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Abstract. Echo state network contains a randomly connected hidden layer and
an adaptable output layer. It can overcome the problems associated with the
complex computation and local optima. But there may be ill-posed problem
when large reservoir state matrix is used to calculate the output weights by least
square estimation. In this study, we use L;, regularization to calculate the
output weights to get a sparse solution in order to solve the ill-posed problem
and improve the generalized performance. In addition, an operation of iterated
prediction is conducted to test the effectiveness of the proposed L;,ESN for
capturing the dynamics of the chaotic time series. Experimental results illustrate
that the predictor has been designed properly. It outperforms other modified
ESN models in both sparsity and accuracy.
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1 Introduction

The echo state network (ESN) is a novel kind of recurrent neural networks. Only the
output weights are modified by a simple and efficient linear regression algorithm [1]. It
can overcome the local minima and vanishing gradient problems associated with tra-
ditional neural networks training algorithms. Owing to the above merits, ESNs have
been extensively studied in time series prediction [2—4].

However, when least square method is used to compute the readout weights, the
large reservoir state matrix may be ill-posed [5], which adversely affect the general-
ization of the model. To solve this problem, a series of regularization techniques have
been applied in the training process of echo state networks [2, 6-8]. They are com-
putational efficient and not prone to over fitting. For example, J.J. Steil proposed a
modified L, norm regularized echo state network to reduce the risk of error amplifi-
cation and boost model’s generalization [6]. Han added an L; norm penalty term in the
objective function to control the model’s complexity [7]. But the L, norm regular-
ization is a biased estimation and the L; norm does not satisfy oracle property [8].
Recently, L;, penalty which has many promising properties, such as unbiasness,
sparsity and oracle property, has been proposed and attracted growing attention [9, 10].
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In this paper, we combine the L, norm regularization method with ESNs, termed
L,,ESN, to improve the model’s generalization ability.

For a chaotic time series, two trajectories in the same attractor will diverge sig-
nificantly after a period of sample-by-sample iteration. Hence, minimizing the root
mean square value of the prediction error is necessary, but not sufficient, for a suc-
cessful mapping. The short-term predictability of the proposed model is considered
herein. It is realized by iterated prediction which is to feed the output back to the input
and form an autonomous system [11].

This paper is organized as follows. In Sect. 2, we give a brief introduction to
general ESNs. Then in Sect. 3, we propose the L, ESN model and the iterated
prediction. Afterwards, experimental results are given in Sect. 4. Finally, in Sect. 5, we
draw the conclusions.

2 Echo State Networks

An echo state network consists in an input layer, a hidden layer and an output layer.
The hidden layer, called dynamic reservoir, contains a large number of neurons and is
regarded as a supplier of interesting dynamics [1]. The input-to-reservoir weight matrix
W;, and the recurrent reservoir weight matrix W, are generated randomly, whereas the
reservoir-to-output weight matrix W, is adapted via supervised learning [2].

Denote m(i) = [my (i), my(i), - - ,mpy(i)]" € RM*! as the collected time series,
u(i) = m(i) and y(i) = m(i + 1) as the input and output signals at time step i. The basic
state equation is defined by

s(i) = tanh[W,u(i) + W, s(i — 1)] (1)

where s(i) € R¥*! is the state of the network at time step i. tanh(-) is applied
element-wise, and the initial state of the reservoir is a zero vector. The dependence on the
initial state gradually loses as i goes to infinity [2]. The linear output layer is defined by

y(i) = [s(0) :u(@)]" B+ By =x"()B (2)

where [-::] stands for a vertical vector concatenation, x(i) = [s(i):u(i): 1],
B=[B, : P,) are the coefficients that to be estimated. Collect x(i) column-wise into a
matrix X € , and the corresponding y(i) row-wise into a matrix ¥ € R¥M  where
S is the number of the samples. Then the readout weights f§ are computed by a linear
regression method which minimizes the mean square error between the network output
and the training target output [4]:

RNXS

. 2
mmHY—XTﬁH2 (3)
where ||-||, stands for L, norm. The least square solution of (3) is

B=xx"x)"'y )
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Sometimes, the above solution (4) is ill-posed because of the approximate collinear
components in the high dimensional reservoir state matrix X. This implies a bad
generalization performance [7]. A solution to this problem is to use regularization,
which has the general form:

min||Y—XT[3||§

(5)
where / is a regularization parameter that balances the two objective terms, and it is

chosen by five-fold cross-validation. |||, is taken as the k norm of f.

