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Abstract. Attribute recognition, particularly facial, extracts many
labels for each image. While some multi-task vision problems can be
decomposed into separate tasks and stages, e.g., training independent
models for each task, for a growing set of problems joint optimization
across all tasks has been shown to improve performance. We show that
for deep convolutional neural network (DCNN) facial attribute extrac-
tion, multi-task optimization is better. Unfortunately, it can be difficult
to apply joint optimization to DCNNs when training data is imbalanced,
and re-balancing multi-label data directly is structurally infeasible, since
adding/removing data to balance one label will change the sampling of
the other labels. This paper addresses the multi-label imbalance problem
by introducing a novel mixed objective optimization network (MOON)
with a loss function that mixes multiple task objectives with domain
adaptive re-weighting of propagated loss. Experiments demonstrate that
not only does MOON advance the state of the art in facial attribute
recognition, but it also outperforms independently trained DCNNs using
the same data. When using facial attributes for the LFW face recognition
task, we show that our balanced (domain adapted) network outperforms
the unbalanced trained network.

Keywords: Facial attributes · Deep neural networks · Multi-task learn-
ing · Multi-label learning · Domain adaptation

1 Introduction

Given an input image or video, there are often multiple vision tasks to be accom-
plished, i.e., multiple objectives to be optimized. Under certain constraints, e.g.,
when tasks feed into each other, or when there is need to share computed fea-
tures or representations, then multiple task objectives can benefit from being
mixed and jointly optimized. This kind of multi-objective learning has affected
many areas of computer vision including scene/object classification and anno-
tation [1–4], tracking [5], facial landmark estimation [6,7], face verification [8],
and face detection with head pose estimation [9–11].
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Fig. 1. Three approaches to attribute learning (and other multi-task problems). In
the left is a conceptual model of previous state-of-the-art approaches, with features
trained for classification problems and then adapted as inputs to independent SVMs
for prediction. The middle approach attacks the problem with separately trained deep
convolution neural networks (DCNNs). While we demonstrate that this advances the
state of the art in attribute accuracy, it is cost prohibitive. This paper shows that for
attributes, joint multi-task learning does better. However, for multi-label learning there
is no way simply to re-weight or sample inputs to deal with imbalance or domain adap-
tion because each input defines values for all attributes. On the right is our answer, the
mixed objective optimization network (MOON) architecture with a domain adaptive
multi-task DCNN loss. To adapt, for each input the MOON objective re-weights each
part of the loss associated with each attribute. MOON learns to balance its multi-task
output predictions with reduced training and storage costs, while producing better
accuracy than independently trained DCNNs.

This paper addresses facial attribute recognition, which we hypothesize is
well suited to a multi-objective approach because facial attributes have a shared,
albeit latent correlation that imposes soft constraints on the space of attributes,
e.g., p(Male|Mustache) � 1. Despite the fact that facial attribute recognition
inherently seeks multiple labels for the same image, multi-objective learning has
not been widely applied to facial attributes. One potential reason is that bal-
ancing the training for the labels is difficult. Prior approaches to facial attribute
recognition independently optimize a choice of features and recognition model
(Features+Classifiers in Fig. 1). For example, the original approach taken by
Kumar et al. [12] used AdaBoost to select a separate feature space for each
attribute and independent SVMs to perform classification. Likewise, the current
state of the art [13] trains DCNN features with facial identity recognition and
localization datasets and then trains independent SVMs in this feature space for
attribute classification. In both cases the separation makes it easy to re-balance
training per attribute.

In this work, we show that a joint optimization with respect to all attributes
offers performance superior to the state-of-the-art Features+Classifiers app-
roach. We also show that joint optimization over all attributes outperforms
training a single independent network of similar topology per attribute, in which
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the feature space is optimized along with the classifier on a per-attribute basis,
both in terms of accuracy and storage/processing efficiency. This result suggests
that the multi-task approach is far more effective at distilling latent correlations
than relying on independent classifiers to learn them implicitly. Thus, not only
is a multi-objective approach far more intuitive, it is also far more effective.

