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Abstract. We revisit earlier attempts for finding matrix exponential
(ME) distributions of a given order with low coefficient of variation (cv).
While there is a long standing conjecture that for the first non-trivial
order, which is order 3, the cv cannot be less than 0.200902 but the
proof of this conjecture is still missing.

In previous literature ME distributions with low cv are obtained from
special subclasses of ME distributions (for odd and even orders), which
are conjectured to contain the ME distribution with minimal cv. The
numerical search for the extreme distribution in the special ME sub-
classes is easier for odd orders and previously computed for orders up to
15. The numerical treatment of the special subclass of the even orders is
much harder and extreme distribution had been found only for order 4.

In this work, we further extend the numerical optimization for sub-
classes of odd orders (up to order 47), and also for subclasses of even
order (up to order 14). We also determine the parameters of the extreme
distributions, and compare the properties of the optimal ME distribu-
tions for odd and even order.

Finally, based on the numerical results we draw conclusions on both,
the behavior of the odd and the even orders.

Keywords: Matrix exponential distributions · Minimal coefficient of
variation

1 Introduction

The class of matrix exponential (ME) distributions, along with the subclass of
phase type (PH) distributions are widely used for a number of reasons. The
class PH is widespread in Markovian modeling: it can be efficiently used for
approximating non-Markovian stochastic models (where random durations are
non-exponential) by Markovian models, while maintaining a simple analytic
formula [2].

The class ME exhibits an even wider range of behavior, allowing for even more
efficient approximations; the cost is that a simple stochastic interpretation with
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background Markov chain is no longer available. Still, simple analytic formulas
are retained, so it is still useful for efficient calculations.

The class PH is known to approximate deterministic delay poorly. That is
why it is an important application of either class to approximate the determin-
istic distribution; in other words, we are looking for PH and ME distributions
which are highly concentrated. A usual measure of concentration is the coeffi-
cient of variation (cv). For the class PH, it is known that the minimal cv depends
only on the order n, it is 1/n and is obtained by the Erlang distribution [4].

However, for the class ME, only partial results are available. It has been
known that ME(2) ≡ PH(2) [12], that is the class of order 2 ME distributions
is identical with the class of order 2 PH distributions.

For higher order ME, numerical investigations indicate that the minimal cv
can be significantly lower compared to the class PH of the same order [5,10].
No analytic results are available for the minimal value of cv in the class ME(n)
for any n ≥ 3. [5] lists some conjectures for the minimal value of cv; later, [10]
numerically optimizes cv for a convenient subclass of ME(n) for odd values of n
up to n ≤ 15 and even values of n up to n ≤ 4.

In the present paper, we extend the previously used approaches to larger
values of n, for both odd and even orders and based on the numerical results we
draw conclusions on the trends of their behavior with increasing orders.

The rest of the paper is organized as follows. In Sect. 2, we give the necessary
mathematical background and notations are introduced. In Sect. 3, we introduce
special subsets of ME(n) distributions for both odd and even values of n, detail
the techniques and calculations necessary for finding distribution with minimal
cv in the respective subsets, and present the results of the numerical optimization
(some of which are put in the Appendix for better readability).

2 Preliminaries

Definition 1. Let X be a non-negative continuous random variable with cumu-
lative distribution function (cdf)

FX(t) = Pr(X < t) = 1 − αeAt1, t ≥ 0 (1)

where α is a row vector of length n, A is a matrix of size n × n and 1 is a
column vector of ones of size n. Then X is matrix exponentially distributed with
representation (α,A), or shortly X is ME(α,A) distributed, where α is referred
to as the initial vector and n as the order.

The probability density function (pdf) of X is then

fX(t) = −αAeAt1, t ≥ 0. (2)

We note that, as the above terminology suggests, α and A is not unique
to FX ; the same function FX may have several different α,A pairs referred to
as representations. Further more, not even the order n of the representation is
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unique. There are ME(α1,A1) of order m and ME(α2,A2) of order n such that
m �= n and ME(α1,A1) and ME(α2,A2) have the same distribution function,
see e.g. [3].