3 L;, Regularized Echo State Network

In this part, we introduce the L, penalty into echo state networks to improve the
prediction performance of echo state networks, i.e., k in (5) is equal to 1/2. For a fixed

non-negative A, the cost function (5) thus can be rewritten as
2 1 2 M
T 3 T
(B) = [[Y — X" ][5+ AlIBl= {Z [y — x ”"’”2“"21””'"” }
P (6)

J=1

[T

ol

P is estimated by minimizing the following target function:
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This can be decomposed as M independent optimization problems:
nl}in{HYmfXT[meer/lHﬁmH%}, m=1,2,-- .M (8)

We use coordinate descent algorithm, a “one-at-a-time” approach, to obtain the
optimal f,, [10]. For each coefficient, the target function is partially optimized with
respect to f3,;, k =1,2,--- p while other elements of f,, are fixed at their recently
update values.
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Equation (9) can be rewritten as

2 » 1
+z<|ﬁmk|%+ 3 |Bm,-|2> 9)

J#k

S P
fk(ﬁmk) = Z l m(i) - xk(i)ﬁmk - ij(i)ij

i=1 J#k

where /_3,”] represent the fixed parameters. The details of the coordinate descent
algorithm [10] for L/, regularized echo state network are described as follows:
Input: Set ﬁi,';t =0, m=1,2,---,M, and give a nonnegative constant /.

T
OUtPUt5 ﬁm = |:ﬁml7 ﬁnﬂ? T ﬁmp

Step 1: B, = '
Step 2: Calculate 8

mk>

k:1727"'»l7»

3 2
if |G| > T4 B =3 Coi(1+ c0s(2/3m — 2/30)), else f,, = 0,

[xk(i)]27

=B

where C,y = ESJ ([ym(l) - ixj(i)ij] xk(i)>/

i=1 j#k 1

4

s
Ak = )/Z [x(i)]?, and @ = arccos((imk/s)|cmk/3|*%).

P . .
Step 3:if > ‘,Bmk — [3;7’;’(‘ <1074, the algorithm stops, else set B = B, , go back to
=1

Step 1.

The coordinate descent algorithm for the L,,, regularized echo state network works
well for sparsity problems, as it is not necessary to change many irrelevant parameters
and recompute partial residuals for each update step.

Chaotic systems are highly sensitive to initial conditions. Small difference may
yields significant diverging, rendering long-term prediction impossible [11]. Hence, a
pragmatic approach for testing the short-term predictability of the L;/, regularized echo
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Fig. 1. Iterated prediction by L,,, regularized echo state network
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state network model is to feed the output back to its input, forming an autonomous
system, which is a realization of iterated prediction as illustrated in Fig. 1.

4 Simulations

In this section, we evaluate the performance of the proposed L;,, norm regularized echo
state network (L;,ESN) on a typical chaotic system-Lorenz system. Some other
models are conducted to compare with our proposed model: Elman network, echo state
networks with L; penalty (L,ESN) [7], echo state networks with L, penalty (L,ESN)
[2], and echo state networks with elastic net penalty (EESN) [8]. The accuracy of the
prediction models is assessed by the root mean square error (RMSE), normalized root
mean square error (NRMSE) and the symmetric mean absolute percentage error
(SMAPE). The results provided herein are averages over 20 different random reservoir
initializations. The Lorenz equations are defined by

dx/dt = o(y —x), dy/dt =x(p — z) — y, dz/dt = xy — fz (10)

When ¢ = 10, f = 3/8 and p = 28, the system exhibits chaotic behavior. We use
Runge-Kutta method to generate 5000 points with time step 0.01 from the initialized
point (1, 1, 1). The Lorenz series is then reconstructed into the phase space with delay
times 8, 8, 12, and embedding dimensions 2, 1, 7 for x, y, z series respectively.
Afterwards, the first 80 % samples are used to train the model with 100 samples
warming up the reservoir, and the remaining samples are used to test the model. The
spectral radius of W, is set as 0.9, the sparse connectivity of W, is set as 0.05, and the
input scaling parameter of W;, is set as 0.01. Some other parameters are given in
Table 1, where the regularization parameter / is chosen by five-fold cross-validation.