It is unlikely that the source distribution of binary facial attributes for the
training set will match the target distribution of the test set. We would like
facial attribute classifiers trained on a dataset of one demographic to still work
well for discrimination on a different demographic; thus some sort of domain
adaptation is required. Many approaches to domain adaption exist [14], with
input sampling or re-weighting being common. Unfortunately, multi-objective
training introduces challenges because balanced training is difficult or impossible
via input sampling or weighting. Given a target distribution, domain adaptation
is easy for separately trained attribute classifiers, e.g., by re-weighting errors in
the cost function in each classifier. However, it is less immediately obvious how to
do this in training for a multi-objective classifier. To this end, we introduce the
MOON (Mixed-Objective Optimization Network) architecture. MOON is a novel
multi-objective neural network architecture, which mixes the tasks of multi-label
classification and domain adaptation under one unified objective function.

In summary, the contributions of this paper include:

– A mixed objective optimization network (MOON) architecture, which
advances face attribute recognition by learning multiple attribute labels simul-
taneously via a single DCNN that supports domain adaption for multi-task
DCNNs.

– A fair evaluation technique which incorporates source and target distributions
into the classification measure, leading to the balanced CelebA (CelebAB)
evaluation protocol,

– Experiments demonstrating that the MOON architecture significantly
advances state-of-the-art attribute recognition on the CelebA dataset, improv-
ing both accuracy and efficiency. These experiments also demonstrate that
optimizing over all attributes simultaneously offers a noticeable reduction in
classification error compared to optimizing single attributes over the same
dataset and network topology.

– Experiments showing that domain adaptation on attribute classifiers trained
on CelebA enhances the recognition capacity of MOON attributes on LFW,
advancing attribute-based face recognition.

– Evaluation of stability of the MOON architecture to fiducial perturbations
and data set imbalance.

2 Related Work

Multi-task learning has been applied to several areas that rely on learning
fine-grained discriminations or localizations under the constraint of a global
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correlating structure. In these problems, multiple target labels or objective func-
tions must simultaneously be optimized. In object recognition problems, multi-
ple objects may be present in a training image whose co-occurrences should
be explicitly learnt [15]. In text classification problems, joint inference across
all characters in a word yields performance gains over independent classifica-
tion [16]. In multi-label image tagging/retrieval [4,17], representations of the
contents of an image across modalities (e.g., textual descriptions, voice descrip-
tions) are jointly inferred from the images. The resulting classifiers can then
be used to generate descriptions of novel images (tagging) or to query images
based on their descriptions (retrieval). Closer to this work, facial model fitting
and landmark estimation [18,19] is another multi-task problem, which requires
a fine-grained fit due to tremendous diversity in facial features, poses, lighting
conditions, expressions, and many other exogenous factors. Solutions also ben-
efit from global information about the space of face shapes and textures under
different conditions. Optimization with respect to local gradients and textures
is necessary for a precise fit, while considering the relative locations of all points
is important to avoid violating facial topologies.

This paper applies multi-task learning to facial attributes. Applications of
facial attributes include searches based on semantically meaningful descriptions
(e.g., “Caucasian female with blond hair”) [12,20,21], verification systems that
explain in a human-comprehensible form why verification succeeded or failed [22],
relative relations among attributes [23], social relation/sentiment analysis [24],
and demographic profiling. Facial attributes also provide information that is
more or less independent of that distilled by conventional recognition algorithms,
potentially allowing for the creation of more accurate and robust systems, nar-
rowing down search spaces, and increasing efficiency at match time.

The classification of facial attributes was first pioneered by Kumar et al. [22].
Their classifiers depended heavily on face alignment, with respect to a frontal
template, with each attribute using AdaBoost-learnt combinations of features
from hand-picked facial regions (e.g., cheeks, mouth, etc.). The feature spaces
were simplistic by today’s standards, consisting of various normalizations and
aggregations of color spaces and image gradients. Different features were learnt
for each attribute, and a single RBF-SVM per attribute was independently
trained for classification. Although novel, the approach was cumbersome due
to high dimensional varying length features for each attribute, leading to ineffi-
ciencies in feature extraction and classification [25].

