Chapter 2
Parabolic-Type Equations and Markov
Processes

2.1 Introduction

During the last 30 years there have been a strong interest on stochastic processes
on ultrametric spaces mainly due its connections with models of complex systems,
such as glasses and proteins. These processes are very convenient for describing
phenomena whose space of states display a hierarchical structure, see e.g. [9—
13, 36, 61, 78, 80, 86, 94, 108, 111, 118, 122], and references therein. Avetisov
et al. constructed a wide variety of models of ultrametric diffusion constrained
by hierarchical energy landscapes, see [9—13]. From a mathematical point view,
in these models the time-evolution of a complex system is described by a p-adic
master equation (a parabolic-type pseudodifferential equation) which controls the
time-evolution of a transition density function of a Markov process on an ultrametric
space. This process describes the dynamics of the system in the space of configura-
tional states which is approximated by an ultrametric space (Q). This is the main
motivation for developing a general theory of parabolic-type pseudodifferential
equations.

This chapter is devoted to the study of several types of n-dimensional parabolic-
type equations that are generalizations of the one-dimensional p-adic heat equation
introduced in [111]. We also study some basic properties of the Markov processes
associated with these equations. In Sect. 2.2, we introduce the operators W which are
generalizations of the Vladimirov and Taibleson operators. This type of operators
was introduced by Chacén-Cortes and Zufiiga-Galindo in [25]. The W operators
are pseudodifferential operators having radial symbols. We attach to these symbols
certain heat kernels, and show that they are transition density functions of Markov
processes over (. We also study the Cauchy problem for the parabolic-type
equations attached to operators W by using semigroup theory. In Sect.2.3, we
introduce a class of elliptic pseudodifferential operators which are generalizations
of the Vladimirov and Taibleson operators. This class of operators was introduced
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14 2 Parabolic-Type Equations and Markov Processes

by Zifiga-Galindo in [122]. The symbol of an elliptic operator has the form |f |5,
with 8 > 0, where f is a polynomial that vanishes only at the origin. These symbols,
in general, are not radial. We attach heat kernels to elliptic symbols and show that
these heat kernels are transition density functions of Markov over QZ. The positivity
and the decay at infinity of these heat kernels are delicate matters. Finally, we study
the Cauchy problem for the heat equations attached to elliptic operators.

2.2 Operators W, Parabolic-Type Equations and Markov
Processes

2.2.1 A Class of Non-local Operators

Take Ry := {x € R;x > 0}, and fix a function
w:Q, >Ry
satisfying the following properties:

(i) w(y)isaradial (i,e. w(y) = w (|| M p))’ continuous and increasing function of

Ivll,,:
(i) w(y) = Oifand only if y = 0;
(iii) there exist constants Cy > 0, M € Z, and «; > n such that

Colylly < wdllyll,), for fIyll, = p™. 2.1
Note that condition (iii) implies that
dn
Y < 00
w (lIyll,)

Iyll,>p™

2.2)

In addition, since w (y) is a continuous function, (2.2 ) holds for any M € Z.
We define

Wo)(x) = k / ¢ - Wy )(y; ¢ s for g € . 2.3)
@

where « is a positive constant.

Lemma 4 Forl < p < oo,
D(Q) — L (Q})

o — Wy
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is a well-defined linear operator. Furthermore,

_ =X, -8
FIWel ) = —« Q/ oy | Pl @, 2.4)
Proof Note that
1@;‘,\3”,\4 (x) dt
W =7 () =k ) / ol 2.5)

Ivll,=p"

for some constant M = M(¢). Now, since ¢ € D C LP, for 1 < p < o0, (2.2), the
Young inequality implies that the first term on the right-hand side of (2.5) belongs
to LP for 1 < p < oo, and by (2.2) the second term in (2.5) also belongs to L? for
1 < p < oco. Finally, formula (2.4) follows from Fubini’s theorem, since

'@(x—y)—w(X)
w(y)

el (QZ x Q) d"xd"y) .