Definition 2. The class ME(n) contains matrix exponential distributions which
have a representation of order at most n.

Definition 3. If X is ME(α,A)-distributed, and α and A satisfies the following
assumptions:

– αi ≥ 0,
– Ai,j ≥ 0 for i �= j, Aj,j ≤ 0,
– A1 ≤ 0

then we say X is phase type (PH) distributed, or shortly PH(α,A) distributed.
A representation (α,A) satisfying the above properties is called Markovian.

Definition 4. The class PH(n) contains matrix exponential distributions which
have a Markovian representation of order at most n.

Based on the Jordan decomposition of A in (2) the probability density func-
tion (pdf) of an ME distribution has the following general form:

f(t) =
k∑

i=1

Ni−1∑

j=0

ci,jt
jeλit, (3)

where λ1, . . . , λk are eigenvalues of A, and λi has multiplicity Ni. Some of the
eigenvalues may be complex (in which case they come in complex conjugate
pairs). Some eigenvalues of A may not be present in f ; the eigenvalues which
are present in the pdf are referred to as contributing eigenvalues. All contributing
eigenvalues must have negative real parts, and among the contributing eigenval-
ues there is always a dominant real eigenvalue with maximal real part [6,8]). λ1

denotes this dominant eigenvalue. In the class ME, there may be complex eigen-
values with real part equal to λ1; in the class PH, this is not possible. Further
differences between the classes ME and PH can be found in, e.g., [6,7,9].

To keep the subsequent discussion simple, we sometimes calculate with
unnormalized pdfs, that is,

∫ ∞
0

f(t)dt = 1 is not required, only

0 <

∫ ∞

0

f(t)dt = m0 < ∞.

Of course, this means that f(t)
m0

is the proper normalized pdf corresponding to
X. Then the moments can be calculated from an unnormalized f as

E(Xn) =
mn

m0
,

where
mn =

∫ ∞

0

tnf(t)dt.
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Definition 5. The coefficient of variation (cv) of X ∼ ME(α,A) is

cv(X) =
E(X2) − (E(X))2

(E(X))2
=

m2m0

m2
1

− 1.

The notation cv(f) will be used as well.

The coefficient of variation is a widely used measure of probability concentra-
tion of positive random variables. It is invariant to scaling of the variable (e.g.,
multiplying with a positive number, or changing the unit the random variable
is expressed in); that is, ME(α,A) and ME(α, cA) (or, correspondingly, f(t)
and f(t/c)/c) have the same cv. This property also allows us to conveniently
scale the considered distributions; for example, the dominant eigenvalue may be
assumed to be −1.

For the class PH(n), the minimal cv is known.

Theorem 1. [4] For X ∈ PH(n), cv(X) ≥ 1
n , and the minimum is obtained for

the Erlang distribution with parameters (n, λ) where λ > 0 is arbitrary.

We note that in accordance with our previous remark on scaling, λ (the
dominant eigenvalue) does not affect the minimal cv.

However, an analytical result similar to Theorem 1 for argmin{cv(f) : f ∈
ME(n)} is available only for n ≤ 2. ME(1) = PH(1) is just the family of exponen-
tial distributions with cv = 1, while ME(2) = PH(2) with cv ≥ 1/2. For n ≥ 3,
[10] numerically optimizes cv for a convenient subclass of ME(n) for odd values
of the order n up to n = 15, and conjectures that the minimal value of cv is
indeed obtained within the given subclass.