In recent years, approaches have been developed to leverage more sophisti-
cated feature spaces. For example, gated CNNs [26] use cross-correlation across
an aligned training set to determine which areas of the face are most relevant
to particular attributes. The outputs of an ensemble of CNNs, one trained for
each of the relevant regions, are then joined together into a global feature vec-
tor. Final classification is performed via independent binary linear SVMs. Zhang
et al. [24] use CNNs to learn facial attributes, with the ultimate goal of using
these features as part of an intermediate representation for a Siamese network to
infer social relations between pairs of identities within an image. Liu et al. [13]
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use three CNNs – a combination of two localization networks (LNets), and an
attribute recognition network (ANet) to first localize faces and then classify facial
attributes in the wild. The localization network proposes locations of face images,
while the attribute network is trained on face identities and attributes, and is
used to extract features, which are fed to independent linear SVMs for final
attribute classification. Their approach was the state-of-the-art on the CelebA
dataset at the time of the submission of this paper – and serves as a basis of
comparison. In contrast to our approach, Liu et al. and many other recent works
do not directly use attribute data in learning a feature space representation, but
instead use truncated networks trained for other tasks. While research suggests
that coarse-grained attribute data (e.g., image-level) can be indirectly embedded
into the hidden layers of large-scale identification networks [27], the efficiency of
this approach has not been well studied for inferring fine-grained (e.g., facial)
attribute representations, and findings from [28] suggest that optimal implicit
representations reside across different layers depending on the attribute.

Surprisingly, multi-task learning has not been widely applied to the problem
of facial attribute recognition. Only very recently has it been addressed, e.g.,
Ehrlich et al. [29] developed a Multi-Task Restricted Boltzmann Machine (MT-
RBM). In terms of joint inference for facial attributes, it is the first we could find
in the literature, but the approach deviates radically from DCNN approaches in
many other respects as well: the MT-RBM is generative and non-convolutional
and it is unclear what contributed most to their improvement over [13].

While there has been significant prior work in visual domain adaptation [14],
including more recent work for CNNs [30], the main problem that we address
in this paper – incorporating domain adaptation into the training procedure for
multi-objective attribute classifiers – has heretofore not been addressed, either
in DCNN multi-task learning or in facial attribute research. For facial attributes
in particular, we contend that domain adaptation is essential when building
classifiers fit to chosen target demographics. Recently, Wang et al. [31] demon-
strated that even throughout New York City, a relatively compact geographic
region, differences in demographic profile are so prominent as a function of geolo-
cation that binned geolocation can be used to derive a powerful unsupervised
facial attribute feature space representation. In order to leverage attribute data
we have for training demographic-specific classifiers, domain adaptation during
training is vital to provide a balanced representation and mitigate problems from
an over-correlated representation [32].

3 Approach

For multi-task problems, the high level goal is to maximize accuracy over all
tasks, where each task has its own objective. In our case, the task is attribute
prediction, and we seek to simultaneously maximize prediction accuracy over all
attributes.

Formally, let I be the space of allowable images, and let M be the number
of attributes. For a given sample x ∈ I, let yi ∈ {−1,+1} be the binary ground
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truth label for x’s ith attribute, where i ∈ {1, . . . , M} is the attribute index. Let
H be the space of allowable decision functions and fi(x; θi) ∈ H be the decision
function, with parameters θi, learnt for the ith attribute classifier. Given a set
of loss functions Li(fi(x; θi), yi), each of which defines the cost of an error on
input x with respect to attribute i, let E(fi(x; θi), yi) be the expected value of
that loss over the range of inputs I. Then the idealized problem is to minimize
the loss for each attribute, i.e.:

∀i : f∗
i = argmin

fi∈H
E(fi(x; θi), yi). (1)

For input x and attribute i, the classification result ci(x) and its corresponding
error ei(x, yi) are obtained by thresholding the associated prediction:

ci(x) =

{
+1 if fi(x) > 0
−1 otherwise,

and ei(x, yi) =

{
0 if yici(x) > 0
+1 otherwise.