P’

We set

1— .
A (6) = / jjp(y(f .

n
P

Lemma 5 The function A,, (§) has the following properties: (i) for |[§||, = p™" #
0, with y = ord(§),

o pnj pny+n
Ay (p)=0=p™) . ; (2.6)
2 i) T
(ii) it is radial, positive, continuous, and A,, (0) = 0, (iii) A,, ( p_”’d(s)) is a
decreasing function of ord(§).
Proof We write § = p¥§,, with y = ord(§) and [|€||, = 1. Then
1=y, (p'y- I—yx,(z-
Aw (S) :/ X[ (p y g())dny =pyn/ Xp( EO)an' (27)
w (lIyll,) w(p”lzll,)

n
P QI’
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We now note that

Q@ ~ {0y = |_|r's;

ez
with
So={yeQylyll, =1}.

By using this partition and (2.7), we have

AvE) =3 p" / 50

A w(p |zll,)

=> P (1-p™) - /X (Ply-&)d"y
o wpty) i P
By using the formula
1—-p™ifj>0
/ X (Py-Eo)d'y = —p™ ifj=-1 2.8)
56
0 if j < —1,
see e.g. [105, Lemma 4.1], we get
pn()/-l-j) P

Av(§)=(1-p™) Z W(pyﬂ) W(pV+1)

pn] ny+n

=(1—p™) Z (o) W(pm) (2.9)

j=y+2

From (2.9) follows that A,, (§) is radial, positive, continuous outside of the origin,
and that A,, ( p‘”’d@)) is a decreasing function of ord(£). To show that A, (p™7)

is a decreasing function of y, we note that, by (2.9), A,, ( p—(y+l)) —A,(p77) =

prrtn (w(p7l’+2) — (pi +1)) < 0. The continuity at the origin follows from

pn] pn}/-l—n

A, (0) := hm (1— ) Z w(pl) y—>oow(pV+1)_

=y+2

’



2.2 Operators W, Parabolic-Type Equations and Markov Processes 17

. o p 1 D pvtn .
since Zj:M wiphy < OO cf. (2.2 ), and Co = w(prt > w(prH) for y big enough,

of. (2.1). ]

Remark 6 We denote by C(U, C), respectively by C(U, R), the vector space of
C-valued, respectively of R-valued, continuous functions defined on an open subset
U of Q[’j. In some cases we use the notation C(U), or just C, if there is no danger of
confusion.

Proposition7 (i) (Wy) (x) = —«F " (Au(|€ll,)Fisep) for ¢ € D(Q), and
Wy € C(Q[”,) nLr (Q[’;), for 1 < p < oo. The Operator W extends to an
unbounded and densely defined operator in L* (Q}’,) with domain

Dom(W) = {p € LA (|§],) Fp € L*} . (2.10)

(ii) (=W, Dom(W)) is self-adjoint and positive operator.
(iii) W is the infinitesimal generator of a contraction Co semigroup (T (1))
Moreover, the semigroup (T (1)), is bounded holomorphic with angle 7 /2.

Proof (i) It follows from Lemma 4 and the fact that A,,(||§]|,) is continuous, cf.
Lemma 5. (ii) follows from the fact that W is a pseudodifferential operator and
that the Fourier transform preserves the inner product of L2. (iii) It follows of
well-known results, see e.g. [41, Chap. 2, Sect. 3] or [24]. For the property of the
semigroup of being holomorphic, see e.g. [41, Chap. 2, Sect. 4.7]. |

2.2.2 Some Additional Results

Lemma 8 Assume that there exist positive constants a1, oy, Co, Cy, with o1 > n,
o > n, and oz > 0, such that

alely <wlgly =gy e oraye eq. @

Then there exist positive constants C, Cs, such that
o —1 _
C €l eIl < A, (EN],) < Cs (€N

—1 . _ —1
for any § € Qy, with the convention that e~osloll, . — 11m||g||p_>oe wpliEl,” = o,
Furthermore, if s > 0, then ) > op, and if a3 = 0, then o] = oy .

