
Chapter 2
Parabolic-Type Equations and Markov
Processes

2.1 Introduction

During the last 30 years there have been a strong interest on stochastic processes
on ultrametric spaces mainly due its connections with models of complex systems,
such as glasses and proteins. These processes are very convenient for describing
phenomena whose space of states display a hierarchical structure, see e.g. [9–
13, 36, 61, 78, 80, 86, 94, 108, 111, 118, 122], and references therein. Avetisov
et al. constructed a wide variety of models of ultrametric diffusion constrained
by hierarchical energy landscapes, see [9–13]. From a mathematical point view,
in these models the time-evolution of a complex system is described by a p-adic
master equation (a parabolic-type pseudodifferential equation) which controls the
time-evolution of a transition density function of a Markov process on an ultrametric
space. This process describes the dynamics of the system in the space of configura-
tional states which is approximated by an ultrametric space (Qp). This is the main
motivation for developing a general theory of parabolic-type pseudodifferential
equations.

This chapter is devoted to the study of several types of n-dimensional parabolic-
type equations that are generalizations of the one-dimensional p-adic heat equation
introduced in [111]. We also study some basic properties of the Markov processes
associated with these equations. In Sect. 2.2, we introduce the operatorsW which are
generalizations of the Vladimirov and Taibleson operators. This type of operators
was introduced by Chacón-Cortes and Zúñiga-Galindo in [25]. The W operators
are pseudodifferential operators having radial symbols. We attach to these symbols
certain heat kernels, and show that they are transition density functions of Markov
processes over Qn

p. We also study the Cauchy problem for the parabolic-type
equations attached to operators W by using semigroup theory. In Sect. 2.3, we
introduce a class of elliptic pseudodifferential operators which are generalizations
of the Vladimirov and Taibleson operators. This class of operators was introduced
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14 2 Parabolic-Type Equations and Markov Processes

by Zúñiga-Galindo in [122]. The symbol of an elliptic operator has the form j f jˇp ,
with ˇ > 0, where f is a polynomial that vanishes only at the origin. These symbols,
in general, are not radial. We attach heat kernels to elliptic symbols and show that
these heat kernels are transition density functions of Markov over Qn

p. The positivity
and the decay at infinity of these heat kernels are delicate matters. Finally, we study
the Cauchy problem for the heat equations attached to elliptic operators.

2.2 Operators W, Parabolic-Type Equations and Markov
Processes

2.2.1 A Class of Non-local Operators

Take RC WD fx 2 RI x � 0g, and fix a function

w W Qn
p ! RC

satisfying the following properties:

(i) w .y/ is a radial (i.e. w .y/ D w
�kykp

�
), continuous and increasing function of

kykp;
(ii) w .y/ D 0 if and only if y D 0;

(iii) there exist constants C0 > 0, M 2 Z, and ˛1 > n such that

C0 kyk˛1p � w.kykp/, for kykp � pM: (2.1)

Note that condition (iii) implies that

Z

kykp�pM

dny

w
�kykp

� < 1: (2.2)

In addition, since w .y/ is a continuous function, (2.2 ) holds for any M 2 Z.

We define

.W'/.x/ D �

Z

Qn
p

' .x � y/ � ' .x/
w .y/

dny, for ' 2 D, (2.3)

where � is a positive constant.

Lemma 4 For 1 � 	 � 1,

D
�
Qn

p

� ! L	
�
Qn

p

�

' ! W'
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is a well-defined linear operator. Furthermore,

F ŒW'� .�/ D ��

0

B
@
Z

Qn
p

1 � �p .y � �/
w .y/

dny

1

C
AF Œ'� .�/ : (2.4)

Proof Note that

.W'/.x/ D �
1Qn

pXBn
pM
.x/

w .x/
� ' .x/ � �' .x/

0

B
@

Z

kykp�pM

dny

w .y/

1

C
A ; (2.5)

for some constant M D M.'/. Now, since ' 2 D � L	, for 1 � 	 � 1, (2.2), the
Young inequality implies that the first term on the right-hand side of (2.5) belongs
to L	 for 1 � 	 � 1, and by (2.2) the second term in (2.5) also belongs to L	 for
1 � 	 � 1. Finally, formula (2.4) follows from Fubini’s theorem, since

ˇ
ˇ
ˇ̌' .x � y/� ' .x/

w .y/

ˇ
ˇ
ˇ̌ 2 L1

�
Qn

p � Qn
p; d

nxdny
�
:

�

We set

Aw .�/ WD
Z

Qn
p

1 � �p .y � �/
w .y/

dny:

Lemma 5 The function Aw .�/ has the following properties: (i) for k�kp D p�� ¤
0, with � D ord.�/,

Aw . p�� / D .1 � p�n/

1X

jD�C2

pnj

w. pj/
C pn�Cn

w. p�C1/
I (2.6)

(ii) it is radial, positive, continuous, and Aw .0/ D 0, (iii) Aw
�

p�ord.�/
�

is a
decreasing function of ord.�/.

Proof We write � D p��0; with � D ord.�/ and k�0kp D 1. Then

Aw .�/ D
Z

Qn
p

1 � �p . p�y � �0/
w
�kykp

� dny D p�n
Z

Qn
p

1 � �p .z � �0/
w
�

p� kzkp

� dnz: (2.7)
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We now note that

Qn
p X f0g D

G

j2Z
pjSn

0

with

Sn
0 D ˚

y 2 Qn
pI kykp D 1

�
:

By using this partition and (2.7), we have

Aw .�/ D
X

j2Z
p�n

Z

pjSn
0

1 � �p .z � �0/
w
�

p� kzkp

� dnz

D
X

j2Z

p�jnC�n

w . p�jC�/

8
<̂

:̂
.1 � p�n/ �

Z

Sn
0

�p

�
pjy � �0

�
dny

9
>=

>;
:

By using the formula

Z

Sn
0

�p

�
pjy � �0

�
dny D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1 � p�n if j � 0

�p�n if j D �1

0 if j < �1;

(2.8)

see e.g. [105, Lemma 4.1], we get

Aw .�/ D .1 � p�n/

1X

jD2

pn.�Cj/

w. p�Cj/
C pn�Cn

w. p�C1/

D .1 � p�n/

1X

jD�C2

pnj

w. pj/
C pn�Cn

w. p�C1/
: (2.9)

From (2.9) follows that Aw .�/ is radial, positive, continuous outside of the origin,
and that Aw

�
p�ord.�/

�
is a decreasing function of ord.�/. To show that Aw . p�� /

is a decreasing function of � , we note that, by (2.9), Aw
�

p�.�C1/� � Aw . p�� / D
pn�Cn

	
1

w. p�C2/
� 1

w. p�C1/



< 0. The continuity at the origin follows from

Aw .0/ WD lim
�!1.1 � p�n/

1X

jD�C2

pnj

w. pj/
C lim

�!1
pn�Cn

w. p�C1/
D 0;
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since
P1

jDM
pnj

w. pj/
< 1, cf. (2.2 ), and 1

C0
� p˛1.�C1/

w. p�C1/
� pn�Cn

w. p�C1/
for � big enough,

cf. (2.1). �
Remark 6 We denote by C.U;C/, respectively by C.U;R/, the vector space of
C-valued, respectively of R-valued, continuous functions defined on an open subset
U of Qn

p. In some cases we use the notation C.U/, or just C, if there is no danger of
confusion.