(2)

Intuitively, this appears to lead to M independent optimization problems,
for which one should be able to optimize each fi separately. Accordingly, the
most common approach to attribute classification in prior work is to use inde-
pendent binary classifiers in some characteristic feature space to classify each
attribute [13,22]. Both approaches in [22] and [13] learn M independent binary
classifiers trained with a hinge-loss objective. The hinge-loss objective function is:

argmin
θi

Li(x, θi, yi) = max(0, 1 − yifi(x; θi)). (3)

When the classifier is a dot product, i.e., fi(x) = θT
i (1, xT )T , solving this objec-

tive function results in a binary support vector machine (SVM) – the hyperplane
that separates the two binary classes of data (+1 and −1) with maximum soft-
margin. Given M attributes, this approach leads to M binary classifiers, each
of which outputs a decision score. A positive decision score corresponds to the
predicted presence of an attribute, while a negative decision score corresponds
to its absence.

In order to learn latent correlations, it is also important to use attribute data
directly to derive the feature space. Although Liu et al. [13] claim that latent
features of attributes are learnt by their feature space representation while opti-
mizing over a dataset for an identification task, the extent to which this is true
for attributes that have little to do with identity (e.g., Smiling) is questionable.
Rather, intuition suggests the opposite – that networks trained for identification
of individuals would learn to ignore such attributes. To uncover such correla-
tions, the network used to learn the feature space should be directly trained on
attribute data and the distribution of attributes in training should match the
operational or testing distribution.

This leads to the problem of how to appropriately balance the dataset used
to learn attribute features. A perfectly balanced dataset can be obtained by
collecting separate images for each attribute, but this leads to an enormous
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dataset, with different identities for different attributes, effectively yielding a
relatively small number of training images per attribute in proportion to the size
of the dataset [22]. This approach also does not account for label correlations.
Using a multi-label dataset, e.g., CelebA [13] allows us to leverage multiple
labels in a mixed objective, but the distribution is highly imbalanced for many
attributes (cf. Sect. 4). Unfortunately, the attribute distribution of a given target
population does not always follow the dataset bias.

In a separate per-class training, balancing the number of positive and neg-
ative examples that are input to the classifier is easy, e.g., by weighting or
sampling. However, input balancing is nearly impossible for multi-task training.
Furthermore, for many tasks, the training frequencies and the operational/test
frequencies will not match. Our solution to both problems is to define a mixed
objective function including domain adapted weights that incorporate the differ-
ence between the source and target distributions. First, we compute the source
distribution Si from the training set for each attribute i by counting the relative
number of occurrences of positive S+

i and negative samples S−
i . Given a binary

target distribution, T+
i and T−

i , for each attribute i we assign a probability for
each class:

p(i| + 1) =

⎧⎨
⎩

1 if T+
i > S+

i
S−
i T+

i

S+
i T−

i

otherwise
and p(i| − 1) =

⎧⎨
⎩

1 if T−
i > S−

i
S+
i T−

i

S−
i T+

i

otherwise.
(4)

We would like to incorporate this domain adaptation directly into a loss func-
tion, but we need a loss function that additionally mixes all attribute predictions
and simultaneously infers latent correlations between attribute labels and image
data. One approach would be to combine all of the objective functions for each
attribute into one joint objective function, e.g.:

argmin
θ

M∑
i=1

Li(x, θ, yi), (5)

where θ are the parameters of the joint classifier, which for legibility reasons we
omit from the following equations. We can then solve that optimization problem
via backpropagation using raw attribute images and labels as a training set.
While we could use many potential loss functions, in our formulation we optimize
a weighted mixed task squared error. Let M be the number of attributes, X be
a data tensor containing N input images, and Y be a corresponding N × M
matrix of labels. Then our domain-adapted multitask loss function is given by:

