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Abstract. Given a set of images containing objects from the same cat-
egory, the task of image co-localization is to identify and localize each
instance. This paper shows that this problem can be solved by a simple
but intriguing idea, that is, a common object detector can be learnt by
making its detection confidence scores distributed like those of a strongly
supervised detector. More specifically, we observe that given a set of
object proposals extracted from an image that contains the object of
interest, an accurate strongly supervised object detector should give high
scores to only a small minority of proposals, and low scores to most of
them. Thus, we devise an entropy-based objective function to enforce
the above property when learning the common object detector. Once
the detector is learnt, we resort to a segmentation approach to refine the
localization. We show that despite its simplicity, our approach outper-
forms state-of-the-arts.
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1 Introduction

There has been an explosion of images available on the Internet in recent years,
largely due to the popularity of photo sharing sites like Facebook and Flicker.
However, most of these images are either unlabeled or weakly-labeled. One way of
accessing these images is finding images depicting the same object, for instance,
Google Image Search will return images containing a common object described
by the user input keyword. In this paper, we aim to localize the common object
in this scenario (without using any other forms of supervision, e.g., manually-
labeled negative samples). This task is known as the image co-localization task
in literature [4,17,30].

Image co-localization is a particularly challenging task, and thus there exist
a limited number of comparable methods [4,17,30]. These methods address this
problem from various perspectives. The work in [30] introduces binary latent
variables to indicate the presence of the common object and formulates the co-
localization via latent variable inference. The work of [4], in contrast, localizes
the common object by matching common object parts. Our work differs from
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previous approaches in that it directly learns the common object detector by
modeling its detection confidence score distribution on each image, and achieves
the localization with the learned detector.

The key insight of our method is that although we do not have sufficient super-
vision to learn a strongly supervised object detector, it is still possible to learn
an “artificial” detector by modeling its detection confidence score distribution on
object proposals [31,34]. The intuition is inspired from the behaviour of an accu-
rate strongly supervised object detector, that is, when applied to object propos-
als extracted from an image contains the object of interest, only a small minor-
ity of proposals will be given high detection confidence scores while most of them
are associated with low scores. Motivated the above observation, in this paper we
design a novel Shannon-entropy-based objective function to promote the scarcity
of high detection confidence scores within an image while avoiding the trivial
solution of producing low scores for all proposals. In other words, by optimiz-
ing the proposed objective, our approach will encourage the existence of a few
high response proposals in each image as the common object while suppressing
responses in the remainder proposals which will be deemed as background.

To generate the final co-localization results, we have also devised a method
for improving the bounding box estimate. Inspired by detection-by-segmentation
approaches (e.g., [22]), we use the final detection heat map and color information
to define a CRF-based segmentation algorithm, the output of which indicates
the instances of the common object.

Through an extensive evaluation on several benchmark datasets, including
the PASCAL VOC 2007 and 2012 [8], and also some subsets of the ImageNet [6],
we demonstrate that our approach outperforms the state-of-the-arts for the
image co-localization task.

2 Related Work

Image co-localization shares some similarities with image co-segmentation [3,16,
26] in the sense that both problems require a set of images containing objects
from a common category as input. Instead of generating a precise segmentation
of the related objects in each image, co-localization algorithms [4,17,30] aim
to draw a tight bounding box around the object. Image co-localization is also
related to works on weakly supervised object localization (WSOL) [1,5,7,24,28,
29,32,33] as both try to localize objects of the same type within an image set,
the key difference is WSOL requires manually-labeled negative images whereas
co-localization does not.

Tang et al. [30] formulate co-localization as a boolean constrained quadratic
program which can be relaxed to a convex problem, which is further accelerated
by the Frank-Wolfe Algorithm [17]. Recently, Cho et al. [4] propose a Prob-
abilistic Hough Matching algorithm to match object proposals across images
and then dominant objects are localized by selecting proposals based on match-
ing scores. There are also approaches address the problem of co-localization in
video [17,21,23]. Notably, Prest et al. [23] select spatio-temporal tubes which
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are likely to contain the common object, and Joulin et al. [17], in contrast,
extend [30] by incorporating temporal consistency.