Proposition 7 (i) .W'/ .x/ D ��F�1
�!x

�
Aw.k�kp/Fx!�'

�
for ' 2 D

�
Qn

p

�
, and

W' 2 C
�
Qn

p

� \ L	
�
Qn

p

�
, for 1 � 	 � 1. The Operator W extends to an

unbounded and densely defined operator in L2
�
Qn

p

�
with domain

Dom.W/ D ˚
' 2 L2I Aw.k�kp/F' 2 L2

�
: (2.10)

(ii) .�W;Dom.W// is self-adjoint and positive operator.
(iii) W is the infinitesimal generator of a contraction C0 semigroup .T .t//t�0.

Moreover, the semigroup .T .t//t�0 is bounded holomorphic with angle �=2.

Proof (i) It follows from Lemma 4 and the fact that Aw.k�kp/ is continuous, cf.
Lemma 5. (ii) follows from the fact that W is a pseudodifferential operator and
that the Fourier transform preserves the inner product of L2. (iii) It follows of
well-known results, see e.g. [41, Chap. 2, Sect. 3] or [24]. For the property of the
semigroup of being holomorphic, see e.g. [41, Chap. 2, Sect. 4.7]. �

2.2.2 Some Additional Results

Lemma 8 Assume that there exist positive constants ˛1, ˛2, C0, C1, with ˛1 > n,
˛2 > n, and ˛3 � 0, such that

C0
��� 0��˛1

p
� w.

��� 0��
p
/ � C1

��� 0��˛2
p

e˛3k�0kp , for any � 0 2 Qn
p: (2.11)

Then there exist positive constants C2, C3, such that

C2 k�k˛2�n
p e�˛3pk�k�1

p � Aw.k�kp/ � C3 k�k˛1�n
p

for any � 2 Qn
p, with the convention that e�˛3pk0k�1

p WD limk�kp!0 e�˛3pk�k�1
p D 0.

Furthermore, if ˛3 > 0, then ˛1 � ˛2, and if ˛3 D 0, then ˛1 D ˛2 .

Proof By using the lower bound for w given in (2.11), and k�kp D p�� ,

Aw.k�kp/ � .1 � p�n/

C0

1X

jD�C2

pnj

pj˛1
C pn�Cn

p˛1.�C1/ � C3 k�k˛1�n
p :
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On the other hand, Aw
�k�kp

� � pn�Cn

w. p�C1/
, and by using the upper bound for w given

in (2.11),

Aw
�k�kp

� � pn�Cn

w. p�C1/
� pn�Cn

C1p˛2.�C1/e˛3p�C1
� C2 k�k˛2�n

p e�˛3pk�k�1
p :

�
Definition 9 We say that W (or Aw) is of exponential type if inequality (2.11) is
only possible for ˛3 > 0 with ˛1, ˛2, C0, C1 positive constants and ˛1 > n, ˛2 > n.
If (2.11) holds for ˛3 D 0with ˛1, ˛2, C0, C1 positive constants and ˛1 > n, ˛2 > n,
we say that W (or Aw) is of polynomial type.

We note that if W is of polynomial type then ˛1 D ˛2 > n and C0, C1 are
positive constants with C1 � C0.

Lemma 10 With the hypotheses of Lemma 8,

e�t�Aw.k�kp/ 2 L	.Qn
p/ for 1 � 	 < 1 and t > 0:

Proof Since e�tAw.k�kp/ is a continuous function, it is sufficient to show that there
exists M 2 N such that

IM .t/ WD
Z

k�kp>pM

e�	�tAw.k�kp/dn� < 1; for t > 0.

Take M 2 N, by Lemma 8, we have

C2 k�k˛2�n
p e�˛3pk�k�1

p > C2 k�k˛2�n
p e�˛3p�MC1

for k�kp > pM;

and (with B D C2	�e�˛3p�MC1
),

IM .t/ �
Z

k�kp>pM

e�tBk�k˛2�n
p dn� � C.M; �; 	/t

�n
˛2�n ; for t > 0.

�

2.2.3 p-Adic Description of Characteristic Relaxation
in Complex Systems

In [11] Avetisov et al. developed a new approach to the description of relaxation
processes in complex systems (such as glasses, macromolecules and proteins) on
the basis of p-adic analysis. The dynamics of a complex system is described by a
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random walk in the space of configurational states, which is approximated by an
ultrametric space (Qp). Mathematically speaking, the time-evolution of the system
is controlled by a master equation of the form

@f .x; t/

@t
D
Z

Qp

fv .x j y/ f .y; t/ � v .y j x/ f .x; t/g dy, x 2 Qp, t 2 RC; (2.12)

where the function f .x; t/ W Qp�RC ! RC is a probability density distribution, and
the function v .x j y/ W Qp � Qp ! RC is the probability of transition from state y
to the state x per unit time. The transition from a state y to a state x can be perceived
as overcoming the energy barrier separating these states. In [11] an Arrhenius type
relation was used:

v .x j y/ 	 A.T/ exp

�
�U .x j y/

kT

�
;

where U .x j y/ is the height of the activation barrier for the transition from the state
y to state x, k is the Boltzmann constant and T is the temperature. This formula
establishes a relation between the structure of the energy landscape U .x j y/ and
the transition function v .x j y/. The case v .x j y/ D v .y j x/ corresponds to a
degenerate energy landscape. In this case the master equation (2.12) takes the form

@f .x; t/

@t
D
Z

Qp

v
�jx � yjp

� f f .y; t/ � f .x; t/g dy,

where v
�jx � yjp

� D A.T/
jx�yjp exp

�
� U.jx�yjp/

kT

�
. By choosing U conveniently, several

energy landscapes can be obtained. Following [11], there are three basic landscapes:
(i) (logarithmic) v

�jx � yjp

� D 1

jx�yjp ln˛.1Cjx�yjp/ , ˛ > 1; (ii) (linear) v
�jx � yjp

� D
1

jx�yj˛C1
p

, ˛ > 0; (iii) (exponential) v
�jx � yjp

� D e�˛jx�yjp

jx�yjp , ˛ > 0.

Thus, it is natural to study the following Cauchy problem:

8
ˆ̂
<

ˆ̂
:

@u.x;t/
@t D �

R

Qn
p

u.x�y;t/�u.x;t/
w.y/ dny, x 2 Qn

p; t 2 RC;

u .x; 0/ D ' 2 D
�
Qn

p

�
;

where w .y/ is a radial function belonging to a class of functions that contains
functions like:

(i) w.kykp/ D �n
p .�˛/ kyk˛Cn

p , here �n
p .�/ is the n-dimensional p-adic Gamma

function, and ˛ > 0;
(ii) w.kykp/ D kykˇp e˛kykp , ˛ > 0.
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By imposing condition (2.11) to w, we include the linear and exponential energy
landscapes in our study. On the other hand, take w.kykp/ satisfying (2.11) and take
f
�kykp

�
a continuous and increasing function such that

0 < sup
y2Qn

p

f
�kykp

�
< 1 and 0 < inf

y2Qn
p

f
�kykp

�
< 1:

Then f
�kykp

�
w.kykp/ satisfies (2.11). This fact shows that the class of operators W

is very large.
Finally we note that kykˇp ln˛.1Ckykp/, ˇ > n, ˛ 2 N, does not satisfies kyk˛1p �

kykˇp ln˛.1C kykp/ for any y 2 Qn
p, and hence our results do not include the case of

logarithmic landscapes.

2.2.4 Heat Kernels

In this section we assume that function w satisfies conditions (2.11 ). We define

Z.x; tI w; �/ WD Z.x; t/ D
Z

Qn
p

e��tAw.k�kp/�p.�x � �/dn� for t > 0 and x 2 Qn
p.