3 Numerical Optimization of cv for ME(n)

3.1 Optimization for Odd n

Following [5,10], for odd n, we look to minimize coefficient of variation in the
subclass containing ME probability distribution functions of the following form
(unnormalized pdf):

f(t) = e−t

(n−1)/2∏

i=0

cos2(ωt − φi). (4)

This is the same subclass presented in [10], where the technology for comput-
ing the optimal parameters of (4) is the following: the moments and cv can be
calculated analytically by Laplace-transform with Mathematica, then a numer-
ical optimization is carried out for the variables ω, φ1, . . . , φ(n−1)/2. For more
details, see [10]. The main difficulty for this approach is that as n increases, the
analytical expression for cv gets more difficult to compute.

In the present paper, we use a different approach with only numerical steps.
The moments are calculated by numerical integration for specific values of
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ω, φ1, . . . , φ(n−1)/2. We found the minimum implementing an evolution strat-
egy. Starting with one feasible solution, the parameter values were changed by
adding a normally distributed random value for each parameter (mutating the
solution). The deviation was changed according to Rechenberg’s 1/5 rule; if the
success ratio (that is, the cv has decreased for the new parameter values) after
20 steps is over 1/5, then the deviation is sligthly increased, in order to ensure
the exploration of the search space. If the ratio is below 1/5 then the deviation
is decreased in order to get close to the local optimum. Due to the numerous
local optima and the high number of parameter values to be optimised, a popu-
lation size of one was used, exploring the search space by the self-adaptation of
the deviation. We changed to the new modified parameter values only if the cv
decreased, otherwise we tried a new mutation. The best result from several runs
was selected for each n. See [11] for more on the theory and [1] for the code in
Matlab.

This approach is feasible for significantly higher values of n. We calculate the
optimum for up to n ≤ 47 and we also list the argmin parameters.

Non-negativity of f(t) for t ≥ 0 in (4) is guaranteed from its form in (4). The
structure of the pdf is the following: the part

∏(n−1)/2
i=0 cos2(ωt − φi) is periodic

Fig. 1. Optimal f for n = 7
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with period ω/π, and has (n− 1)/2 zeros within a period. The exponential term
in (4) introduces a decay that renders the part of the pdf from the second period
on negligible. Within the first period, the optimal arrangement of zeros is best
seen the following: the zeros are roughly (but not exactly) equidistant, starting
from slightly above 0, but leaving a large gap between the last zero and the end
of the period; see Fig. 1. The closely situated zeros bring the pdf close to 0, while
the large gap results in a relatively large, concentrated bump.

The form of (4) is yet again slightly different from the form given in (2) or
(3); in Appendix A it is shown how (4) can be converted back to (3).

Table 2 contains the parameters which provide the minimal cv in ME(n). Due
to readability, only values for n ≤ 17 are displayed here; the rest of the list of
optimal parameter values for n up to 47 can be found in Table 4 in AppendixB.
Table 1 contains the minimal values of cv for various values of n; even values
of n are also included in the table for easier comparison. Note that for odd n

Table 1. Minimal values of cv for various values of n

n cv 1/cv n cv 1/cv

3 0.20090 4.9776 4 0.14981 6.6752

5 0.081264 12.306 6 0.075532 13.2394

7 0.042880 23.321 8 0.041349 24.1845

9 0.026157 38.231 10 0.025589 39.079

11 0.017494 57.163 12 0.017237 58.015

13 0.012470 80.195 14 0.012337 81.060

15 0.0093128 107.38

17 0.0072074 138.75

19 0.0057368 174.31

21 0.0046708 214.10

23 0.0038745 258.10

25 0.0032646 306.31

27 0.0027874 358.75

29 0.0024053 415.76

31 0.0020760 481.70

33 0.0018094 552.66

35 0.0015907 628.64

37 0.0014092 709.64

39 0.0012568 795.66

41 0.0011278 886.71

43 0.0010051 994.94

45 0.00088322 1132.2

47 0.00078490 1274.0



24 I. Horváth et al.

Table 2. Optimal parameter values for odd n ≤ 17

Order ω φ1, φ2, φ3, . . .