However, in this paper, we tackle the co-localization problem from a new per-
spective, that is, learning the common object detector by modeling its detection
confidence score distribution, and thus get rid of the need of manually-labeled
negative images. An advantage of the proposed approach for learning common
object detectors is that it provides an explicit mechanism by which to exploit the
relationship between localization and detection. The benefits of exploiting this
relationship have been identified before in WSOL. For example, in [7], objects
are localized by minimizing a Conditional Random Field (CRF) energy function
which incorporates class-specific information, and the class-specific information
is learned from the localized objects. Cinbis et al. [5] propose a multi-fold train-
ing procedure for Multiple Instance Learning whereby, at each iteration, positive
instances in each fold are localized by a detector trained from other folds in the
previous iteration. The approach that we propose here, however, is the first
to systematically leverage the idea of jointly performing object detection and
localization for co-localizing common objects in images.

3 Approach

We give an overview of our image co-localization framework in Fig. 1. The input
to our framework is a set of N images I = {I1, I2, . . . , IN} contains one common
object (e.g., aeroplane), and we aim to annotate the location of common object

Fig. 1. An overview of our image co-localization framework. (a) The input of our
system is a set of images contains a common object category (here, aeroplane). (b) The
common object detector is learnt by modeling the distribution of detection confidence
scores. (c) Detection heat maps generated by the learnt detector are used as the unary
potential for graph-cuts segmentation. (d) The output for each image is the smallest
rectangle which covers the corresponding segmentation.
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instances in each image. Inspired by the behaviour of an accurate strongly super-
vised object detector (Sect. 3.1), the core of our framework is the procedure of
learning the common object detector by modeling its detection confidence score
distribution (Sect. 3.2). We further formulate object localization as a segmenta-
tion problem (Sect. 3.3), which involves using the detection heat map to define
unary potentials of a binary energy function and solving it efficiently by standard
graph-cuts.

3.1 The Behaviour of an Accurate Strongly Supervised Detector

Object proposals [31,34], which are image regions that are likely to contain
objects, have been widely used in recent object detection approaches [10–12]. In
this section we are interested in the statistics of proposal detection confidence
scores on an image generated by a strongly supervised detector. The observation
here motivates our formulation for learning common object detectors in Sect. 3.2.

More specifically, we apply one state-of-the-art strongly supervised object
detector Fast R-CNN [10] (trained on PASCAL VOC 2007 trainval set [8]) to a
PASCAL VOC 2007 test image which contains the object of interest (Fig. 2(a)).
After obtaining the detection confidence scores of the more than 2000 object
proposals [31] extracted from this image, we calculate the normalized histogram
of detection confidence scores of all proposals (Fig. 2(b)).
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0 0.2 0.4 0.6 0.8 1

pe
rc

en
ta

ge
 o

f p
ro

po
sa

ls

0

0.2

0.4

0.6

0.8

1

)b()a(

Fig. 2. (a) Predicted objects by Fast R-CNN [10]. (b) Normalized detection confidence
score histogram of object proposals in (a). We observe the same statistics for most
images.

From Fig. 2(b) it is clear that, although there are multiple instances of the
object of interest (“car” in this case), more than 90% of object proposals have
a very low detection confidence score (less the 0.05), which indicates that a
dominantly large portion of proposals are likely to cover image regions that do
not cover the object of interest tightly. This is understandable as object proposal
generation is a pre-processing step in object detection systems, where recall rate
much more important than precision (not missing any objects of interest is more
important than generating less false positives).
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3.2 Learning Detectors by Modeling Detection Score Distribution

In the setting of image co-localization, although all we know is that there exists a
common object category across images, we still aim to learn the common object
detector. This is possible by modeling the distribution of proposals detection
confidence scores. More specifically, in our method the common object detector
will be learned by enforcing its the distribution of detection confidence scores to
mimic that of an accurate strongly supervised detector (Sect. 3.1).