Note that by Lemma 10, Z.x; t/ D F�1
�!xŒe

��tAw.k�kp/� 2 C \ L2 for t > 0. We call a
such function a heat kernel. When considering Z.x; t/ as a function of x for t fixed
we will write Zt.x/.

Lemma 11 (i) There exists a positive constant C, such that

Z.x; t/ < Ct kxk�˛1
p , for x 2 Qn

p X f0g and t > 0.

(ii) Zt.x/ 2 L1
�
Qn

p

�
for every t > 0.

Proof (i) Let kxkp D pˇ. Since Z.x; t/ 2 L1.Qn
p/ for t > 0, by using Qn

p X f0g DF
j2Z pjSn

0 and formula (2.8), we get

Z.x; t/ D kxk�n
p

2

4.1 � p�n/

1X

jD0
e��Aw. p�ˇ�j/tp�nj � e��Aw. p�ˇC1/t

3

5 :

By using that e��Aw. p�ˇ�j/t � 1 for j 2 N , we have

Z.x; t/ � kxk�n
p

h
1 � e��Aw. p�ˇC1/t

i
:
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We now apply the mean value theorem to the real function f .u/ D
e��Aw. p�ˇC1/u on Œ0; t� with t > 0, and Lemma 8,

Z.x; t/ � C0 kxk�n
p tAw. p�ˇC1/ � Ct kxk�˛1

p :

(ii) Notice that

Z

Qn
p

Zt.x/d
nx D

Z

Bn
0

Zt.x/d
nx C

Z

Qn
pnBn

0

Zt.x/d
nx;

the existence of the first integral follows from the continuity of Zt.x/, for the
second integral we use the bound obtained in (i).

�

Lemma 12 Z.x; t/ � 0, for x 2 Qn
p and t > 0.

Proof Since e��tAw.k�kp/ is radial, by using Qn
p Xf0g D F

j2Z pjSn
0 and formula (2.8),

we have

Z.x; t/ D
1X

iD�1
e��tAw. pi/

Z

k�kpDpi

�p.�x � �/dn�

D
1X

iD�1
pni
h
e��tAw. pi/ � e��tAw. piC1/

i
�.
�
�p�ix

�
�

p
/ � 0

since Aw is increasing function of i, cf. Lemma 5. �

Theorem 13 The function Z.x; t/ has the following properties:

(i) Z.x; t/ � 0 for any t > 0;
(ii)

R
Qn

p
Z.x; t/dnx D 1 for any t > 0;

(iii) Zt.x/ 2 C.Qn
p;R/\ L1.Qn

p/ \ L2.Qn
p/ for any t > 0;

(iv) Zt.x/ � Zt0.x/ D ZtCt0.x/ for any t, t0 > 0;
(v) lim

t!0C

Z.x; t/ D ı.x/ in D0.Qn
p/, where ı denotes the Dirac distribution.

Proof (i) It follows from Lemma 12. (ii) Since Zt.x/, Fx!� .Zt.x// D e��tAw.k�kp/ 2
C \ L1, for any t > 0, cf. Lemma 10 and Lemma 11 (ii), the result follows from
the inversion formula for the Fourier transform. (iii) It follows from Lemma 10 and
Lemma 11 (ii). (iv) By the previous property Zt.x/ 2 L1 for any t > 0, then

Zt.x/ � Zt0.x/ D F�1
�!x

	
e��tAw.k�kp/e��t0Aw.k�kp/




D F�1
�!x

	
e��.tCt0/Aw.k�kp/



D ZtCt0.x/:
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(v) Since we have e��tAw.k�kp/ 2 C.Qn
p;R/ \ L1 for t > 0, cf. Lemma 10, the inner

product

D
e��tAw.k�kp/; �

E
D
Z

Qn
p

e��tAw.k�kp/� .�/dn�

defines a distribution on Qn
p, then, by the dominated convergence theorem,

lim
t!0C

D
e��tAw.k�kp/; �

E
D h1; �i

and thus

lim
t!0C

hZ .x; t/ ; �i D lim
t!0C

D
e��tAw.k�kp/;F�1�

E
D ˝
1;F�1�

˛ D .ı; �/ :

�

2.2.5 Markov Processes Over Qn
p

Along this section we consider
�
Qn

p; k�kp

�
as complete non-Archimedean metric

space and use the terminology and results of [39, Chapters 2, 3]. Let B denote the
Borel � -algebra of Qn

p. Thus
�
Qn

p;B; dnx
�

is a measure space.
We set

p.t; x; y/ WD Z.x � y; t/ for t > 0, x; y 2 Qn
p;

and

P.t; x;B/ D
( R

B p.t; y; x/dny for t > 0; x 2 Qn
p; B 2 B

1B.x/ for t D 0:

Lemma 14 With the above notation the following assertions hold:

(i) p.t; x; y/ is a normal transition density;
(ii) P.t; x;B/ is a normal transition function.

Proof The result follows from Theorem 13, see [39, Section 2.1] for further
details. �
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Lemma 15 The transition function P.t; x;B/ satisfies the following two condi-
tions:

(i) for each u � 0 and compact B

lim
x!1 sup

t�u
P.t; x;B/ D 0 [Condition L(B)];

(ii) for each � > 0 and compact B

lim
t!0C

sup
x2B

P.t; x;Qn
p n Bn

�.x// D 0 [Condition M(B)].

Proof (i) By Lemma 11 and the fact that k�kp is an ultranorm, we have

P.t; x;B/ � Ct
Z

B

kx � yk�˛1
p dny D tC kxk�˛1

p vol .B/ for x 2 Qn
p n B:

Therefore lim
x!1sup

t�u
P.t; x;B/ D 0.

(ii) Again, by Lemma 11, the fact that k�kp is an ultranorm, and ˛1 > n, we have

P.t; x;Qn
p n Bn

�.x// � Ct
Z

kx�ykp>�

kx � yk�˛1
p dny D Ct

Z

kzkp>�

kzk�˛1
p dnz

D C0 .˛1; �; n/ t:

Therefore

lim
t!0C

sup
x2B

P.t; x;Qn
p n Bn

�.x// � lim
t!0C

sup
x2B

C0 .˛1; �; n/ t D 0:

�

Theorem 16 Z.x; t/ is the transition density of a time and space homogeneous
Markov process which is bounded, right-continuous and has no discontinuities other
than jumps.

Proof The result follows from [39, Theorem 3.6] by using that .Qn
p; kxkp/ is semi-

compact space, i.e. a locally compact Hausdorff space with a countable base, and
P.t; x;B/ is a normal transition function satisfying conditions L.B/ and M.B/, cf.
Lemmas 14, 15. �
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2.2.6 The Cauchy Problem

Consider the following Cauchy problem:

8
<

:

@u
@t .x; t/ � Wu.x; t/ D 0; x 2 Qn

p; t 2 Œ0;1/ ;

u .x; 0/ D u0.x/; u0.x/ 2 Dom.W/;
(2.13)

where .W�/ .x/ D ��F�1
�!x

�
Aw
�k�kp

�
Fx!��

�
for � 2 Dom.W/, see (2.10), and

u W Qn
p � Œ0;1/ ! C is an unknown function. We say that a function u.x; t/ is

a solution of (2.13), if u.x; t/ 2 C .Œ0;1/ ;Dom.W// \ C1
�
Œ0;1/ ;L2.Qn

p/
�

and u
satisfies (2.13) for all t � 0.

