT

 �

;

ð2:67Þ
and, for a large n, it can be estimated as

Î ¼ 1

nσ2

Xn
i¼1

XiX
T
i ¼ 1

nσ2
XTX: ð2:68Þ

The trace term becomes

trace Î Ĵ
�1

� �
¼ trace

1

nσ2
XTX � nσ2 XTX þ nλIm

� ��1
� �

¼ trace XTX XTX þ nλIm
� ��1

� �
¼ trace Hð Þ;

ð2:69Þ

where the hat matrix is defined as H � X XTX þ nλIm
� ��1

XT.

The RPSM becomes

λ̂MELL ¼ argmin
λ

1

2σ2
1

n

Xn
i¼1

Yi � XT
i b̂ λ

� �2 þ 1

n
trace Hð Þ

( )
or ð2:70Þ

λ̂MELL ¼ argmin
λ

1

n
Y � Xb̂ λ

�� ��2 þ 2σ2

n
trace Hð Þ

� �
: ð2:71Þ

This is exactly CL. Therefore, CL can be viewed as an information RPSM when the

model is correctly specified and is Gaussian with fixed X.
Dropping the assumption of correct model specification and using the Gaussian

approximating distribution as in the previous case, a similar expression for J is

obtained as

J ¼ 1

σ2
EW WWT

 �þ λIm

� � ð2:72Þ
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and estimated as

Ĵ ¼ 1

σ2
1

n

Xn
i¼1

XiX
T
i þ λIm

 !
¼ 1

nσ2
XTX þ nλIm
� �

: ð2:73Þ

Matrix I becomes

I ¼ EW,Z
∂
∂b

log f *λ
∂

∂bT
log f *λ

� �
� EW,Z

∂

∂bT
log f *λ

� �
EW,Z

∂

∂bT
log f *λ

� �

¼ 1

σ4
EW,Z W Z �WTb*

� �2
WT

n o ð2:74Þ

and is estimated as

Î ¼ 1

σ4n

Xn
i¼1

Xi Yi � XT
i b̂

� �2
XT
i : ð2:75Þ

The RPSM becomes

λ̂MELL ¼ arg min
λ

1

n
Y � Xb̂ λ

�� ��2 þ 2σ2

n
trace Î Ĵ

�1
� �� �

: ð2:76Þ

This RPSM uses the Gaussian model but does not assume that the conditional mean

is correctly specified. That means the choice of the regularization parameter value

remains consistent even if a functional misspecification is present, i.e., when m xð Þ
� E Yi

��Xi ¼ x

 � 6¼ xTb for any parameter b2Rm.

As mentioned already, distributional misspecification does not affect the esti-

mation of the location parameter b. However, when an estimate of the covariance

matrix of the MLE or MPLE is needed, an estimator that is consistent under

distributional misspecification must be used because the usual covariance matrix

estimators are not consistent under distributional misspecification. To account for

possible distributional misspecifications, the estimation of σ2, treated so far as a

nuisance parameter, must be considered. This allows one to account for a nonzero

skewness and kurtosis in the response variable Z
��W.

With a limited number of observations, the inaccuracy penalization in Eq. (2.76)

becomes inadequate, and further refinement is needed. Starting from Eq. (2.76) and

using Bozdogan’s [bozdogan96a, bozdogan96b] refinement argument, we obtain an

information complexity regularization parameter selection (abbreviated as

ICOMPRPS) method that behaves favorably for a limited number of observations.

Notice that the term trace Î Ĵ
�1

� �
in Eq. (2.76) can be interpreted as the effective

number of parameters of a possibly misspecified model. ICOMPRPS also penalizes

the interdependency between the parameter estimates. ICOMPRPS imposes a more

severe penalization of estimation inaccuracy caused by the fact that the data-

generating distribution is unknown.
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For the MPLE method, the ICOMPRPS has the form [urmanov02]

ICOMPRPS λð Þ � ALL b̂ λ

� �� 1

n
trace Î Ĵ

�1
� �

� 1

n
C1 Ĵ

�1
� �

; ð2:77Þ

and the corresponding RPSM is

λ̂ ICOMPRPS ¼ arg max
λ

ALL b̂ λ

� �� 1

n
trace Î Ĵ

�1
� �

� 1

n
C1 Ĵ

�1
� �� �

; ð2:78Þ

where C1 is the maximal covariance complexity index proposed by van Emden

[emden71] to measure the degree of interdependency between parameter estimates.

C1 is a function of a covariance matrix and is computed as in Eq. (2.79) using the

eigenvalues of the covariance matrix. Notice that the more ill conditioned the data

matrix X, the more dependent the parameter estimates become; therefore, the

covariance complexity can be used to quantify ill conditioning.