Formally, for each image Ii ∈ I, we first extract a set of object proposals
Bi = {Bi,1, Bi,2, . . . , Bi,Mi

} using EdgeBox [34], which shows good performance
in a recent review [14]. Let φ(Bi,j) ∈ R

K denote the feature representation of
proposal Bi,j ∈ Bi. The particular detection confidence scores that we use are
formulated as follows

si,j = f(wT φ(Bi,j) + b), (1)

where w ∈ R
K , b ∈ R

1 denote weight and bias terms of the detector respectively,
and f(·) is the softplus function which has the form f(x) = ln(1 + exp(x)).

Irrespective of the form of the detector, we can construct the set of detec-
tion confidence scores Si = {si,1, si,2, . . . , si,Mi

} over all the proposals Bi, and
normalize them as pi,j = si,j+ε∑

j(si,j+ε) , where the parameter ε is a small constant.
If the detector in Eq. (1) is trained with strong supervision, according to the
observation in Sect. 3.1, most of its detection confidence scores in Si should have
near-zero values which means that the score vector si = [si,1, si,2, · · · , si,Mi

]T

and its normalized version pi = [pi,1, pi,2, · · · , pi,Mi
]T should be sparse vectors.

Note that when all proposals have zero detection confidence scores, si will be
sparse but pi will be dense due to the effect of the constant ε. Thus, our method
will be based on pi because enforcing its sparsity will be equivalent to requir-
ing the detector to have few high detection confidence scores and many low
(zero) detection confidence scores, in other words, the detection confidence score
distribution will mimic that of an accurate strongly supervised detector.

Objective Function. To measure the sparsity of the normalized detection con-
fidence score vector pi, we opt for the Shannon entropy in this work, that is,

L(pi) = −
Mi∑

j=1

pi,j log pi,j , (2)

and the objective for learning the common object detector is formulated as
follows:

min
w,b

1
N

N∑

i=1

L(pi) + λ||w||22, (3)

where we use the square of the L2-norm of w as a regularizer on the weight
vector.

So the optimal value of the weight and bias of the detector is given by:

w∗, b∗ = argmin
w,b

− 1
N

N∑

i=1

M∑

j=1

pi,j log pi,j + λ||w||22. (4)
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Note that Eq. (4) does not involve a set of manually-labeled negative samples
which do not contain the object of interest, but rather describes the desired form
of the detection confidence score distribution of object proposals. The learn-
ing process also implicitly takes advantage of the chicken-and-egg relationship
between object localization and detection: precisely localized object instances
are critical for training a good object detector, and objects can be localized
more precisely by a well-trained detector.

Optimization. As our objective function in Eq. (4) is non-convex, we minimize
it using stochastic gradient descent (SGD). Similar to the approach used in
training a Convolutional Neural Network [19], we divide all data (i.e., object
proposals) into mini-batches. We initialize the weight vector w from a zero-
mean Gaussian distribution, while the bias term b is set to zero initially. During
training we divide the learning rate (which is set to 0.1 initially) by 10 after
each 10 epochs. We stop learning after 20 epochs when the objective function
converges.

Modification. After minimizing Eq. (4), when we visualize the proposal with
the maximal detection confidence score for each image (Fig. 3), it is interesting
to note that the learnt detector may not fire at the common object but some
common visual patterns (e.g., common object parts, common object with some
context) instead. Also, the discovered common visual patterns can be very differ-
ent if the initialization of our detector varies (different local minimums). However
in this work, as we aim to co-localize the common object, we reformulate Eq.
(1) by incorporating the “objectness” score oi,j (outputs of Edgebox) of each
proposal Bi,j as a weight to favour proposals with high objectness score (which
more likely to cover a whole object tightly)

si,j = oi,jf(wT φ(Bi,j) + b). (5)

We experimentally find that minimizing Eq. (4) using si,j defined in Eq. (5)
gives a stable solution regardless of initialization.

Fig. 3. Our detectors fire at different common visual patterns (denoted by red and
green bounding boxes) by minimizing Eq. (4) with different random initializations.
Although these common visual patterns may not be suitable for the co-localization
task, they may be useful for other computer vision tasks, such as discovering common
object parts for fine-grained image classification [18]. (Color figure online)
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Localizing the Common Object. The optimal w and b, inserted into Eq. (1),
lead to a mechanism for determining the detection confidence scores for all object
proposals. The nature of the co-localization problem means that the maximal
score for each image indicates the desired detection. This method is used as a
baseline in the Experiments section (Sect. 4.1).

