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Abstract. A method for estimating Shannon differential entropy is pro-
posed based on the second order expansion of the probability mass
around the inspection point with respect to the distance from the point.
Polynomial regression with Poisson error structure is utilized to estimate
the values of density function. The density estimates at every given data
points are averaged to obtain entropy estimators. The proposed estima-
tor is shown to perform well through numerical experiments for various
probability distributions.
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1 Introduction

Let X be a p-dimensional random variable with a probability density function
(pdf) f(X). The differential entropy [1,2] of this distribution with pdf f(x) is
defined by

H(f) = −
∫

f(x) ln f(x)dx. (1)

We consider estimating the entropy H(f) in non-parametric manner using a
set of observations D = {xi}n

i=1, where xi, i = 1, . . . , n are the independent
realizations of X with pdf f(x). There are a large number of non-parametric
entropy estimation methods. The simplest approach is firstly estimating the pdf
using the observed dataset D by using, for example the kernel density estimator
[3], then substitute the estimate f̂(x) into the definition of the entropy. The
entropy can be estimated by numerical integration, though, it is known that
numerical integration for multivariate function is unstable and time consuming,
it is recommended in [4] to use empirical expectation with respect to D as

Ĥ(D) = − 1
n

n∑
i=1

ln f̂(xi). (2)
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One of the most popular methods for differential entropy estimation is the
method based on the k-nearest neighbor method [5–10]. In this work, we derive a
nonparametric entropy estimator based on the second order expansion of prob-
ability mass function and polynomial regression with Poisson error structure.
The proposed method is experimentally shown to work well for estimating the
differential entropy of various probability distributions.

2 Preliminary and Notation

We consider the problem of estimating the value f(z) of the probability density
function at the inspection point z ∈ R

p using the set of observation D = {xi}n
i=1.

Let the p-dimensional ball with radius ε centered at z be b(z; ε) = {x ∈ R
p|‖z −

x‖ < ε}, which has volume |b(z; ε)| = cpε
p, where cp = πp/2/Γ (p/2 + 1) is a

volume element of the p-dimensional unit ball and Γ ( · ) is the gamma function.
The probability mass of the ball is defined by

qz(ε) =
∫

x∈b(z;ε)

f(x)dx. (3)

Expanding the integrand, we obtain

qz(ε) =
∫

x∈b(z;ε)

{
f(x) + (x − z)�∇f(z) + O(ε2)

}
dx

= |b(z; ε)| (f(z) + O(ε2)
)

= cpε
pf(z) + O(εp+2).

Assume that the radius ε of the ball is enough small and ignore the second
order term. Then, approximating the left hand side of the above equation by the
proportion of the number of samples fallen in the ball to the whole sample size
n, we obtain a first order approximation of the value of pdf as

f̂(z; ε) =
kε

ncpεp
, (4)

where kε is the number of samples in D inside the ε-ball [11–13]. Conversely, when
we fix the number of sample points from the inspection point to k, we obtain the
k-NN density estimator f̂nn(z; k) = k/(ncpε

p
k), where εk is the distance between

the inspection point to the k-th nearest point. Denoting the values of k-NN
estimator at xi ∈ D using D\{xi}, namely, without using {xi}, by f̂nn

i (xi; k),
we obtain the k-NN based entropy estimator [6] by

Ĥnn(D; k) = −
n∑

i=1

ln f̂nn
i (xi; k). (5)

3 Second Order Method

In our previous work [14], we derived nonparametric entropy estimators based
on the second order expansion of the integrand of Eq. (3).
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Proposition 1. The probability mass of the ε-ball around z is expanded as

qz(ε) = cpf(z)εp +
n

4(p/2 + 1)
cpTr∇2f(z)εp+2 + O(εp+4). (6)

Approximating the left hand side of Eq. (6) by kε/n, and dividing the equa-
tion by cpε

p, we obtain

kε

ncpεp
= f(z) + Cε2 + O(ε4), (7)

where C = nTr∇2f(z)
4(p/2+1) . Introducing the response variable Yε = kε

ncpεp and the
explanatory variable Xε = ε2, and ignoring higher order term with respect to ε,
we obtain a linear equation

Yε � f(z) + CXε. (8)

This Eq. (8) can be regarded as a linear regression model with respect to
(Xε, Yε). These variables vary with the different values of ε. Taking a set of radii
E = {εi}m

i=1 and regarding the pairs {(Xε, Yε)}ε∈E observed samples, we can
estimate f(z) and C by minimizing the squared error

R =
1
m

∑
ε∈E

(Yε − f(z) − CXε)2, (9)

which is nothing but the fitting of simple linear model. Namely, the intercept
of the linear model is the estimate of the value of the pdf at z. Let f̂s

i (xi) be
the estimate obtained by solving Eq. (9) without using a sample xi. Then, by
leave-one-out estimate, we obtain a nonparametric entropy estimator