3 1.03593 0.337037

5 0.474055 1.67698; 2.10333

7 0.442459 1.64632; 1.95221; 2.4311

9 0.418775 1.62842; 1.86379; 2.23549; 2.69568

11 0.400272 1.61684; 1.80633; 2.10839; 2.48269; 2.90758

13 0.385334 1.60882; 1.7663; 2.01958; 2.33446; 2.69071; 3.0794

15 0.372959 0.07936; 1.60297; 1.73697; 1.95429; 2.22554; 2.53226; 2.86521

17 0.362491 0.19780; 1.59854; 1.90442; 1.71468; 2.14228; 2.41145; 2.70297
3.012594372647776

(even n + 1), the difference between the optimal cv for n and n + 1 is rather
small, especially for larger values of n. The optimum in ME(n) and ME(n + 1)
is further compared in Sect. 3.2 in more detail, and a detailed analysis of even
values of n follows in Subsect. 3.3.

3.2 ME(n) for Even n

For even values of n, we look to minimize coefficient of variation in the subclass
containing ME probability distribution functions of the following form:

f(t) = a3etλ2 + e−t(a2 +
(n−2)/2∏

i=0

cos2(ωt − φi)) (5)

Again, this subclass was already present in [5] but no optimization was carried
out except for n = 4.

We present an intuitive argument that explains the subclass (5) and sheds
some light on the difference between the optimal function in ME(n) and ME(n+
1) for odd n.

Compared to (4), the novelty in (5) is the term (a3etλ2 + a2e−t). To under-
stand the formulas better, we note that in (5),

(n−1)/2∏

i=0

cos2(ωt − φi) (6)

is periodic with period π/ω, and it has (n − 1)/2 zeros for each period. Each
zero effectively serves to make the function (6) more concentrated by bringing
it close to 0 on a large portion of the interval [0, π/ω] (see Fig. 1), while the
exponential term e−t in (4) brings a decay that renders the concentrated parts
from the second interval on irrelevant.

Now for n + 1, a new zero within the period is not possible, as an additional
cos2 term would correspond to n + 2 in the order. So instead we can use it to
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change some other part of the function instead. To have the most effect on the
value of cv, we use this additional term (a3etλ2 + a2e−t) to decrease the value
of the function around 0 to as small as possible. This leads naturally to the
assumption f(0) = 0 for even n (see Fig. 2). Note that the addition of the term
(6) lifts all the zeros of the function (4) to a slightly positive value – except
one. Numerical results show that the minimal cv is obtained when the first zero
remains unlifted. See Fig. 2.

The reason the cv value changes little when going from odd n to even n + 1
is that the gain by the change f(0) = 0 is smaller in scale than what is gained
in concentration by the introduction of a new cos2 term.

To summarize, we look for an optimal f(t) in the form (5) with the additional
properties

– f(0) = 0;
– f(x) = 0 and f ′(x) = 0 for some x > 0.

Fig. 2. Optimal f for n = 8
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3.3 Optimization for Even n

The difficulty in optimizing f(t) in (5) for an even n is that nonnegativity of
f(t) for t ≥ 0 is not guaranteed and is difficult to check in general. To compute
f(t) with parameters with minimal cv, we reparametrize f(t) in the following
way.

We eliminate a2 by solving f(0) = 0; thus

a2 = −a3 −
(n−2)/2∏

i=0

cos2(φi).

Next we replace the variable a3 by x where x is the zero of f ; that is, solve
the equation

f(x) = 0

for a3. The solution is explicit for a given n:

a3 =
∏(n−2)/2

i=0 cos2(φi) − ∏(n−2)/2
i=0 cos2(ωx − φi)

ex(λ2+1) − 1
.