In this section, we understand the notions of continuity in t, differentiability in t
and equalities in the L2.Qn

p/ sense, as it is customary in the semigroup theory.
We know from Proposition 7 that the operator W generates a C0 semigroup

.T .t//t�0, then Cauchy problem (2.13) is well-posed, i.e. it is uniquely solvable
with the solution continuously dependent on the initial datum, and its solution is
given by u.x; t/ D T .t/u0.x/, for t � 0, see e.g. [24, Theorem 3.1.1]. However the
general theory does not give an explicit formula for the semigroup .T .t//t�0 . We
show that the operator T .t/ for t > 0 coincides with the operator of convolution with
the heat kernel Zt � �. In order to prove this, we first construct a solution of Cauchy
problem (2.13) with the initial value from D without using the semigroup theory.
Then we extend the result to all initial values from Dom.W/, see Propositions 18–
20.

2.2.6.1 Homogeneous Equations with Initial Values inD

To simplify the notation, set Z0 � u0 D .Zt.x/ � u0.x// jtD0WD u0. We define the
function

u .x; t/ D Zt.x/ � u0.x/; for t � 0: (2.14)

Since Zt.x/ 2 L1 for t > 0 and u0 2 D.Qn
p/ � L1.Qn

p/, the convolution exists and
is a continuous function, see e.g. [100, Theorem 1.1.6].

Lemma 17 Take u0 2 D with the support of bu0 contained in Bn
R, and u .x; t/, t � 0

defined as in (2.14). Then the following assertions hold:

(i) u .x; t/ is continuously differentiable in time for t � 0 and the derivative is given
by

@u.x; t/

@t
D ��F�1

�!x

	
e��tAw.k�kp/Aw.k�kp/1Bn

R
.�/



� u0.x/I
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(ii) u.x; t/ 2 Dom.W/ for any t � 0 and

.Wu/.x; t/ D ��F�1
�!x

	
e��tAw.k�kp/Aw.k�kp/1Bn

R
.�/



� u0.x/:

Proof (i) The proof is similar to the one given for Lemma 110 in Chap. 4. (ii) Note
that e��tAw.k�kp/bu0 .�/, Aw.k�kp/e

��tAw.k�kp/bu0 .�/ 2 C \ L2 \ L1 for t � 0, i.e.
u.x; t/ 2 Dom.W/ for t � 0. Now

.Wu/.x; t/ D ��F�1
�!x

�
Aw.k�kp/F�!x .u.x; t//

�

D ��F�1
�!x

	
Aw.k�kp/e

��tAw.k�kp/bu0 .�/



D ��F�1
�!x

	
Aw.k�kp/e

��tAw.k�kp/1Bn
R
.�/bu0 .�/




D ��F�1
�!x

	
e��tAw.k�kp/Aw.k�kp/1Bn

R
.�/



� u0.x/:

�

As a direct consequence of Lemma 17 we obtain the following result.

Proposition 18 Assume that u0 2 D. Then function u .x; t/ defined in (2.14) is a
solution of Cauchy problem (2.13).

2.2.6.2 Homogeneous Equations with Initial Values in L2

We define

T.t/u D
8
<

:

Zt � u; t > 0

u; t D 0;

(2.15)

for u 2 L2.

Lemma 19 The operator T.t/ W L2.Qn
p/ �! L2.Qn

p/ is bounded for any fixed t � 0.

Proof For t > 0, the result follows from the Young inequality by using the fact that
Zt 2 L1, cf. Theorem 13 (iii). �

Proposition 20 The following assertions hold.

(i) The operator W generates a C0 semigroup .T .t//t�0. The operator T .t/
coincides for each t � 0 with the operator T.t/ given by (2.15).

(ii) Cauchy problem (2.13) is well-posed and its solution is given by u.x; t/ D Zt �
u0, t � 0.
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Proof (i) By Proposition 7 (iii) the operator W generates a C0 semigroup .T .t//t�0.
Hence Cauchy problem (2.13) is well-posed, see e.g. [24, Theorem 3.1.1]. By
Proposition 18, T .t/jD D T.t/jD and both operators T .t/ and T.t/ are defined
on the whole L2 and bounded, cf. Lemma 19. By the continuity we conclude that
T .t/j D T.t/ on L2. Now the statements follow from well-known results of the
semigroup theory, see e.g. [24, Theorem 3.1.1], [41, Chap. 2, Proposition 6.2]. �

2.2.6.3 Non-homogeneous Equations

Consider the following Cauchy problem:

8
<

:

@u
@t .x; t/ � Wu.x; t/ D g.x; t/; x 2 Qn

p; t 2 Œ0;T� ;T > 0;

u .x; 0/ D u0.x/; u0.x/ 2 Dom.W/:
(2.16)

We say that a function u.x; t/ is a solution of (2.16), if u.x; t/ belongs to
C .Œ0;T/;Dom.W// \ C1

�
Œ0;T�;L2.Qn

p/
�

and if u.x; t/ satisfies equation (2.16)
for t 2 Œ0;T�.
Theorem 21 Assume that u0 2 Dom.W/ and g 2 C

�
Œ0;1/;L2.Qn

p/
� \

L1 ..0;1/;Dom.W//. Then Cauchy problem (2.16 ) has a unique solution given
by

u.x; t/ D
Z

Qn
p

Z.x � �; t/u0.�/dn� C
Z t

0

Z

Qn
p

Z.x � �; t � 
/g.�; 
/dn�d
:

Proof The result follows from Proposition 20 by using some well-known results of
the semigroup theory, see e.g. [24, Proposition 4.1.6]. �

2.2.7 The Taibleson Operator and the p-Adic Heat Equation

We set

�.n/p .˛/ WD 1 � p˛�n

1 � p�˛ , for ˛ 2 Rn f0g :

This function is called the p-adic Gamma function. The function

k˛.x/ D jjxjj˛�n
p

�
.n/
p .˛/

; ˛ 2 Rn f0; ng ; x 2 Qn
p;
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is called the multi-dimensional Riesz Kernel; it determines a distribution on D.Qn
p/

as follows. If ˛ ¤ 0, n, and ' 2 D.Qn
p/, then

.k˛.x/; '.x// D 1 � p�n

1 � p˛�n
'.0/C 1 � p�˛

1 � p˛�n

Z

jjxjjp>1
jjxjj˛�n

p '.x/ dnx

C 1 � p�˛

1 � p˛�n

Z

jjxjjp�1
jjxjj˛�n

p .'.x/� '.0// dnx: (2.17)

Then k˛ 2 D0.Qn
p/, for Rn f0; ng. In the case ˛ D 0, by passing to the limit in (2.17),

we obtain

.k0.x/; '.x// WD lim
˛!0

.k˛.x/; '.x// D '.0/;

i.e., k0.x/ D ı .x/, the Dirac delta function, and therefore k˛ 2 D0.Qn
p/, for Rn fng.

It follows from (2.17) that for ˛ > 0,

.k�˛.x/; '.x// D 1 � p˛

1 � p�˛�n

Z

Qn
p

jjxjj�˛�n
p .'.x/� '.0// dnx: (2.18)

Definition 22 The Taibleson pseudodifferential operator D˛
T , ˛ > 0, is defined as

.D˛
T'/.x/ D F�1

�!x

�jj�jj˛pFx!�'
�

, for ' 2 D.Qn
p/.