Proof By using the lower bound for w given in (2.11), and ||, = p™7,

ny—+n

—n 00 i
Ay (], = (=r E P + P <G &l
w p) — Co jor pal(y+l) =3 p '
j=y+2
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On the other hand, A,, (||§ | p) = W[(’npyy:) , and by using the upper bound for w given
in (2.11),
pny+n Pny+n d—n — —1
Aw (lEN,) = > > C, g2 emonlely

= w(prt) T Cpratrenrtt =

Definition 9 We say that W (or A,,) is of exponential type if inequality (2.11) is
only possible for a3 > 0 with o1, &rp, Cp, C; positive constants and &) > n, oy > n.
If (2.11) holds for 3 = 0 with &y, &», Co, C; positive constants and «; > n, ar > n,
we say that W (or A,,) is of polynomial type.

We note that if W is of polynomial type then «; = «» > n and Cy, C; are
positive constants with C; > Cj.

Lemma 10 With the hypotheses of Lemma 8,

e eAwlEl) ¢ LP(Q;) forl1 <p<ooandt>0.

Proof Since el §s a continuous function, it is sufficient to show that there
exists M € N such that

Iy (t) := / e_pK’AW(HEHP)d"g < o0, fort > 0.

e, >p

Take M € N, by Lemma 8, we have

M

_ _ —1 _ _ —M—+1
G lIE| " eIl > ¢ g2 e for &, > pM.

and (with B = Cypke=@r "™,
Iy (f) < / e BIE" gng < C(M, kc, p)tea—n, fort > 0.

lel,>p

2.2.3 p-Adic Description of Characteristic Relaxation
in Complex Systems

In [11] Avetisov et al. developed a new approach to the description of relaxation
processes in complex systems (such as glasses, macromolecules and proteins) on
the basis of p-adic analysis. The dynamics of a complex system is described by a
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random walk in the space of configurational states, which is approximated by an
ultrametric space (Q,). Mathematically speaking, the time-evolution of the system
is controlled by a master equation of the form

of (x,
f( ) /{U(x|y)f(yl)—v()’|x)f(x Dydy, x € Qp, t € Ry, (2.12)

Qp

where the functionf (x,¢) : Q, xRy — Ry is a probability density distribution, and
the function v (x | y) : Q, x Q, — Ry is the probability of transition from state y
to the state x per unit time. The transition from a state y to a state x can be perceived
as overcoming the energy barrier separating these states. In [11] an Arrhenius type
relation was used:

v<x|y>~A(T)exp{—U("'”} ,

kT

where U (x | y) is the height of the activation barrier for the transition from the state
y to state x, k is the Boltzmann constant and T is the temperature. This formula
establishes a relation between the structure of the energy landscape U (x | y) and

the transition function v (x | y). The case v(x|y) = v (y|x) corresponds to a
degenerate energy landscape. In this case the master equation (2.12) takes the form
af (x,1)
o = [0 =3l 1 6o —f
Q
where v (|x -y p) = Iﬁgl) exp { - U(‘);;y‘l’) } . By choosing U conveniently, several
p

energy landscapes can be obtained. Following [11], there are three basic landscapes:
. . . _ _ l Lo . _ _
(1) (logarithmic) v (|x )’|p) = eyl 1 (141e,) o > 1; (ii) (linear) v (|x Y|p) =
e*aleylp
lx=yl,
Thus, it is natural to study the following Cauchy problem:

o > 0.

L@ > 05 Gi) (exponential) v (b = 1,) =
P

3u(x n _ Kf M(X—y t) M(X 1) d"y, x € QL reRy

u(x,O):goeD(Q;),

where w (y) is a radial function belonging to a class of functions that contains
functions like:

@ wyll,) = T(-a) ||y||z+", here I')(") is the n-dimensional p-adic Gamma
function, and o > 0;
(i) w(lyll,) = Iylly el o > 0.
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By imposing condition (2.11) to w, we include the linear and exponential energy
landscapes in our study. On the other hand, take w(||y||,) satisfying (2.11) and take

£ (lIyll,) a continuous and increasing function such that

0< supf(||y||p) <ooand 0 < infnf(||y||p) < o0.
yeQ: yeQp

Then f (||y||p) w(||yl|,) satisfies (2.11). This fact shows that the class of operators W
is very large.
Finally we note that ||y||5 In*(1+yll,), B > n,« € N, does not satisfies ||y||g1 <

||y||5 In*(1 + [|y[l,) for any y € Q7, and hence our results do not include the case of
logarithmic landscapes.