Next we eliminate φ1 from the equation

f ′(x) = 0 (7)

in the following way. Rewriting the terms containing φ1 using the formula

cos2(φ1) =
1
2
(cos(2φ1) + 1),

(7) leads to an equation that is linear in cos(2φ1) and cos(2(ωx − φ1)), which
in turn leads to a quadratic equation for cos(2φ1). The solution is explicit but
prohibitively long – we omit the explicit formula. We note that only one of the
solutions corresponds to a proper nonnegative f(t) in (5).

After these transformations, f (and thus cv) is parametrized by x, ω, φ2, . . . ,
φn/2−1. With these parameters, f is guaranteed to be nonnegative.

A numerical optimization for these parameters is now feasible; after opti-
mization, the original parameters (a2, a3, φ1) can be calculated explicitly. The
results of the numerical optimization are presented in Table 3.

3.4 Rate of Decay of cv

We numerically determine the rate of decay of the optimal value of cv as a
function of n (the optimal value of cv for order n is denoted by cv(n)). Based
on the cv values in Table 1 and due to the different behavior of cv(n) for odd
and even values of n as discussed in Sect. 3.2, we only consider odd values of
n. Table 1 suggests a polynomial decay in n and this trend is tested by plotting
cv(n) against n with log-log scaling in Fig. 3. The figure shows that the decay
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Table 3. Optimal parameter values for even n

Poles λ2 a2 a3 ω φ1, φ2, φ3, . . .

Parameters

4 1.94907 0.224603 −0.589603 0.519765 2.2195

6 −8.34112 0.00074 −0.01551 0.477957 1.78917; 2.1665

8 −13.917 4.50119 × 10−5 −1.93645 × 10−3 0.44404 1.70917; 1.98567;
2.46912

10 −20.01365 4.53552 × 10−6 −3.15042 × 10−4 0.419619 1.66911; 1.88536;
2.25959; 2.72108

12 −26.64365 5.89469 × 10−7 −5.89972 × 10−5 0.40078 1.64553; 1.82172;
2.12538; 2.5004;
2.9258

14 −33.78365 8.89442 × 10−8 −1.20051 × 10−5 0.385688 1.63023; 1.77798;
2.03236; 2.34773;
2.704288;
3.09330

Fig. 3. Decay of cv(n) on a log-log scale

is very close to linear on log-log scale, with gradient −2.03. Least square fitting
gives the approximation

cv(n) ≈ 2.175
n2.03

,

but for a simple yet relatively accurate formula, one can also use

cv(n) ∼ 2
n2

.

4 Conclusion

Following [10], we have made further numerical investigations for concentrated
higher order ME distributions. We have obtained numerical results for a certain
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subclass conjectured to contain the ME distribution with minimal cv of ME
distributions of odd order up to order 47 and for even order up to order 14.
We also expanded and improved the optimization methods. We also provided
the parameters of the extreme distributions, and compared the (numerical and
abstract) properties of the optimal ME distributions for odd and even order.

As main conclusions we found that

– the minimal cv of even order n ME distributions gets to be very close to the
one of order n − 1 as n is increasing, and

– the minimal cv of odd order n ME distribution is close to 2
n2 .

A Various Forms of Matrix Exponential Functions

This section is dedicated to show the equivalence of the various forms of matrix
exponential functions throughout the paper. Specifically, we show the equiva-
lence of the forms (2) and (3) and also show how (4) (and also (5)) can be
brought to a form consistent with (2) and (3).

As mentioned in Sect. 2, (2) can be converted directly into (3) using the
Jordan-decomposition of A.

From a pdf given in the form (3), one can reconstruct a matrix-vector rep-
resentation in (2) in the following manner: A will be in block-diagonal form,
with each block corresponding to either a single real eigenvalue λj or a pair of
complex eigenvalues λj , λj+1 = a ± Ib, where I =

√−1.
If λj is real, then the block in A is

[λj ] and

⎡

⎢⎢⎢⎢⎢⎣

λj 1 0 . . . 0
0 λj 1 . . . 0
...