By using (2.18) and the fact that .Fk�˛/ .x/ equals jjxjj˛p , ˛ ¤ �n, in D0.Qn
p/,

we have

�
D˛T'

�
.x/ D .k�˛ � '/ .x/

D 1 � p˛

1 � p�˛�n

Z

Qn
p

jjyjj�˛�n
p .'.x � y/ � '.x// dny: (2.19)

Then the Taibleson operator belongs to the class of operators W introduced before.
The right-hand side of (2.19) makes sense for a wider class of functions, for
example, for locally constant functions '.x/ satisfying

Z

jjxjjp�1
jjxjj�˛�n

p j'.x/j dnx < 1:

A similar observation is valid in general for operators of W type. The equation

@u.x; t/

@t
C �.D˛Tu/.x; t/ D 0; x 2 Qn

p; t � 0;
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where � is a positive constant, is a multi-dimensional analog of the p-adic heat
equation introduced in [111].

2.3 Elliptic Pseudodifferential Operators, Parabolic-Type
Equations and Markov Processes

In this section we consider following Cauchy problem:

8
<

:

@u.x;t/
@t C . f .@; ˇ/ u/ .x; t/ D 0, x 2 Qn

p, n � 1, t � 0

u .x; 0/ D ' .x/ ;

(2.20)

where f .@; ˇ/ is an elliptic pseudodifferential operator of the form

. f .@; ˇ/ �/ .x; t/ D F�1
�!x

	
j f .�/jˇp Fx!�� .x; t/



:

Here ˇ is a positive real number, and f .�/ 2 Qp Œ�1; : : : ; �n� is a homogeneous
polynomial of degree d satisfying the property f .�/ D 0 , � D 0. We establish
the existence of a unique solution to Cuachy problem (2.20) in the case in which
' .x/ is a continuous and an integrable function. Under these hypotheses we show
the existence of a solution u .x; t/ that is continuous in x, for a fixed t 2 Œ0;T�,
bounded, and integrable function. In addition the solution can be presented in the
form

u .x; t/ D Z .x; t/ � ' .x/

where Z .x; t/ is the fundamental solution (also called the heat kernel) to Cauchy’s
Problem 2.20:

Z .x; t; f ; ˇ/ WD Z .x; t/ D R

Qn
p

�p .�x � �/ e�tj f .�/jˇp dn�; � 2 Qn
p; t > 0: (2.21)

The fundamental solution is a transition density of a Markov process with space
state Qn

p.

2.3.1 Elliptic Operators

Let h .�/ 2 Qp Œ�1; : : : ; �n� be a non-constant polynomial. In this section we work

with operators of the form h .@; ˇ/ � D F�1
	
jhjˇp F�



; ˇ > 0, � 2 D

�
Qn

p

�
. We
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will say that h .@; ˇ/ is a pseudodifferential operator with symbol jhjˇp D jh .�/jˇp .
The operator h .@; ˇ/ has a self-adjoint extension with dense domain in L2.

Definition 23 Let f .�/ 2 Qp Œ�1; : : : ; �n� be a non-constant polynomial. We
say that f .�/ is an elliptic polynomial of degree d, if it satisfies: (i) f .�/ is a
homogeneous polynomial of degree d, and (ii) f .�/ D 0 , � D 0.

Lemma 24 (i) There are infinitely many elliptic polynomials. (ii) For any n 2 N X
f0g and p ¤ 2, there exists an elliptic polynomial h .�1; : : : ; �n/ with coefficients in
Z�

p and degree 2d.n/ WD 2d such that

jh .�1; : : : ; �n/jp D k.�1; : : : ; �n/k2d
p . (2.22)

Proof (i) Assume that h .�1; : : : ; �n/ is an elliptic polynomial of degree d. Take
� 2 Q�

p such that the equation x2 D � has no solutions in Q�
p , then h .�1; : : : ; �n/

2�
��2d

nC1 is an elliptic polynomial of degree 2d. Since there are elliptic quadratic forms
for 1 � n � 4, see e.g. [22, Chapter 1], one concludes the existence of infinitely
many elliptic polynomials. (ii) By choosing � 2 Z�

p , it follows from (i) that if
h .�1; : : : ; �n/ is an elliptic polynomials of degree d with coefficients in Z�

p , then

h .�1; : : : ; �n/
2 � ��2d

nC1 is elliptic with coefficients in Z�
p . We pick d such that p

does not divide d. We prove by induction on n that h .�1; : : : ; �n/
2 � ��2d

nC1 satis-
fies (2.22). Assume, as induction hypothesis, that h .�1; : : : ; �n/ satisfies (2.22). Ifˇ
ˇ
ˇh .�1; : : : ; �n/

2
ˇ
ˇ
ˇ
p

¤
ˇ
ˇ
ˇ�2d

nC1
ˇ
ˇ
ˇ
p
, then

ˇ
ˇ
ˇh .�1; : : : ; �n/

2 � ��2d
nC1
ˇ
ˇ
ˇ
p

D �
���1; : : : ; �nC1

���2d

p .

If
ˇ
ˇ
ˇh .�1; : : : ; �n/

2
ˇ
ˇ
ˇ
p

D
ˇ
ˇ
ˇ�2d

nC1
ˇ
ˇ
ˇ
p
, taking �nC1 D pmunC1, with unC1 2 Z�

p , we have

ˇ̌
ˇh .�1; : : : ; �n/

2 � ��2d
nC1
ˇ̌
ˇ
p

D p�2md
ˇ̌
ˇh . p�m�1; : : : ; p

�m�n/
2 � �u2d

nC1
ˇ̌
ˇ
p
:

We note that h
�

p�1�1; : : : ; p�1�n

�2 � �u2d
nC1 2 Z�

p , otherwise

h . p�m�1; : : : ; p
�m�n/

2 � �u2d
nC1 
 0 mod p

and by using that p does not divide 2d, i.e. p ¤ 2 and the Hensel lemma, there
exists a nontrivial solution of h .�1; : : : ; �n/

2 � ��2d
nC1 D 0, which is impossible.

Finally, by using
ˇ̌
ˇh .�1; : : : ; �n/

2
ˇ̌
ˇ
p

D k.�1; : : : ; �n/k2d
p D ˇ

ˇ�nC1
ˇ
ˇ2d

p
D p�2md, we

have
ˇ
ˇ
ˇh .�1; : : : ; �n/

2 � ��2d
nC1
ˇ
ˇ
ˇ
p

D �
���1; : : : ; �nC1

���2d

p . �

Lemma 25 Let f .�/ 2 Qp Œ�� , � D .�1; : : : ; �n/, be an elliptic polynomial of
degree d. Then there exist positive constants C0 D C0. f /, C1 D C1. f / such that

C0 k�kd
p � j f .�/jp � C1 k�kd

p , for every � 2 Qn
p: (2.23)
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Proof Without loss of generality we may assume that � ¤ 0. Let Q� 2 Q�
p be an

element such that
ˇ
ˇ
ˇQ�
ˇ
ˇ
ˇ
p

D k�kp ¤ 0. We first note that

j f .�/jp D
ˇ̌
ˇQ�
ˇ̌
ˇ
d

p

ˇ̌
ˇ f
	Q��1

�

ˇ̌
ˇ
p

, (2.24)

with Q��1
� 2 Sn

0 D ˚
z 2 Zn

pI kzkp D 1
�
. Now j f jp is continuous on Sn

0, that is a
compact subset of Zn

p, then infz2Sn
0
j f .z/jp, and supz2Sn

0
j f .z/jp are attained on Sn

0,
and since j f jp > 0 on Sn

0, we have supz2Sn
0
j f .z/jp � infz2Sn

0
j f .z/jp > 0. Therefore

from (2.24) we have

�
inf
z2Sn

0

j f .z/jp

 ˇ
ˇ
ˇQ�
ˇ
ˇ
ˇ
d

p
� j f .�/jp �

 

sup
z2Sn

0

j f .z/jp
! ˇ
ˇ
ˇQ�
ˇ
ˇ
ˇ
d

p
:

�

Along this section f .�/ will denote an elliptic polynomial of degree d. Now,
since cf .�/ is elliptic for any c 2 Q�

p when f .�/ is elliptic, we will assume that all
the elliptic polynomials have coefficients in Zp.