L(X,Y) =
N∑

j=1

M∑
i=1

p(i|Yji) ||fi(Xj) − Yji||2. (6)

Replacing the standard loss layer of a DCNN with a layer implementing Eq. (6)
results in the mixed objective optimization network (MOON) architecture, which
incorporates attribute correlations and can adapt the bias of the training dataset
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to a target distribution. In our custom implementation we obtain the weights
p(i|Yji) via sampling. For each attribute i with target value Yji ∈ {−1,+1} we
only backpropagate the error with the probability p(i|Yji), otherwise we set the
gradient for attribute i to 0. The more source and target distributions differ, the
more elements in the gradient are reset.

4 Experiments

4.1 Dataset

For comparison with other attribute benchmarks, we conducted our experiments
on the CelebA dataset [13]. The dataset consists of batches of 20 images from
approximately 10K celebrities, resulting in a total of more than 200K images.
Following the standard CelebA evaluation protocol, 8K identities (160K images)
are used for training, 1K for validation and 1K for testing. Each image is anno-
tated with 5 key points (both eyes, the mouth corners and the nose tip), as well
as binary labels of 40 attributes. These attributes are shown in Fig. 2, which also
shows the relative number of images in which the attribute is hand-labeled as
present (blue) or absent (tan), respectively. As one can observe, for many of the
attributes, there is a strong bias for either of the two classes. This is especially
the case for certain attributes, e.g., relatively few images are labeled as Bald or
Wearing Hat, while the majority of the facial images are labeled as Young.
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Fig. 2. CelebA Dataset Bias. This figure shows the distribution of the attribute labels
throughout the CelebA dataset: presence (blue) or absence (tan). (Color figure online)

The CelebA dataset provides a set of pre-cropped face images, which were
aligned using the hand-labeled key points. For our experiments we use these
images, but later (cf. Sect. 5.1) we show that the trained classifier can also work
with faces which are not perfectly aligned, and we introduce ideas to make our
MOON network more robust to mis-alignment.

4.2 Evaluating MOON on CelebA

In order to compare with existing approaches, which do not account for dataset
bias, we evaluate MOON on the CelebA dataset, setting the target distribution
to the source distribution, i.e., ∀i Ti ≡ Si.
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Using the CelebA training set, we trained a DCNN to predict attributes
under a MOON architecture. As the basic network configuration, we adopted
the 16 layer VGG network from [33], where we replaced the final loss layer with
the loss in Eq. (6). We also changed the dimension of the RGB image input layer
from 224 × 224 pixels to 178 × 218 pixels, the resolution of the aligned CelebA
images. In opposition to [33], we do not incorporate any dataset augmentation
or mirroring, but train the network purely on the aligned images. Due to mem-
ory limitations, the batch size was set to 64 images per training iteration and,
hence, the training requires approximately 2500 iterations to run a full epoch on
the training set. We selected a learning rate of 0.00001, finding empirically that
higher learning rates caused the network to learn only the bias of the training
set. During training we update the convolution kernel weights using the back-
propagation algorithm with an RMSProp update rule and an inverse learning
rate decay policy.

We ran two types of network training, one training a separate network for
each attribute, and one optimizing the combined MOON network. Separately
training classifiers is the most common approach taken in the literature. By
training one network per individual attribute, each network can concentrate only
on the parts of the image it deems relevant to that attribute. During the separate
training, we presented each network with all images from the training set, and a
single input to the loss layer encoded with labels that denoted the presence (+1)
or the absence (−1) of the attribute. Loss was computed according to Eq. (6). As
each network required several hours to train on an NVIDIA Titan-X GPU, we
chose to train each network for ≈2 epochs (5000 iterations). To check if 2 epochs
are sufficient to attain convergence to a maximum validation accuracy, we con-
tinued training for four attributes. We selected these attributes – Attractive,
Chubby, Narrow Eyes, and Young – to have varying statistics from the dataset:
While Attractive is relatively balanced, images with Chubby and Narrow Eyes
are mostly absent from the dataset, whereas Young is over-represented. While
errors on the training set further decreased, errors on the validation set increased
after approximately 4–6 epochs, with little improvement over the 2 epochs net-
works. This leads us to believe that improvements in validation accuracy beyond
2 epochs are negligible.