2.2.4 Heat Kernels

In this section we assume that function w satisfies conditions (2.11 ). We define
Z(x,t;w, k) = Z(x,1) = / e MWl y (—x - £)d"€ fort > 0 and x € QL.
@

Note that by Lemma 10, Z(x,1) = fgix[e_'{m”‘(”é”p)] eCNIL*fort>0.Wecalla
such function a heat kernel. When considering Z(x, t) as a function of x for ¢ fixed
we will write Z;(x).

Lemma 11 (i) There exists a positive constant C, such that
Z(x,1) < Ct||x||,*", for x € Q) ~ {0} andt > 0.

(ii) Z(x) € L! (Q;) foreveryt > 0.

Proof (i) Let [|lx||, = pP. Since Z(x,1) € L' (Qp) for > 0, by using Q) ~ {0} =
ez P'St and formula (2.8), we get

o
_ _ _ —B—i\t —ni _ —B+
Z(x1) = |l | (1= p™) Y e ATy g
Jj=0

By using that e ™4 (P"" ) < | for j € N, we have

Z(.x, t) < ||x||;n [1 _ e—KAw(P_ﬁJl‘l)t:I .



2.2 Operators W, Parabolic-Type Equations and Markov Processes 21

We now apply the mean value theorem to the real function f(u) =
e~ (P~ o0 [0, 1] with £ > 0, and Lemma 8,

Z(x.1) < Co |lx[l," tAw(p~P+") < Cr [lx]|* .

(ii) Notice that

/ Z,(x)d"x = / Z(x)d"x + / Z,(x)d"x,

@ B G\,

the existence of the first integral follows from the continuity of Z;(x), for the

second integral we use the bound obtained in (i).
|

Lemma 12 Z(x,f) > 0, forx € @; andt > 0.

Proof Since e Ul s radial, by using Q~1{0} = |—|j€Z P'St and formula (2.8),
we have

o0
Z(x, t) — Z e—/«tAw(pi) / Xp(_x X gg-)dngg.
=0 lell,=p'
o0
_ Z P [E—mAw(pi) _ e—mAw(p”rl)] Q(“p—ix”p) >0
i=—00
since A,, is increasing function of i, cf. Lemma 5. |

Theorem 13 The function Z(x, t) has the following properties:
(i) Z(x,t) > 0 foranyt > 0;
(ii) an Z(x,)d"x = 1 foranyt > 0;
P
(iii) Z,(x) € C(Q",R) N L! @)n LZ(Q;)for anyt > 0;
(iv) Zi(x) * Zy(x) = Zivr (x) forany t, ' > 0;
(v) lin}r Z(x, 1) = 8(x) in D’ (Qp), where § denotes the Dirac distribution.
t—0

Proof (i) It follows from Lemma 12. (ii) Since Z(x), Frse (Zi(x)) = e <4n(lEl) ¢
C N L', for any t > 0, cf. Lemma 10 and Lemma 11 (ii), the result follows from
the inversion formula for the Fourier transform. (iii) It follows from Lemma 10 and
Lemma 11 (ii). (iv) By the previous property Z(x) € L! for any ¢ > 0, then

Z(0) % Zo(x) = Fi) (e—mAw<||5||,,>e—m'Aw<||s||,,>)