Under the assumption that the vector of parameter estimates b̂ λ is approximately

normally distributed, the maximal covariance complexity reduces to

C1 Ĵ
�1

� �
¼ m

2
log

va
vg

; ð2:79Þ

where va ¼ 1
m

Xm
j¼1

vj, vg ¼
Ym
j¼1

vj

 !1
m

, and νj are the eigenvalues of Ĵ
�1
.

In the Gaussian case, ICOMPRPS for correctly specified models (abbreviated as

ICOMPRPSCM) becomes

ICOMPRPSCM λð Þ ¼ 1

n
Y � Xb̂ λ

�� ��2 þ 2σ2

n
trace Hð Þ þ C1 Ĵ

�1
� �� �

; ð2:80Þ

and the corresponding RPSM is

λ̂ ICOMPRPSCM ¼ arg min
λ

1

n
Y � Xb̂ λ

�� ��2 þ 2σ2

n
trace Hð Þ þ C1 Ĵ

�1
� �� �� �

; ð2:81Þ

where

Ĵ ¼ XTX þ nλIm and ð2:82Þ
H ¼ X XTX þ nλIm

� ��1
XT: ð2:83Þ

There is a strong bond between the RPSMs based on maximizing the mean

expected log likelihood and minimizing the mean predictive error. Namely, if the

parametric family of approximating distributions (the model) is Gaussian,
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f Yi

��Xi; b
� � � N XT

i b, σ
2

� �
; ð2:84Þ

then maximizing the MELL is equivalent to minimizing the MPE. This fact allows

us to write an MPE analog of the information criterion (Eq. 2.48). Indeed, using the

Gaussian model, the ALL can be written as the sum of the training error (abbrevi-

ated TE) and a constant term

ALL b̂ λ

� � ¼ 1

n

Xn
i¼1

log f Xi, Yi

��b̂ λ

� �
¼ 1

n

Xn
i¼1

log
1ffiffiffiffiffi
2π

p
σ2

exp � 1

2σ2
Yi � XT

i b̂ λ

� �2� �

¼ log
1ffiffiffiffiffi
2π

p
σ2

� 1

n2σ2

Xn
i¼1

Yi � XT
i b̂ λ

� �2
¼ log

1ffiffiffiffiffi
2π

p
σ2

� 1

2σ2
TE b̂ λ

� �
;

ð2:85Þ

where the training error is defined as

TE b̂ λ

� � � 1

n

Xn
i¼1

Yi � XT
i b̂ λ

� �2
: ð2:86Þ

The expected log likelihood for the Gaussian model is

ELL b̂ λ

� � ¼ EW,Zlogf W, Z
��b̂ λ

� � ¼ EW,Z log
1ffiffiffiffiffi
2π

p
σ2

exp � 1

2σ2
Z �WTb̂ λ

� �2� �� �
¼ log

1ffiffiffiffiffi
2π

p
σ2

� 1

2σ2
EW,Z Z �WTb̂ λ

� �2n o
¼ log

1ffiffiffiffiffi
2π

p
σ2

� 1

2σ2
EW,Z Z � m Wð Þð Þ2

n o
� 1

2σ2
EW m Wð Þ �WTb̂ λ

� �T
m Wð Þ �WTb̂ λ

� �n o
¼ log

1ffiffiffiffiffi
2π

p
σ2

� 1

2
� 1

2σ2
PE b̂ λ

� �
;

ð2:87Þ
where the predictive error is defined as

PE b̂ λ

� � � EW m Wð Þ �WTb̂ λ

� �T
m Wð Þ �WTb̂ λ

� �n o
: ð2:88Þ

Plugging these representations into Eq. (2.48), an MPE analog of the information

RPSM is obtained. The mean predictive error is approximated as

EDPE b̂ λ

� � � EDTE b̂ λ

� �þ 2σ2

n
trace Î Ĵ

�1
� �

� σ2: ð2:89Þ
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Therefore, an unbiased estimator of the MPE is given by

TMPE λð Þ � TE b̂ λ

� �þ 2σ2

n
trace Î Ĵ

�1
� �

� σ2; ð2:90Þ

and the corresponding RPSM is

λ̂MPE ¼ argmin
λ

TE b̂ λ

� �þ 2σ2

n
trace Î Ĵ

�1
� �

� σ2
� �

: ð2:91Þ

Therefore, when the Gaussian model is used, the MELL and MPE have the same

minimizer. When the model is correctly specified, trace Î Ĵ
�1

� �
¼ trace Hð Þ, and

the CL method follows as

CL λð Þ ¼ TE b̂ λ

� �þ 2σ2

n
trace Hð Þ � σ2; ð2:92Þ

with the corresponding RPSM

λ̂ CL ¼ argmin
λ

TE b̂ λ

� �þ 2σ2

n
trace Hð Þ � σ2

� �
: ð2:93Þ

We now present an example of an image reconstructed using the information

approach to the selection of regularization parameter. Notice that in this example

of a correctly specified model, the CL and ICOMPPRS selected identical parameters

as expected from theoretical derivations.
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