. . .
λj 1

0 . . . 0 λj

⎤

⎥⎥⎥⎥⎥⎦

for multiplicity 1 and Nj > 1, respectively.
For a complex pair of eigenvalues λj , λj+1 = a ± Ib, the block is

[
a b

−b a

]
or

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b 1 0 0
−b a 0 1 0 . . . 0
0 0 a b 1 0 0
0 0 −b a 0 1 0 0
0
...

. . .
...

a b
0 . . . −b a

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for multiplicity 1 or Nj > 1 respectively (the matrix on the right is size 2Nj ×
2Nj). Once A is constructed, α can be obtained by solving a system of linear
equations.
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Finally, (4) can be represented in a form consistent with (3); the eigenvalues
are −1, (−1 ± 2Iω), . . . , (−1 ± (n − 1)Iω). We demonstrate this for n = 5; for
higher odd values of n, it follows a similar structure, albeit with more terms:

f(t) =e−t cos2(ωt − φ1) cos2(ωt − φ2)

=
1
8
e−t

(
2 + cos(2φ1 − 2φ2)

)
+

1
8
e−t

(
cos(2φ1) cos(2tω)

+ sin(2φ1) sin(2tω) + cos(2φ2) cos(2tω) + sin(2φ2) sin(2tω)
)

+
1
8
e−t

(
cos(2φ1 + 2φ2) cos(4tω) + sin(2φ1 + 2φ2) sin(4tω)

)

=
1
8
e−t(2 + cos(2φ1 − 2φ2))+

+
1
8
(e2iφ1 + e2iφ2)e(−1−2iω)t +

1
8
(e−2iφ1 − e2iφ2)e(−1+2iω)t+

1
16

e2i(φ1+φ2)e2t(−1+4iω) +
1
16

e−2i(φ1+φ2)e2t(−1−4iω).

Representing (5) in a form consistent with (3) is essentially the same, just
with one extra real eigenvalue.

B Optimal Parameter Values

Table 4. Optimal parameter values for odd values 19 ≤ n ≤ 47

19 0.353490 0.29829; 1.59508; 1.69721; 1.86521; 2.07671;2.31637; 2.57570;
2.85029; 3.13827

21 0.345640 0.10490; 0.38461; 1.59232; 1.68321; 1.83365; 2.02382; 2.23966;
2.47319; 2.72005; 2.97806

23 0.338715 0.19898; 0.45955; 1.59006; 1.67176; 1.80774; 1.98031; 2.17653;
2.38888; 2.61318; 2.84711; 3.08961

25 0.332545 0.04609; 0.281467; 0.52523; 1.58820; 1.66224; 1.78614; 1.94394;
2.12371; 2.31837; 2.52389; 2.73798; 2.95940

27 0.327002 0.13289; 0.35436; 0.58327; 1.58663; 1.65422; 1.767866; 1.91313;
2.07891; 2.25855; 2.44819; 2.64559; 2.84945; 3.05913

29 0.31348 0.03935; 0.24334; 0.45271; 1.14455; 1.58818; 1.65855; 1.77085;
1.91037; 2.06735; 2.23615; 2.41354; 2.59761; 2.78723; 2.98175

31 0.308959 0.11601; 0.30925; 0.50731; 1.16023; 1.58673; 1.65148; 1.75543;
1.88509; 2.03128; 2.18865; 2.35408; 2.52570; 2.70239; 2.88346;
3.06855

(continued)



30 I. Horváth et al.

Table 4. (continued)

33 0.304832 0.005513; 0.18531; 0.36880; 0.55668; 1.17491; 1.58548; 1.64538;
1.74205; 1.86308; 1.99983; 2.14712; 2.30215; 2.46291; 2.62834;
2.79775; 2.97073

35 0.301040 0.07689; 0.24812; 0.42288; 0.60154; 1.18864; 1.58439; 1.64006;
1.73034; 1.84377; 1.97218; 2.11069; 2.25642; 2.40761; 2.56315;
2.72235; 2.88477; 3.05017