Lemma 26 Let A � Qn
p be an open compact subset such that 0 … A. There exist

a finite number of points Q� i 2 A, i D 1; � � � ;L0, and a constant M WD M .A; f / 2
NX f0g such that

A D FL0
iD1 Q� i C �

pMZp
�n

and j f .�/jp jQ� iC. pMZp/
nD

ˇ̌
ˇ f
	Q� i


ˇ̌
ˇ
p
; i D 1; � � � ;L0:

Proof By (2.23), for � 2 A,

j f .�/jp � C0 k�kd
p � C0 inf

�2A
k�kd

p � p�M0.A;f /;

where M0 WD M0 .A; f / is a positive integer constant. Now for Q� i 2 A and y 2 Zn
p,

f
	Q� i C pMy



D f

	Q� i



C pMT

	Q� i; y


;

where T
	Q� i; y



is a polynomial function in Q� i, y, with

sup
Q� i2A;y2Zn

p

ˇ̌
ˇT
	Q� i; y


ˇ̌
ˇ
p

� pı:
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We set M D M0 C ı C 1. Then
ˇ
ˇ̌ f
	Q� i C pMy


ˇˇ̌
p

D
ˇ
ˇ̌ f
	Q� i



C pMT

	Q� i; y

ˇˇ̌

p
D
ˇ
ˇ̌ f
	Q� i


ˇˇ̌
p

.

Now, since A is open compact, there exist a finite number of points Q� i 2 A, such that
A D F

i
Q� i C �

pMZp
�n

. �

Remark 27 Lemma 26 is valid for arbitrary polynomials satisfying only f .�/ D
0 , � D 0. Indeed, by using that A is compact and that j f .�/jp is continuous,

there exists a constant M0 such that j f .�/jp � p�M0

for � 2 A.

Definition 28 If f .�/ 2 Zp Œ�� is an elliptic polynomial of degree d, then we say that
j f jˇp is an elliptic symbol, and that f .@; ˇ/ is an elliptic pseudodifferential operator
of order d.

By Lemma 24, the Taibleson operator is elliptic for p ¤ 2. However, there

are elliptic symbols which are not radial functions. For instance,
ˇ
ˇ
ˇ�21 � p�22

ˇ
ˇ
ˇ
ˇ

p
D

h
max

n
j�1j2p ; p�1 j�2j2p

oiˇ
. Then, there are two different generalizations of the

Taibleson operator (or Vladimirov operator): the W operators which are pseudod-
ifferential operators with radial symbols, and the elliptic operators which include
pseudodifferential operators with non-radial symbols.

2.3.2 Decaying of the Fundamental Solution at Infinity

Lemma 29 For every t > 0, jZ .x; t/j � Ct
�n
dˇ , where C is a positive constant.

Furthermore, e�tj f .�/jˇp 2 L1 as a function of � , for every t > 0.

Proof Let an integer m be such that pm�1 � .Ct/
1

dˇ � pm. By applying (2.23),

jZ .x; t/j � R

Qn
p

e�Ctk�kdˇ
p dn� � R

Qn
p

e�p.m�1/dˇk�kdˇ
p dn�

D R

Qn
p

e�kp�.m�1/�kdˇ

p dn� � pnC� n
dˇ

 
R

Qn
p

e�kzkdˇ
p dnz

!

t�
n

dˇ :

The result follows from the fact that e�kzkdˇ
p is an integrable function. �
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Define

ZL .x; t; f ; ˇ/ WD ZL .x; t/ D R

. p�LZp/
n
�p .�x � �/ e�tj f .�/jˇp dn�; L 2 N;

where ˇ > 0, t > 0, and f .�/ 2 Zp Œ�1; : : : ; �n� is an elliptic polynomial of degree d.

Lemma 30 If kxkp � pMC1 and tpMdˇ kxk�dˇ
p � 1, where M is the constant defined

in Lemma 26, then there exists a positive constant C such that

jZ0 .x; t/j � Ct kxk�dˇ�n
p :

Proof By applying Fubini’s Theorem,

Z0 .x; t/ D
1P

lD0
.�1/l

lŠ
tl
R

Zn
p

�p .�x � �/ j f .�/jˇl
p dn�: (2.25)

By using the fact that kxkp > pMC1 > 1,
R
Zn

p
�p .�x � �/ d� D 0, and thus (2.25) can

be rewritten as

Z0 .x; t/ D
1P

lD1
.�1/l

lŠ
tl
R

Zn
p

�p .�x � �/ j f .�/jˇl
p dn�: (2.26)

We set

I .j; l/ WD I .x; f ; ˇ; j; l/ D R

Zn
p

�p

��pjx � �� j f .�/jˇl
p dn�; for j � 0, l � 1;

and

QI �j; l; Sn
0

� WD QI �x; f ; ˇ; j; l; Sn
0

� D R

Sn
0

�p

��pjx � �� j f .�/jˇl
p dn�;

for j � 0, l � 1. By decomposing Zn
p as the disjoint union of

�
pZp

�n
and Sn

0,

I .0; l/ D R

Zn
p

�p .�x � �/ j f .�/jˇl
p d�

D R

. pZp/
n
�p .�x � �/ j f .�/jˇl

p d� C R

Sn
0

�p .�x � �/ j f .�/jˇl
p dn�

D p�n�ˇdlI .1; l/C QI �0; l; Sn
0

�
:
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By iterating this formula k-times, we obtain

I .0; l/ D
kP

jD0
p�j.nCˇdl/QI �j; l; Sn

0

�C p�.kC1/.nCˇdl/I .k C 1; l/ :

Hence I .0; l/ admits the expansion

I .0; l/ D
1P

jD0
p�j.nCˇdl/QI �j; l; Sn

0

�
: (2.27)

On the other hand, since Sn
0 is open compact and f is elliptic, by applying Lemma 26,

we obtain

QI .j; l;A/ D
L0P

iD1
p�Mn�p

	
�pjx � Q� i


 ˇˇ
ˇ f
	Q� i


ˇˇ
ˇ
ˇl

p

R

Zn
p

�p

��pjCMx � y
�

dny; (2.28)

Now by using

R

Zn
p

�p

��pjCMx � y
�

dny D
8
<

:

0 if j < �M � ord .x/

1 if j � �M � ord .x/ ;

with ord.x/ D mini ord .xi/, we can rewrite QI .j; l;A/ as

8
ˆ̂
<

ˆ̂:

p�Mn
L0P

iD1
�p

	
�pjx � Q� i


 ˇˇ
ˇ f
	Q� i


ˇˇ
ˇ
ˇl

p
if j � �M � ord .x/

0 otherwise.