When training our MOON network, we use a single network with M = 40
outputs to learn all attributes simultaneously. Since CelebA has identical source
and target distributions, we define the loss layer in (6) to weight all elements
equally during backpropagation – which is equivalent to Euclidean loss between
the network output and the 40 binary attribute values. We trained the network
for 40 epochs since the validation error after 10 epochs was still decreasing.
Based on the minimum validation set error, we chose our final MOON network
after 24 epochs. While individual classifiers seem to take fewer training iterations
than MOON to minimize their validation error, the total training time of the
MOON network is still lower than the sum of the separate network training
times. We suspect that the additional iterations required for the MOON network
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Fig. 3. Error Rates on CelebA. This figure shows the classification errors on the test
set of the CelebA dataset for several algorithms, including our Separate networks and
MOON. The results of Face Tracer and LNets+ANet are taken from Liu et al. [13].
For a tabular form of these results see the supplement to this paper.

to converge are needed to learn a more sophisticated latent structure than those
learnt by the separate networks.

To compare with the results of Liu et al. [13], we measure the success of
our training in terms of classification error, i.e., the number of cases, where our
classifier f predicted the incorrect label, relative to the total number of test
images:

Ei(X,Y) =
1

Ntest

Ntest∑
j=1

ei(Xj , Yji). (7)

The Average classification error is computed by taking the average of the clas-
sification errors over all (M) attributes:

E(X,Y) =
1
M

M∑
i=1

Ei(X,Y ). (8)

Note that this error does not differentiate between positive and negative values.
Hence, for very biased attributes, a random classifier which always predicts the
dominant class would reach a low classification error, e.g., for Bald the random
classification error would be as low as 2.24 %!

The classification errors for all the attributes are visually displayed in Fig. 3.
There, we also included two results from Liu et al. [13], converting from classifi-
cation success (reported in [13]) to classification error. The Face Tracer results
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reflect the best non-DCNN based algorithm that has been evaluated so far on
the CelebA dataset. LNets+ANet represent the state-of-the-art results on this
dataset obtained by combining three different deep convolutional neural net-
works with support vector machines.

The average classification errors over all attributes for each classifier are: Face
Tracer: 18.88 %, LNets+ANet: 12.70 %, Separate: 9.78 %, and MOON: 9.06 %.
Thus, our MOON network achieves a relative reduction of 28.7 % of the error
over the state of the art, and a 7.4 % reduction over the separately trained
networks. For almost all attributes, the results of our two approaches outperform
the LNets+ANet state-of-the-art results, and the MOON network gives a lower
error than the Separate networks trained specifically on a single attribute.

Interestingly, for several attributes that are traditionally not considered to
be useful in face recognition, such as hair color (e.g. Brown Hair), hair style (e.g.
Straight Hair), accessories (e.g. Wearing Necklace), and non face-related
attributes (e.g. Blurry), our approach outperforms the LNets+ANet combi-
nation by an especially large margin. We suspect that this effect is due to the
fact that in [13], the ANet network’s feature space was derived from training on
a face recognition benchmark, and later adapted to the attribute classification
task, which offers little direction for inferring the hidden representations of non
facial identity related attributes.

4.3 CelebAB: A Balancing Act

As demonstrated in Sect. 4.2, MOON obtains state-of-the-art classification accu-
racies on the CelebA dataset. However, it is unclear how meaningful these results
are for target distributions with different attribute frequencies, e.g., with more
realistic distributions of Young or Chubby people.