Discussion. Theoretically, other sparsity measures could be employed to replace
the Shannon entropy. Note that the commonly used L1 norm cannot be applied
here because ‖pi‖1 = 1. One possible way to use L1 norm is to redefine the
normalization score pi,j = si,j+ε√∑

j(si,j+ε)2
.

3.3 Refining the Bounding Box Estimate

The quality of the detections generated through the above described process
depends entirely on the quality of object proposals. To overcome this dependency,
and enable better final bounding box estimates to be achieved, we have developed
a bounding box refinement process as follows.

Given the optimal w∗ and b∗ identified by minimizing Eq. (4), we generate
the detection heat map as follows. For each pixel in the image, we add up the
weighted detection confidence score si,j from Eq. (5) for all proposals Bi,j that
cover this pixel (zero for pixels not covered by any proposals). The values are
then normalized to the interval [0, 1]. This gives rise to a set of detection heat
maps H = {H1,H2, . . . , Hn}. Some examples are illustrated in Fig. 4.

Fig. 4. Examples of our co-localization process. From top to bottom: input images (pre-
dicted boxes in red), detection heat maps, segmentation results. (Color figure online)

Given the set of detection heat maps H, we aim to produce a segmentation
of the entire object. This approach is inspired by previous work which casts
localization as a segmentation problem (e.g., [22]).

Formally, we formulate the segmentation problem as a standard graph-cut
problem. We first extract superpixels [9] to construct the vertex set {m} and
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aim to label each superpixel as foreground (ym = 1) or background (ym = 0).
Mathematically, the energy function is given by

E(y) =
∑

m

um(ym) +
∑

(m,n)∈E
vmn(ym, yn), (6)

where um and vmn are the unary and pairwise potential respectively. E is the
set of edges connecting superpixels1.

Unary Potential um. Inspired by [20], the unary potential is the novel part of
our segmentation framework, which carries information from the detection heat
map H:

up(ym) = − log Am(ym), (7)

where Am is the prior information from the detection heat map H:

Ap(ym = 1) = H(m),
Ap(ym = 0) = 1 − H(m),

(8)

where H(m) is the mean of values inside superpixel m on map H.

Pairwise Potential vmn. Our pairwise potential is defined as follows.

vmn(ym, yn) = [ym �= yn]e−β||C(m)−C(n)||22 , (9)

where C(m) is the color histogram feature. As in [20,25], this potential penalizes
superpixels with different colors taking the same label.

As our pairwise potential in Eq. (9) is submodular, the optimal label y∗ can
be found efficiently by the graph-cuts [2]. As shown in Fig. 4, the segmentation
derived through this approach is accurate. The final bounding box estimate is
then calculated as the smallest rectangle which covers the segmentation.

4 Experiments

Datasets. We evaluate our approach on three datasets, including VOC 2007
and 2012 [8] datasets, six subsets of the ImageNet dataset [6] which have not
been used in the ILSVRC [27]2. For VOC datasets, following previous works in
co-localization and weakly supervised object localization [1,4,5,33], we use all
images on the trainval set discarding images that only contain object instances
marked as “difficult” or “truncate”.

Evaluation Metric. We use two metrics to evaluate our approach. Firstly,
for comparison with state-of-the-art approaches, we use the CorLoc metric [7],
1 In our case two superpixels are connected if the distance between their centroids is

smaller than the sum of their major axis length.
2 The six categories are chipmunk, rhino, stoat, racoon, rake and wheelchair. Note

that ground-truth bounding box annotations are available for these categories, thus
enable quantitative evaluation.
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which is defined as the percentage of images that are correctly localized. An
image is considered as correctly localized if the Intersection-over-Union (IoU)
score between the predicted bounding box and any ground-truth bounding boxes
of the object of interest exceeds 50%.