Ĥs(D) = − 1
n

n∑
i=1

ln f̂s
i (xi), (10)

which we call the Simple Regression Entropy Estimator (SRE) [14].
In [14], another entropy estimator is also proposed, by substituting the rela-

tion Eq. (8) to the empirical estimate of the differential entropy (2) and fitting
linear model. Suppose ε is fixed, and consider Eq. (8) at the inspection point
xi ∈ D. Here Yε = kε

ncpεp and C = n∇2f(xi)
4(p/2+1) depend on the inspection point xi,

we denote them as Y i
ε and Ci, respectively. To derive an entropy estimator based

on Eq. (2), we consider the minus of the logarithm of Y i
ε = f(xi) + CiXε. By

averaging this quantity with respect to all sample points xi ∈ D, we obtain
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− 1
n

n∑
i=1

ln Y i
ε = − 1

n

n∑
i=1

ln
{
f(xi) + CiXε

}

= − 1
n

n∑
i=1

ln f(xi) − 1
n

n∑
i=1

ln
(

1 +
CiXε

f(xi)

)

� − 1
n

n∑
i=1

ln f(xi) − 1
n

(
n∑

i=1

Ci

f(xi)

)
Xε.

The last equation is from the first order Taylor expansion of ln(1+x). The first
term of the above equation is the empirical estimate (2) of the entropy. So, by
defining Ȳε = − 1

n

∑n
i=1 ln Y i

ε , H(D) = − 1
n

∑n
i=1 f(xi), and C̄ = − 1

n

∑n
i=1

Ci

f(xi)
,

we obtain a relationship
Ȳε = H(D) + C̄Xε. (11)

In the same manner as in SRE, this equation is valid for each of sample
points {(Xε, Ȳε)}ε∈E . By fitting a linear model, we obtain an entropy estimator
Ĥd(D) as the estimated intercept, which is called the Direct Regression Entropy
Estimator (DRE). The SRE and DRE take the higher order information of pdf
into account, though they do not consider the characteristic of the error structure
for the observation, namely, the number of samples within a ball should be
treated as a counting variable.

4 Proposed Method

In this section, we derive a novel entropy estimator based on linear regression
with a Poisson error structure. The left hand side of the Eq. (6) is approximated
by kε/n again. Then, multiply both sides of equation by n to obtain

kε � cpnf(z)εp + cpn
n

4Γ (p/2 + 1)
Tr∇2f(z)εp+2. (12)

This equation is regarded as a regression of kε on (εp, εp+2). Namely, for a
certain ε > 0, the explanatory variable is defined by X = (εp, εp+2) and response
variable is defined by Y = kε, which are linked by a simple generalized linear
model Y = β�X. Since kε is a counting data, the Poisson error structure is a
natural choice. We note that it is common to adopt the logarithmic link function
for Poisson regression as a link function in the generalized linear model, though,
in our formulation, the identity link function is natural. The logarithmic link
function can avoid negative values for the response variable while the identity
link cannot. However, our aim is not in prediction but in fitting to obtain the
coefficient as the estimate of pdf value, and the estimated pdfs in all of our
experiments were non-negative.

More concretely, for a set of radii E = {εi}m
i=1, we calculate the corresponding

pairs of explanatory and response variable {(Yi,Xi)}m
i=1 where Xi = (εp

i , ε
p
i ) and
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Yi is the number of samples within the εi-ball centered at the inspection point.
Then, we maximize the likelihood function

L(β) =
m∏

i=1

e−X�
i β(X�

i β)Yi

Yi!
(13)

of a Poisson distribution with respect to β = (β1, β2). The ML estimate β̂1 for
the first coefficient β1 is divided by cpn to obtain the estimate of the pdf value
at z as f̂(z) = β̂1/(cpn). This procedure is done for each X ∈ D and by leave-
one-out method, we obtain the proposed entropy estimator in the same manner
as in SRE. The notable characteristic of the proposed method, compared to
conventional SRE, is in utilizing the Poisson error structure. We call the proposed
entropy estimator EPI (Entropy Estimator with Poisson-noise structure Identity-
link regression) henceforth.

5 Numerical Experiments

We apply some conventional and proposed entropy estimators for samples from
various distributions to see the accuracies of the estimators.

5.1 Univariate Case

We evaluate the performance of entropy estimation by the absolute error

AE = |H(f) − Ĥ(D)| (14)

between the ground truth entropy H(f) and the estimates Ĥ(D). We used the
following 15 distributions: (1) Normal, (2) Skewed, (3) Strongly Skewed, (4)
Kurtotic, (5) Bimodal, (6) Skewed Bimodal, (7) Trimodal, (8) Claw, (9) 4th
Power Exponential, (10) Logistic, (11) Laplace, (12) t with df=5, (13) Mixed t,
(14) Exponential, and (15) Cauchy, which are shown in Fig. 1. Details of these
distributions are shown in [14]. We compare the proposed method to four existing
methods, (a) KDE: pdf is estimated by kernel density estimation, and the estimate
f̂(x) is substituted in Eq. (2). The kernel band width is optimized by using the
unbiased cross-validation method [15]. (b) kNN: entropy is estimated by the k-
NN method [6]. The number k is fixed to k = 3 following the empirical results
reported in [16]. (c, d) SRE, DRE: the methods explained in Sect. 3.