(2.29)

We set ˛ WD ˛ .x/ D �M � ord .x/ � 1 because kxkp D p�ord.x/ � pMC1. With this
notation, by combining (2.27)–(2.29) and using that f .�/ has coefficients in Zp and
Q� i 2 Zn

p, i D 1; : : : ; l,

jI .0; l/j � p�Mn

�
L0P

iD1

ˇ
ˇ
ˇ f
	Q� i


ˇˇ
ˇ
ˇl

p


 1P
jD˛

p�j.nCˇdl/

�
�

L0
1 � p�.nCˇd/



kxk�n

p p�˛ˇld:
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By using this estimation for jI .0; l/j in (2.26),

jZ0 .x; t/j �
�

L0
1 � p�.nCˇd/



kxk�n

p

	
epMdˇ tkxk�dˇ � 1



;

finally, by using the hypothesis tpMdˇ kxk�dˇ
p � 1, we have

jZ0 .x; t/j � Ct kxk�dˇ�n
p :

�

Proposition 31 If pMdˇt kxk�dˇ
p � 1, then jZ .x; t/j � Ct kxk�dˇ�n

p , for x 2 Qn
p and

t > 0.

Proof By Lemma 29, �p .�x � �/ e�tj f .�/jˇp 2 L1 as a function of �, for x 2 Qn
p and

t > 0 fixed. Then, by using the dominated convergence theorem,

Z .x; t/ D lim
L!1 ZL .x; t/ D lim

L!1
R

. p�LZp/
n
�p .�x � �/ e�tj f .�/jˇp dn�:

By a change of variables we have

ZL .x; t/ D pLn
R

Zn
p

�p

��p�Lx � �� e�pLˇdtj f .�/jˇp d� D pLnZ0
�

p�Lx; pLˇdt
�
:

Now by applying the Lemma 30,

jZL .x; t/j � CpLn

 
tpLˇd

kxp�LknCˇd
p

!

� C
t

kxknCˇd
p

;

where C is a constant independent of L. Therefore

jZ .x; t/j D lim
L!1 jZL .x; t/j � Ct kxk�n�ˇd

p ;

if pMdˇt kxk�dˇ
p � 1. �

Theorem 32 For any x 2 Qn
p and any t > 0,

jZ .x; t/j � At
	
kxkp C t

1
ˇd


�dˇ�n
;

where A is a positive constant.
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Proof If t
1
ˇd � p�M kxkp, then t

1
ˇd � kxkp because M � 1, and by applying

Proposition 31,

jZ .x; t/j � Ct kxk�dˇ�n
p � Ct

�
1

2
kxkp C 1

2
t
1
ˇd


�dˇ�n

� 2dˇCnCt
	
kxkp C t

1
ˇd


dˇCn
:

Now if kxkp < t
1
ˇd , by applying Lemma 29,

2dˇCnCt
	
kxkp C t

1
ˇd


�dˇ�n � Ct�
n
ˇd � jZ .x; t/j :

�

When considering Z.x; t/ as a function of x for t fixed we will write Zt.x/ as
before.

Corollary 33 With the hypothesis of Theorem 32, the following assertions hold: (i)
Zt.x/ 2 L	

�
Qn

p

�
, for 1 � 	 � 1, for t > 0; (ii) Zt.x/ is a continuous function in x,

for t > 0 fixed.

Proof (i) The first part follows directly from the estimation given in Theorem 32. (ii)

The continuity follows from the fact that Zt.x/ is the Fourier transform of e�tj f .�/jˇp ,
t > 0, that is an integrable function by Lemma 25. �

2.3.3 Positivity of the Fundamental Solution

Theorem 34 Z.x; t/ � 0 for every x 2 Qn
p and every t > 0.

Proof We start by making the following observation about the fiber of f W Qn
p ! Qp

at � 2 Qp.

(Claim A) f �1 .�/ is a compact subset of Qn
p.

Since f is continuous f �1 .�/ is a closed subset of Qn
p. By applying (2.23),

f �1 .�/ �
(

� 2 Qn
pI k�kp �

� j�j
C0


 1
d

)

;

and thus f �1 .�/ is a bounded subset of Qn
p.

(Claim B) The critical set Cf D ˚
� 2 Qn

pI rf .�/ D 0
�

of the mapping f is
reduced to the origin of Qn

p.
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This claim follows from the Euler identity

1

d

nX

iD1
� i
@f .�/

@� i

D f .�/ ;

and the fact that f is an elliptic polynomial.

On the other hand, since �p .�x � �/ 1f �1.�/ .�/ 2 D
�
Qn

p

�
, as a function of �, for

� ¤ 0, by applying integration on fibers to Z .x; t/, see Chap. 1, formula (1.3), with
t > 0 fixed,

Z .x; t/ D
Z

Qpnf0g
e�tj�jˇp

0

B
@
Z

f .�/D�
�p .�x � �/ j�GLj

1

C
A d�;

where j�GLj is the measure induced by the Gel’fand-Leray form along the fiber
f �1 .�/. Hence in order to prove the theorem, it is sufficient to show that

F .�; x/ WD

0

B
@
Z

f .�/D�
�p .�x � �/ j�GLj

1

C
A � 0, for every x 2 Qn

p n f0g .

Let Q� be a fixed point of f �1 .�/, � 2 Qp n f0g. By Claim B we may assume, after

renaming the variables if necessary, that @f
@�n

	Q�



¤ 0. We set y D � .�/ with

yj WD
(
� j j D 1; : : : ; n � 1

f
	Q� C pe�



� f

	Q�



j D n:

By applying the non-Archimedean implicit function theorem (see Chap. 1, Theo-
rem 1) there exist e, l 2 N such that y D � .�/ is a bianalytic mapping from Zn

p onto�
plZp

�n
. Then

� D ��1 .y/ D
0

@y1; : : : ; yn�1;
1X

jD1
Gj .y/

1

A ;

where Gj .y/ is a form of degree j, and G1 .y/ ¤ 0. By shrinking the neighborhoods
around Q� and the origin, i.e., by taking e and l big enough, we may assume that the
following conditions hold:

(C) the Jacobian J��1 of ��1 satisfies
ˇ
ˇJ��1 .y/

ˇ
ˇ
p

D ˇ
ˇJ��1 .0/

ˇ
ˇ
p
, for every y 2

�
plZp

�n
;
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(D) ord

0

@xn

1X

jD1
Gj .y/

1

A � 0, for any y 2 � plZp
�n

.

Since f �1 .�/, � 2 Qp n f0g, is a compact subset by Claim A, F .�; x/ can
expressed as a finite sum of integrals of the form

Z

Q�CpeZn
p\f �1.�/

�p .�x � �/ j�GLj :

Now by changing variables � D ��1 .y/, and using (C), (D), we obtain

Z

Q�CpeZn
p\f �1.�/

�p .�x � �/ j�GLj

D ˇ
ˇJ��1 .0/

ˇ
ˇ
p

Z

plZn�1
p

�p

0

@�
n�1X

jD1
xj� j � xn

1X

lD1
Gj .y/

1

A dn�1y

D ˇ
ˇJ��1 .0/

ˇ
ˇ
p

Z

plZn�1
p

�p

0

@�
n�1X

jD1
xj� j

1

A dn�1y

D
	

p�l.n�1/ ˇˇJ��1 .0/
ˇ
ˇ
p



1p�lZn�1

p
.x/ � 0;

where 1p�lZn�1
p
.x/ denotes the characteristic function of p�lZn�1

p . Therefore
F .�; x/ � 0. �

2.3.4 Some Additional Results

We denote by Cb WD Cb
�
Qn

p;R
�

the R-vector space of all functions ' W Qn
p ! R

which are continuous and satisfy k'kL1 D supx2Qn
p
j' .x/j < 1.