Since our objective is to learn the network outputs to be +1 or −1 corre-
sponding to presence or absence of attributes, respectively, we plotted the score
distributions of the validation set for four of the attributes. From Fig. 2 we
observe a strong bias for several attributes in the CelebA dataset, which we can
find in the score distribution plots of Fig. 4(a), too. Note that the positive and
negative score distributions have been normalized independently, otherwise the
positive scores for Narrow Eyes and Chubby would not be visible. For attributes
with a balanced number of positive and negative examples, such as Attractive,
the distributions of negative (tan) and positive (blue) scores are also balanced.
On the other hand, for unbalanced attributes, such as Young, Narrow Eyes or
Chubby, the dominant class is well distributed around its desired value, but the
other class has not been learnt well. Interestingly, a comparably small bias in the
training set (for Young there are 77 % positives and 23 % negatives) can destroy
the capability of the network to learn the inferior class.

Intuitively, when having such unbalanced score distributions, one would
expect that the threshold of 0 that we use for classification should be adapted.
However, given that the validation and test set follow the same bias as the train-
ing set, a threshold of 0 works well for the CelebA dataset. Even more astonish-
ingly, a wide range of thresholds around 0 will lead to approximately the same
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Attractive

Young

Narrow Eyes

-1 0 1

Chubby

(a) Unbalanced

Attractive

Young

Narrow Eyes

-1 0 1

Chubby

(b) Balanced

Fig. 4. Score distributions. This figure shows the distributions of the network outputs
for four different attributes, when presenting images with present (blue) and absent
(tan) attributes. In (a) network outputs after training with unbalanced data are shown,
while in (b) the outputs of the network after training with the balancing loss layer
are presented. Positive and negative score distributions are normalized independently.
(Color figure online)

classification error and, hence, the network has learnt to balance between false
positives and false negatives – including the dataset bias.

To obtain balanced score distributions, we chose to have a balanced target
distribution, i.e., T+

i = T−
i = 1

2 for each attribute i. The resulting validation
set score distribution for the same four attributes generated by the re-balanced
MOON network after 34 training epochs can be seen in Fig. 4(b). Apparently,
the score distributions are much more balanced, and the threshold 0 seems to
make more sense now. Thus, one would expect that the classification error would
be lower, too. However, due to the high dataset bias, which is also present in
the validation and test sets, the total average classification error of the balanced
network on the (unbalanced) CelebA test set is 13.67 %.

Although this classification error is larger than that obtained by the unbal-
anced MOON network, this is an artifact of the significant imbalance in the
original test set ; the error measure in Eq. (7) has not been adapted to the
target domain. A fair comparison would measure the balanced classification
error EB

i that weights the positive and negative classes according to the tar-
get distribution:

EB
i (X,Y) =

Ntest∑
j=1

⎧⎨
⎩

ei(Xj ,Yji)T
+
i

N+
i

if Yji = +1
ei(Xj ,Yji)T

−
i

N−
i

if Yji = −1,
(9)

where N+
i and N−

i are the respective numbers of positive and negative examples
of attribute i in the test set. With T+

i = T−
i = 1

2 , this error is effectively identical
to the equal error rate (EER) between errors made with positive and negative
target values. When computing classification error of the re-balanced MOON
network example with T+

i = T−
i = 1

2 , we obtain an average EB
i error of 12.98 %.
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Note that the unbalanced MOON network, which is not trained to follow the
target distribution, obtains an EB

i error of 21.41 %. This is precisely what we
would expect of a domain adaptation system: A classifier adapted to the target
distribution does better than a classifier that is not.

5 Discussion

5.1 Handling Mis-aligned Images

In our experiments in Sect. 4, we used aligned images to train and test the
networks. To show that MOON is able to deal with badly aligned images, we
conducted an additional experiment in which we used perturbed test images. To
perturb the images, we applied a random rotation within ±10◦, a random scaling
with a scale factor in [0.9, 1.1], and a random translation of up to 10 pixels in
either direction to the pre-aligned faces in the CelebA dataset. We selected these
parameters to be well outside of the error range of a reasonable (frontal face)
eye detector. Alignment errors of these magnitudes have been shown to highly
influence the performance of many traditional face recognition algorithms [34].