Implementation Details. We use Edgebox [34] to extract object proposals
with a maximum of 2000 proposals extracted from each image. We represent
each Edgebox proposal as a 4096-dimensional CNN feature from the fc6 layer
(after ReLU) from the BVLC Reference CaffeNet model [15]. We use a fixed
value of 1 for λ in Eq. (4) which controls the tradeoff between the loss function
and regularizer. The value of β in Eq. (9) is set to 10.

4.1 Ablation Study

Baselines. To investigate the impact of the various elements of our approach,
we consider the following two baseline methods:

– “obj-sel”: the predicted bounding box for an image is simply the proposal
with maximum objectness score.

– “obj-seg”: for each image, objectness scores of all proposals are treated as
detection confidence scores to generate a fake detection heat map, which is
then sent to our segmentation model in Sect. 3.3.

The two methods proposed in our work are:

– “our-sel”: given the learnt detector (Sect. 3.2), we simply select the object
proposal which has the maximum detection confidence score pi,j i.e., B∗

i =
argmaxBi,j∈Bi

si,j .
– “our-seg”: combination of detector training (Sect. 3.2) and segmentation

refinement (Sect. 3.3).

Corloc scores for the above four methods on the VOC 2007 dataset are illustrated
in Fig. 5.

As shown in Fig. 5, the simplest baseline “obj-sel” does not work well (19.8%
CorLoc). This is because the objectness measure of Edgebox [34] is heuristically
defined based on only edge information, which does not exploit the common
object assumption.
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Fig. 5. CorLoc scores of our approaches, and baselines, on the VOC 2007 dataset.
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However, the “obj-seg” baseline in which we use objectness scores to generate
a detection heat map for each image, performs quite well, with CorLoc increasing
to 24.7%. Surprisingly, this performance is on the par with one state-of-the-art
image co-localization approach [17] (24.7% vs. 24.6%), even though there is no
common object assumption. This phenomenon indicates that our segmentation
model is quite effective.

Thanks to our common object detector learning procedure in Sect. 3.2, “our-
sel” achieves a performance of 36.5%, outperforming “obj-sel” and “obj-seg”
by over 16% and 11% respectively. This verifies the effectiveness of this pro-
cedure, and particularly that, although we do not have annotated image labels
nor bounding boxes, the detector still captures the appearance of the common
object, which improves co-localization significantly.

Combing the advantages of the common object detector learning procedure
(Sect. 3.2) and segmentation refinement (Sect. 3.3), we observe another 3.5%
boost in the case of “our-seg”, reaching 40.0% Corloc. Thus we use “our-seg”
to compare with state-of-the-art approaches.

Number of Candidate Proposals. To evaluate the robustness of our approach
under different number of candidate object proposals, we test three settings—
500, 1000 and 2000, which results in 39.2%, 39.6% and 40.0% CorLoc respec-
tively. This indicates that our approach is quite insensitive to the changes in the
number of candidate proposals.

4.2 Diagnosing the Localization Error

In order to better understand the localization errors, following [5,13], each pre-
dicted bounding box predicted by our approach is categorized into the following
five cases: (1) correct: IoU score exceeds 50%, (2) g.t. in hypothesis: ground-
truth completely inside prediction, (3) hypothesis in g.t.: prediction completely
inside ground-truth, (4) no overlap: IoU score equals zero, (5) low overlap: none
of the above four cases. In Fig. 6 we show the error modes of our approach across
all categories on the VOC 2007 dataset.
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Fig. 6. An illustration of error types for our approach on the VOC 2007 dataset.
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As shown in Fig. 6, the fraction of “no overlap” cases is quite small (3.5%)
across all categories, which means our approach can localize common objects to
some extent in most cases. Comparing “g.t. in hypothesis” to its “hypothesis
in g.t.”, it is clear that the former appears more frequently (19.9% v.s. 3.1%),
which means our approach tends to localize objects with some context details. In
terms of correct localization, the three categories with lowest CorLoc values are
bottle (6.8%), chair (6.2%) and pottedplant (12.8%). Objects in these categories
are always in very clustered environments with occlusion (e.g., chair is often
occluded by table) which makes the task quite challenging.