Proposition 35 The fundamental solution has the following properties:

(i)
R
Qn

p
Z .x; t/ dnx D 1, for any t > 0;

(ii) if '2Cb, then lim.x;t/!.x0;0/
R
Qn

p
Z .x � y; t/ ' .y/ dny D ' .x0/;

(iii) Z .x; t C t0/ D R
Qn

p
Z .x � y; t/ Z .y; t0/ dny, for t, t0 > 0.
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Proof

(i) It follows from Corollary 33 and the Fourier inversion formula.
(ii) We set u .x; t/ D R

Qn
p
Z .x � y; t/ ' .y/ dny. We have to show that

lim
.x;t/!.x0;0/

u .x; t/ D ' .x0/ ,

for any fixed x0 2 Qn
p. Since ' is continuous at x0 there exists a ball

Bn�e .x0/ D ˚
y 2 Qn

pI ky � x0kp � p�e
�
, such that j' .y/� ' .x0/j < �

2
, for

every y 2 Bn�e .x0/. Then ju .x; t/ � ' .x0/j � jI1j C jI2j, where

jI1j W D
ˇ
ˇ
ˇ
ˇ
ˇ

R

ky�x0kp�p�e

Z .x � y; t/ Œ' .y/ � ' .x0/� dny

ˇ
ˇ
ˇ
ˇ
ˇ
;

jI2j W D
ˇ
ˇ
ˇ̌
ˇ

R

ky�x0kp>p�e

Z .x � y; t/ Œ' .y/ � ' .x0/� dny

ˇ
ˇ
ˇ̌
ˇ
:

By using the continuity of ' and (i),

jI1j < �

2
; for y 2 Bn�e .x0/ :

By applying Theorem 32 to jI2j,

jI2j � 2Ct k'kL1

R

ky�x0kp>p�e

kx � yk�dˇ�n
p dny:

Now, since we are interested in the values of x close to x0, we may assume that
kx � x0kp < p�e, then by the ultrametric triangle inequality,

kx � ykp D max
�kx � x0kp ; ky � x0kp

� D ky � x0kp ;

and

jI2j � 2Ct k'kL1

R

kzkp>p�e

kzk�dˇ�n
p dnz � C1t k'kL1 ,

for t > 0, where C1 is a positive constant. Note that k'kL1 D 0, implies
' 
 0, since ' is a continuous function. In this case the theorem is valid. For
this reason we assume that k'kL1 > 0 . Hence

jI2j < �

2
; for .t; x/ satisfying kx � x0kp < p�e, 0 < t <

"

2C1 k'kL1

:
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(iii) By using that e�tj f .�/jˇp 2 L1, for every t > 0,

R
Qn

p
Z .x � y; t/ Z

�
y; t0

�
dny D F�1 	e�tj f .�/jˇp e�t0j f .�/jˇp



D Z

�
x; t C t0

�
;

for t, t0 > 0.

�

2.3.5 The Cauchy Problem

In this section we study the following Cauchy problem:

8
<

:

@u.x;t/
@t C . f .@; ˇ/ u/ .x; t/ D 0; t > 0

u .x; 0/ D ' .x/ ;
(2.30)

where ' 2 L1 \ Cb.

Lemma 36 If ' 2 L1, then the function

u .x; t/ D R

Qn
p

Z .x � y; t/ ' .y/ dny (2.31)

is a classical solution of the equation

@u .x; t/

@t
C .f .@; ˇ/ u/ .x; t/ D 0; t > 0:

In addition, u .x; t/ 2 L	, for 1 � 	 � 1, for every fixed t > 0.

Proof It is clear that one may differentiate in (2.31) under the integral sign:

@u .x; t/

@t
D R

Qn
p

' .y/
@

@t
Z .x � y; t/ dny D @Z .x; t/

@t
� ' .x/ , for t > 0: (2.32)

On the other hand, since Z .x; t/ 2 L	, 1 � 	 � 1, for any fixed t > 0 (cf.
Corollary 33), and ' 2 L1, then u .x; t/ 2 L	, 1 � 	 � 1, for any fixed t > 0, and

its Fourier transform with respect x is e�tj f .�/jˇp .F'/ .�/ 2 L	, 1 � 	 � 1, because
.F'/ .�/ 2 L1, by the Riemann-Lebesgue Theorem, and the fact that f is elliptic.

Now by using Lemma 25 we have j f .�/jˇp e�tj f .�/jˇp 2 L1 \ L2 for any fixed t > 0.
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Then . f .@; ˇ/ u0/ .x; t/ is given by

. f .@; ˇ/ u/ .x; t/ D F�1
�!x

	
j f .�/jˇp e�tj f .�/jˇp



� ' .x/

D �F�1
�!x

�
@

@t
e�tj f .�/jˇp



� ' .x/ ;

for t > 0, and since one may differentiate in (2.21) under the integral,

. f .@; ˇ/ u/ .x; t/ D �@Z .x; t/

@t
� ' .x/ . (2.33)

Now the result follows directly from (2.32) and (2.33). �

Lemma 37 Let u .x; t/ be as in Lemma 36. Then the following assertions hold: (i)
u .x; t/ is continuous for any t � 0;(ii) ju .x; t/j � k'kL1 for any t � 0:

Proof (i) For t > 0, since j f .�/jˇp e�tj f .�/jˇp .F'/ .�/ 2 L1, u .x; t/ D
F�1
�!x

	
j f .�/jˇp e�tj f .�/jˇp .F'/ .�/



is continuous. The continuity at t D 0 follows

from the fact that u .x; 0/ D ' .x/ D limt!0 u .x; 0/, cf. Proposition 35 (ii). For
t > 0, the result follows from the Young inequality. �

Theorem 38 If ' 2 L1 \ Cb, then the Cauchy problem

8
<

:

@u.x;t/
@t C . f .@; ˇ/ u/ .x; t/ D 0; x 2 Qn

p; t > 0

u .x; 0/ D ' .x/

has a classical solution given by

u .x; t/ D R
Qn

p
Z .x � y; t/ ' .y/ dny:

Furthermore, the solution has the following properties:

(1) u .x; t/ is a continuous function in x, for every fixed t � 0;
(2) sup.x;t/2Qn

p�Œ0;C1/ ju .x; t/j � k'kL1 ;
(3) u .x; t/ 2 L	, 1 � 	 � 1, for any fixed t > 0.

Proof The result follows from Lemmas 36, 37. �

2.3.6 Markov Processes Over Qn
p

Theorem 39 Z.x; t/ is the transition density of a time and space homogeneous
Markov process which is bounded, right-continuous and has no discontinuities other
than jumps.
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Proof By Proposition 35 (iii) the family of operators

.‚ .t/ f / .x/ D R

Qn
p

Z .x � y; t/ f .y/ dny

has the semigroup property. We know that Z .x; t/ � 0 and ‚.t/ preserves the
function f .x/ 
 1 (cf. Proposition 35 (i)). Thus ‚.t/ is a Markov semigroup. The
requiring properties of the corresponding Markov process follow from Theorem 32
and general theorems of the theory of Markov processes [39], see also Sect. 2.2.5.�

Remark 40 By using the results of [42], it is possible to show that there exists a
Lévy process with state space Qn

p and transition function

P.t; x;E/ D

8
<̂

:̂

Zt.x/ � 1E.x/ for t > 0, x 2 Qn
p

1E.x/ for t D 0, x 2 Qn
p;

where E is an element of the family of subsets of Qn
p formed by finite unions of

disjoint balls and the empty set. However, for the sake of simplicity we state our
results in the framework of Markov processes.
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