The obtained results of all the evaluated models are provided in Table 1, and the
one-step-ahead prediction curves for Lorenz-x(#) produced by L;,ESN are plotted in
Fig. 2. As can be seen, the L;,ESN with 4 equal to 10773 performs much better than
other models, being capable of obtaining much sparser output weights and lower
RMSE, NRMSE, and SMAPE values, but when A is chosen as 10777, the effect of L,
norm is very little as all the weights are nonzero. When 4 increases to 5 x 1073, the L,
norm makes sense since a large proportion of the output weights are zero. We can make
the comment that L;,ESN is more prone to get a sparse solution than L;ESN. One
point needs to be emphasized is that 4 is not the bigger the better, because a big 4 will
generate a big deviation in the estimation of W,,,. We also note that there are a large
number of unknown weights in Elman network even for a small hidden layer. In this
experiment, the numbers of input layer to hidden layer connections, hidden layer
recurrent connections, and hidden layer to output layer connections are 350, 125, 350
respectively for 35 hidden nodes. The too many unknown parameters make the Elman
network underfitting.

Prediction on A-step horizon by all the evaluated models are conducted by itera-
tively applying the predictor % times in a generative mode, where on each step it takes
its own last prediction as input to do the next prediction. The h-step-ahead prediction
performance produced by L,,ESN in terms of RMSE is depicted in Fig. 3. In addition,
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Table 1. Main parameters and performance of one-step-ahead prediction of evaluated models

Model Num. A Num. of nonzero RMSE |NRMSE |SMAPE

of output weights

hidden

nodes
Elman 35 - [350 125 350] 0.2017 |0.0256 0.2397
L,ESN 100 5% 1073 [53 18 56] 0.0153 |0.0019 0.0072
L,ESN 100 10775 [110 110 110] 0.0457 | 0.0058 0.0214
L,ESN 100 5% 1073 [110 110 110] 0.0201 | 0.0025 0.0088
EESN 100 5% 107 [51 35 59] 0.0178 |0.0022 0.0245
L;,ESN | 100 10773 [34 14 39] 0.0057 | 0.0007 0.0025
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Fig. 2. One-step-ahead prediction curves produced by L;,ESN
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Fig. 3. RMSE of h-step-ahead prediction produced by L;,ESN
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Table 2. RMSEs of h-step-ahead prediction of all the evaluated models

h-step | Elamn | L,ESN L,ESN EESN L,,ESN
A=5%x105,.=5x10"2=5x 105 . =10"73
1 02017 0.0153 0.0201 0.0178 0.0057
2 102957 0.0170 0.0389 0.0259 0.0103
3 104617 0.0512 0.0605 0.0377 0.0192
4 06751 0.0767 0.1014 0.0617 0.0378
5 109240 0.1458 0.1678 0.1033 0.0709
6 | 1.2027 02159 0.2551 0.1656 0.1224
7 |1.50700.3363 0.3645 0.2588 0.1960
8 |1.83360.4260 0.5129 0.3869 0.2946
9 12.1790 0.6374 0.6973 0.5443 0.4213
10 2.5400  0.8288 0.9066 0.7206 0.5777
11 |29132]1.0611 1.1474 0.9148 0.7652
12 |3.2952 1.3095 1.4174 1.1377 0.9839
2ol “— Prediction | — T;lrget i
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Fig. 4. Twelve-step-ahead prediction curves produced by L;,ESN

the h-step-ahead prediction RMSEs by all the evaluated models with /& ranging from
1 to 12 are shown in Table 2. As can be seen, the prediction of L;,ESN is effective and
accurate, as all the RMSEs are less than 1. From thirteenth step, the RMSE increases
fast, and the prediction becomes inaccurate. The chaotic property of Lorenz series
makes it hard for a long period of prediction. The twelve-step-ahead prediction curves
produced by L;,ESN are shown in Fig. 4. Note that the overall twelve-step-ahead
prediction produced by L;,ESN is accurate besides some peak points. This illustrates
that the L;,ESN model can predict the Lorenz series in a short term.
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5 Conclusions

In this paper, we propose a new model for forecasting multivariate time series, called
L,,ESN. It applies L;,, norm regularization to calculate the output weights of an ESN
to solve the ill-posed problem and improve the prediction performance. The L;/,
penalty imposed on the output weights outweighs L; penalty in terms of sparasity.
Short-term prediction is realized by iterated prediction. Experiments results of Lorenz
time series show that our proposed model obtain a higher accuracy for both
one-step-ahead prediction and multiple-step-ahead prediction. The short-term pre-
dictability of the chaotic time series demonstrates the effectiveness of the proposed
prediction model.
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