From the ground truth distributions, we sampled datasets 100 times and
perform entropy estimation, and the performance is estimated by average and
standard deviations of AE as shown in Table 1. The number of sample in each
dataset is 500. We note that we performed the same experiments with different
sample sizes, and observed similar tendencies. From this result, it is seen that
the proposed method significantly outperforms other four methods in 2 out of
15 distributions, and marks the second best method in 9 methods.
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Fig. 1. Plots of 15 probability density functions for generating samples.

5.2 Multivariate Case

For seeing the effect of dimensions on the estimation accuracy, we performed a set
of experiments with multidimensional distributions. It is difficult to calculate the
ground truth entropy values for general multidimensional distributions, hence we
use Gaussian distributions with three different covariance structures:

Isometric: covariance matrix is a p dimensional unit matrix.
Band: diagonal elements of covariance matrix is one, and its upper and lower

elements are 0.3.
Full Correlation: Each element of the covariance matrix is set to

[Σp]ij = 0.9|i−j|+1, 0 ≤ i, j ≤ p. (15)
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Table 1. Averages of absolute errors of entropy estimations for different seven methods.
Sample size n is set to 500. The minimum AE results are shown in boldface, the second
best method is shown with †, and when the minimum is statistically significant in t-test
with α = 0.05 compared to the second best result, the result is shown with ∗.

KDE kNN SRE DRE EPI

Type 1 0.028(0.0194) 0.040(0.0292) 0.066(0.0334) 0.030(0.0233) †0.029(0.0192)
Type 2 †0.029(0.0246) 0.039(0.0310) 0.061(0.0329) 0.032(0.0226) 0.027(0.0239)

Type 3 0.149(0.1891) †0.035(0.0247) 0.087(0.0295) 0.139(0.0259) ∗0.020(0.0163)
Type 4 0.219(0.2491) 0.040(0.0313) 0.149(0.0409) 0.088(0.0381) †0.041(0.0301)
Type 5 0.022(0.0161) 0.033(0.0226) 0.022(0.0161) 0.017(0.0122) †0.021(0.0154)
Type 6 0.026(0.0206) 0.037(0.0259) 0.027(0.0200) 0.023(0.0170) †0.024(0.0172)
Type 7 0.022(0.0189) 0.032(0.0228) 0.018(0.0127) †0.019(0.0144) 0.020(0.0131)

Type 8 0.154(0.1289) 0.038(0.0354) ∗0.025(0.0185) 0.055(0.0289) †0.036(0.0257)
Type 9 0.022(0.0150) 0.034(0.0254) 0.025(0.0191) †0.021(0.0159) 0.020(0.0136)

Type 10 0.053(0.0617) 0.041(0.0318) 0.091(0.0412) †0.038(0.0229) ∗0.033(0.0256)
Type 11 0.156(0.2368) 0.049(0.0353) 0.131(0.0426) 0.036(0.0260) †0.039(0.0322)
Type 12 0.094(0.1175) †0.041(0.0345) 0.108(0.0411) 0.040(0.0299) 0.042(0.0304)

Type 13 0.251(0.3148) 0.044(0.0334) 0.086(0.0381) 0.035(0.0257) †0.041(0.0327)
Type 14 0.505(0.4753) 0.045(0.0334) 0.073(0.0465) 0.127(0.0479) †0.048(0.0361)
Type 15 1.903(1.0509) 0.477(0.0933) ∗0.169(0.0740) 0.509(0.1055) †0.310(0.1006)

Fig. 2. Averages of absolute errors of entropy estimation when p is varied from 2 to 5.
The number of samples is fixed to n = 300.

We varied the sample size to n = 100, 300, 500, 700, though, we didn’t see sys-
tematic difference, and we show the case with n = 300 in Fig. 2. From Fig. 2, we
can see that for all of three distributions, the proposed method shows moder-
ate increase in estimation error as the increase of dimension, and it is a strong
candidate of the non-parametric entropy estimator among classical kNN, KDE,
and other recently proposed methods.
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6 Conclusion

We proposed a non-parametric entropy estimator based on the second order
expansion of probability mass function, and polynomial fitting with respect to
the distance from the inspection point. By modeling the error structure by Pois-
son distribution, we obtained comparable or superior estimation accuracies to
conventional method. It is also shown that the proposed method works well
for multi-dimensional cases. Our future work includes investigation of statistical
properties of the proposed estimator, including the optimal choice of the radii
E . We are also planning to apply the proposed estimator to various real-world
problems which require accurate entropy estimation.
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