When running this perturbed test set through our (unbalanced) MOON net-
work, which was trained purely on aligned faces, we obtain a classification error
of 11.62 %, which is higher than the 9.06 % obtained with aligned test images,
but still better than the current state of the art in [13]. We assume that we
can improve the network stability against mis-alignment by incorporating aug-
mented (e.g., misaligned perturbations) training data into the training process,
since this has shown to improve the performance of DCNNs [35].

Some preliminary experiments seem to verify this claim: When training with
mis-aligned and horizontally mirrored images (in total 10 copies for each training
image), we were able to decrease the classification error on the mis-aligned test
images to 9.50 %. Unfortunately, this also caused a slight performance degra-
dation when evaluating on purely aligned images, causing classification error to
increase from the 9.06 % to 9.23 %. Hence, in principle, the MOON architecture
is able to work with aligned and mis-aligned images, as long as the conditions
during training and testing are similar. These tests further highlight the need to
select data augmentation methods appropriate to the respective quality of the
actual alignment algorithms used in real end-to-end systems.

5.2 Face Verification on LFW

One application of facial attributes is to enhance other recognition algorithms.
In order to evaluate our attribute classifiers on another dataset and to exam-
ine the effectiveness of our attributes for a particular application, we conducted
the same View 2 LFW verification evaluation as Kumar et al. in [22], using the
40 attributes extracted from MOON under both balanced and unbalanced net-
works. We also tested the extracted attributes with respect to the features of
Face Tracer (we downloaded the attribute vectors from [22] provided on the LFW
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web page http://vis-www.cs.umass.edu/lfw), using the approach detailed in [22].
After optimizing RBF SVM parameters for each feature type separately using
View 1 protocol of the labeled faces in the wild (LFW) dataset, the final classi-
fication accuracies that we obtained were 83.43%± 2.22 for Kumar’s attributes,
and 85.05% ± 1.57 for the re-balanced MOON network. Hence, our 40 MOON
attributes provide better face recognition capabilities than the 73 attributes
defined by Kumar et al. [22], though they are far from the current state-of-the-
art on LFW. This result, consistent with intuition, suggests that the accuracy
of the attribute classification is important to providing noticeably better recog-
nition results. With 84.73% ± 1.99, the verification accuracy for the unbalanced
MOON network is only slightly lower than that of the re-balanced MOON net-
work, but the stability is decreased. We assume that training on a target dis-
tribution that better reflects the distribution of facial attributes in LFW will
result in further increased accuracy/stability. See the supplement to this paper
for additional qualitative analysis of our LFW evaluation.

6 Conclusion

The MOON architecture achieves an accurate, computationally efficient, and
compact representation which advances the state of the art on the CelebA
dataset. Unlike competing approaches, our experiments did not rely on any
datasets external to CelebA to train our network. We also investigated dataset
bias in CelebA and proposed domain adaptation methods for training to a dif-
ferent target distribution without requiring training samples from that popula-
tion. Combining domain adaptive methods and multiple-task objectives into one
mixed objective function, we conducted evaluations on a novel re-balanced ver-
sion of CelebA (the CelebAB dataset) and the LFW dataset that demonstrate
the effectiveness of our approach.

Our work raises a philosophical question about the mathematics of attribute
recognition: How should the attribute recognition problem be treated? Contrary
to previous work, in which attribute labels are independently learnt, our app-
roach implicitly leverages attribute correlations by explicitly forcing hidden lay-
ers in the network to incorporate information from multiple labels while simul-
taneously enforcing specified balance constraints via a domain adaptive loss.
While CelebA labels are binary, MOON’s weighted Euclidean loss also offers
the capacity to learn labels along a continuous range, which is perhaps a more
suitable representation for some attributes (e.g., Big Nose, Young). Matching
output score distributions to perceptual continuity and incorporating different
types of attribute labels are interesting topics which we leave for future research.
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