37 0.297540 0.14201; 0.30558; 0.47218; 0.64248; 1.20148; 1.58344; 1.63540;
1.72002; 1.82669; 1.94769; 2.07833; 2.21585; 2.35853; 2.50531;
2.65547; 2.80859; 2.96438; 3.12272;

39 0.294289 0.04762; 0.20164; 0.35809; 0.51732; 0.67999; 1.21350; 1.58260;
1.63127; 1.71086; 1.81149; 1.92585; 2.04945; 2.17962; 2.31470;
2.45364; 2.59576; 2.74061; 2.88789; 3.03744

41 0.291265 0.10875; 0.25643; 0.40632; 0.55879; 0.71449; 1.62759; 1.22476;
1.58186; 1.70267; 1.79788; 1.90627; 2.02352; 2.14707; 2.27531;
2.40722; 2.54211; 2.67955; 2.81924; 2.96098; 3.10469

43 0.286709 0.017601; 0.15905; 0.29899; 0.44498; 0.59176 0.74070; 1.23092;
1.58084; 1.62373; 1.69468; 1.78474; 1.88730; 1.99909; 2.12208;
2.29038; 2.30290; 2.47864; 2.61584 2.74717; 2.88339; 3.02186

45 0.276478 0.08675; 0.22262; 0.35787; 0.498054; 0.63799; 1.08335; 1.25082;
1.58080; 1.62305; 1.69202; 1.77581; 1.87951; 1.98293; 2.09473;
2.20973; 2.32692; 2.45504; 2.57721; 2.70603; 2.83471; 2.96499;
3.09616

47 0.283839 0.11500; 0.23946; 0.37625; 0.51191; 0.64863; 1.07858; 1.23819;
1.57945; 1.61595; 1.65715; 1.76319; 1.85467; 1.95591; 2.06011;
2.16775; 2.29640; 2.37101; 2.56629; 2.62701; 2.70473; 2.92734;
2.94086; 3.11827
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6. Horváth, I., Telek, M.: A constructive proof of the phase-type characterization
theorem. Stoch. Models 31(2), 316–350 (2015)

7. Maier, R.S.: The algebraic construction of phase-type distributions. Commun. Stat.
Stoch. Models 7(4), 573–602 (1991)

http://webspn.hit.bme.hu/~illes/mincvnum.zip
http://webspn.hit.bme.hu/~illes/mincvnum.zip


Concentrated Matrix Exponential Distributions 31

8. Mocanu, S., Commault, C.: Sparse representations of phase-type distributions.
Commun. Stat. Stoch. Models 15(4), 759–778 (1999)

9. Colm Art O’Cinneide: Characterization of phase-type distributions. Commun.
Stat. Stoch. Models 6(1), 1–57 (1990)

10. Horvath, A., Buchholz, P., Telek, M.: Stochastic Petri nets with low variation
matrix exponentially distributed firing time. Int. J. Perform. Eng. 7, 441–454
(2011)

11. Rechenberg, I.: Evolutionstrategie: Optimierung technisher Systeme nach Prinzip-
ien des biologischen Evolution. Frommann-Hollboog Verlag, Stuttgart (1973)

12. van de Liefvoort, A.: The moment problem for continuous distributions. Technical
report, WP-CM–02, University of Missouri, Kansas City (1990)



http://www.springer.com/978-3-319-46432-9


	Concentrated Matrix Exponential Distributions
	1 Introduction
	2 Preliminaries
	3 Numerical Optimization of cv for ME(n)
	3.1 Optimization for Odd n
	3.2 ME(n) for Even n
	3.3 Optimization for Even n
	3.4 Rate of Decay of cv

	4 Conclusion
	A Various Forms of Matrix Exponential Functions
	B Optimal Parameter Values
	References