4.3 Comparison to State-of-the-Art Approaches

Comparison to Image Co-localization Approaches. We now compare the
results of our approach to the state-of-the-art image co-localization approaches
of Joulin et al. [17] and Cho et al. [4] on the VOC 2007 dataset (Table 1).
The performance of our approach exceeds that of Joulin et al. [17] significantly
in most categories, with an improvement of over 15% in mean CorLoc. The
recent approach of Cho et al. [4] relies on matching object parts by Hough
Transform with the predicted bounding box is selected by a heuristic standout
score. Candidate regions are object proposals represented by whitened HOG
features. However, we found that this whitening process, whose mean vector
and covariance matrix are estimated from the random sampled images from
the same dataset (inevitably using images from other categories), is crucial for
the performance of their algorithm. Our performance bypasses that of [4] by a
reasonable margin of 3.4%.

Table 1. Comparison to image co-localization approaches on the VOC 2007 dataset
in terms of CorLoc metric [7].

VOCAeroBikeBirdBoatBottleBus Car Cat ChairCowTableDog HorseMbikePersonPlantSheepSofa TrainTv Mean

[17] 32.8 17.3 20.9 18.2 4.5 26.9 32.7 41.0 5.8 29.1 34.5 31.6 26.1 40.4 17.9 11.8 25.0 27.5 35.6 12.1 24.6

[4] 50.3 42.8 30.0 18.5 4.0 62.364.542.5 8.6 49.012.2 44.0 64.1 57.2 15.3 9.4 30.9 34.061.6 31.536.6

Ours73.145.043.427.76.8 53.3 58.3 45.06.2 48.0 14.3 47.369.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

To further verify the effectiveness of our approach, we now present an eval-
uation on the VOC 2012 dataset [8] which has twice the number of images of
VOC 2007. Table 2 shows our performance along with that of Cho et al. [4] which
we evaluated using their publicly available code. It is clear that on average our
approach outperforms that of Cho et al. [4] by 2%.

Table 2. Comparison to image co-localization approaches on the VOC 2012 dataset
in terms of CorLoc metric [7].

VOCAeroBikeBirdBoatBottleBus Car Cat ChairCowTableDog HorseMbikePersonPlantSheepSofa TrainTv Mean

[4] 57.0 41.2 36.0 26.9 5.0 81.154.650.918.2 54.0 31.2 44.9 61.8 48.0 13.0 11.7 51.4 45.364.6 39.241.8

Ours65.757.847.928.96.0 74.9 48.4 48.4 14.6 54.423.9 50.269.9 68.4 24.0 14.2 52.7 30.9 72.4 21.6 43.8
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Comparison to Weakly Supervised Object Localization Approaches.
We also compare our approach with some state-of-the-art approaches on weakly
supervised object localization. Table 3 illustrates the comparison of several recent
works and our approach on VOC 2007 dataset. In particular, our performance
(40.0%) is comparable to that of a very recent work [33] (40.2%) which also
uses CNN features and Edgebox proposals. As shown in Table 3, though we do
not have any negative images, we still outperforms WSOL approaches on 3 of
20 categories.

Table 3. Comparison to weakly supervised object localization approaches on the VOC
2007 dataset in terms of CorLoc metric [7]. Note that these comparators require access
to a negative image set, whereas our approach does not.

VOCAeroBikeBirdBoatBottleBus Car Cat ChairCowTableDog HorseMbikePersonPlantSheepSofa TrainTv Mean

[29] 42.4 46.5 18.2 8.8 2.9 40.9 73.2 44.8 5.4 30.5 19.0 34.0 48.8 65.3 8.2 9.4 16.7 32.3 54.8 5.5 30.4

[28] 67.3 54.4 34.3 17.8 1.3 46.6 60.7 68.92.5 32.4 16.2 58.951.5 64.6 18.2 3.1 20.9 34.7 63.4 5.9 36.2

[5] 56.6 58.3 28.4 20.7 6.8 54.9 69.1 20.8 9.2 50.5 10.2 29.0 58.0 64.9 36.7 18.7 56.5 13.2 54.9 59.4 38.8

[33] 37.7 58.8 39.0 4.7 4.0 48.4 70.0 63.7 9.0 54.2 33.3 37.4 61.6 57.6 30.1 31.7 32.4 52.849.0 27.8 40.2

[1] 66.4 59.3 42.7 20.4 21.3 63.474.359.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

[24] 79.2 56.9 46.0 12.2 15.7 58.4 71.4 48.6 7.2 69.916.7 47.4 44.2 75.5 41.2 39.6 47.4 32.2 49.8 18.6 43.9

[32] 80.163.951.514.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.948.5

Ours73.1 45.0 43.4 27.7 6.8 53.3 58.3 45.0 6.2 48.0 14.3 47.3 69.4 66.8 24.3 12.8 51.5 25.5 65.2 16.8 40.0

We have also conducted an object detection experiment on VOC 2007.
Specifically, for each category, we treated predicted bounding boxes of our co-
localization algorithm on trainval set as ground-truth annotations and sampled
proposals from other categories or have a overlap ratio less than 0.1 against our
localized bounding boxes as negative samples. The fc6 feature from the Caf-
feNet are extracted and hard negative mining is performed to train the detector.
We achieve a mAP of 16.7% on the testset when using a nms threshold of 0.5.
Although our performance is lower than some WSOL approachs, it is under-
standable as we do not use negative data for co-localization. Moreover, we can
easily extend our formulation (Eq. 4) to handle negative data and thus perform
WSOL.

Visualization. In Fig. 7, we provide a set of successful co-localization results
along with the corresponding detection heat maps for some categories of the VOC
2007 dataset. It demonstrates that detection heat maps successfully predict the
correct location of the common object regardless of changes in scale, appearance
and viewpoint. This provides a strong indication that, although trained without
annotated positive or negative examples, our approach is able to discriminate
the common object from other objects in the scene.

4.4 ImageNet Subsets

We note that the CNN model used for extracting features is pre-trained in the
ILSVRC [27], whose training set may have some overlapping categories with
the VOC datasets. In order to justify our approach is insensitive to the object
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Fig. 7. Examples of successful co-localization results for the VOC 2007 dataset. For
each category, the top row depicts predicted bounding boxes on the original image, the
bottom row shows corresponding detection heat maps.

category, we randomly selected six subsets of the ImageNet [6] which have not
been used in the ILSVRC (thus “unseen” by the CNN model) for evaluation.

Table 4 shows our co-localization result along with that of the current state-
of-the-art work of Cho et al. [4]. Clearly, our approach outperforms [4] by a
reasonable margin on all categories except the rhino category, whose images
tend to have relatively large common instances and less cluttered background.
Some successfully co-localization samples are depicted in Fig. 8.

Table 4. Comparison to image co-localization approaches on the ImageNet subsets
in terms of CorLoc metric [7]. Note that these categories have not been used for pre-
training the CNN model, which is used as a feature extractor in this work.

ImageNet Chipmunk Rhino Stoat Racoon Rake Wheelchair Mean

Cho et al. [4] 26.6 81.8 44.2 30.1 8.3 35.3 37.7

Ours 44.9 81.8 67.3 41.8 14.5 39.3 48.3

We also visualize some failure cases of the two categories our approach per-
formed worst—rake and wheelchair (Fig. 9). Interestingly, these failure cases are
quite understandable. For example, a large portion of images in the rake cate-
gory contains both people and rakes, thus our approach tends to capture this
combination as the “common object”. A similar phenomenon is also observed in
the wheelchair category in which people occur along with wheelchairs.
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Fig. 8. Examples of successful co-localization results for the ImageNet subsets.

Fig. 9. Examples of failure cases of rake and wheelchair (ground truth in megenta and
predicted boxes in yellow). (Color figure online)

5 Conclusion

We have addressed the image co-localization problem by directly learning a com-
mon object detector. The key discovery made in this paper is that this detector
can be learned with the objective of making its detection score distribution mimic
an accurate strongly supervised object detector. Also, we have illustrated that
it is profitable to use a CRF model to refine the co-localization result, which has
not been explored in recent works on co-localization.
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