-5, (e_K<r+/>Aw<ns||p>) = Z1r ().
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(v) Since we have oA lIgl,) ¢ C(QI”,, R) N L! for ¢ > 0, cf. Lemma 10, the inner
product

e—KtAw(IIEII,,)’(ﬁ — e—KtAW(||§||p)¢ (€)d€
( ) /

defines a distribution on 1’;, then, by the dominated convergence theorem,

lim <e_mw<||s||,,>, ¢> = (1,¢)

=0+
and thus
lim (Z(x,1),¢) = lim (e—“Aw<||¥||p>,f—1¢> = (1,7 '¢) = (5. ¢).
=0+ t—0t

2.2.5 Markov Processes Over Q;,’

Along this section we consider (Qﬁ, ||-||p) as complete non-Archimedean metric

space and use the terminology and results of [39, Chapters 2, 3]. Let B denote the
Borel o-algebra of ;. Thus ( 7. B, d”x) is a measure space.
We set

pt,x,y) :=Z(x—y,t) fort >0, x,y € Q",
and

pr(t,y,x)d”y fort>0, xe€Q", BelB

P(t,x,B) =
15(x) fort = 0.

Lemma 14 With the above notation the following assertions hold:

(i) p(t,x,y) is a normal transition density;
(ii) P(t,x,B) is a normal transition function.

Proof The result follows from Theorem 13, see [39, Section 2.1] for further
details. |
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Lemma 15 The transition function P(t,x,B) satisfies the following two condi-
tions:

(i) for eachu > 0 and compact B

lim supP(t,x, B) = 0 [Condition L(B)];

X—>00 1<y
(ii) for each € > 0 and compact B

lim supP(t x, Q, \ B{(x)) = 0 [Condition M(B)].

=01 xeB

Proof (i) By Lemma 11 and the fact that ||-|, is an ultranorm, we have

P(t,x,B) < Ct/ |l = yll,* d"y = tC|x[|,** vol (B) forx € Q) \ B.

Therefore lim supP(¢,x,B) = 0.

X—>00 1<y,
(i) Again, by Lemma 11, the fact that ||-[|, is an ultranorm, and & > n, we have

rex g\ <a [ st ay=ar [l
lx=yll,,>e llzll,>€

= C' (ay,€,n)t.
Therefore

lim supP(t x, Q, \ B{(x) < hm supC (ay,€,n)t = 0.

t—0t xeB + xeB

Theorem 16 Z(x,t) is the transition density of a time and space homogeneous
Markov process which is bounded, right-continuous and has no discontinuities other
than jumps.

Proof The result follows from [39, Theorem 3.6] by using that (Q, ||x[[,) is semi-
compact space, i.e. a locally compact Hausdorff space with a countable base, and
P(t,x,B) is a normal transition function satisfying conditions L(B) and M(B), cf.

Lemmas 14, 15. |
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2.2.6 The Cauchy Problem

Consider the following Cauchy problem:

W (x, 1) — Wulx,t) =0, x € Q1 € [0,00),
(2.13)
u (x,0) = up(x), uo(x) € Dom(W),

where (W) (x) = —«F_! (Aw (||§||p) ]—"x_,gqb) for ¢ € Dom(W), see (2.10), and

E—x
u: Qx [0,00) — C is an unknown function. We say that a function u(x, ) is

a solution of (2.13), if u(x, 1) € C ([0, o0) , Dom(W)) N C! ([O, 0) ,Lz(@;ﬁ)) and u
satisfies (2.13) for all > 0.

In this section, we understand the notions of continuity in ¢, differentiability in ¢
and equalities in the L? (Q)) sense, as it is customary in the semigroup theory.

We know from Proposition 7 that the operator W generates a Cy semigroup
(T (#)),>0> then Cauchy problem (2.13) is well-posed, i.e. it is uniquely solvable
with the solution continuously dependent on the initial datum, and its solution is
given by u(x,t) = T (f)up(x), for t > 0, see e.g. [24, Theorem 3.1.1]. However the
general theory does not give an explicit formula for the semigroup (7 (¢)),, . We
show that the operator 7 (¢) for t > 0 coincides with the operator of convolution with
the heat kernel Z; * -. In order to prove this, we first construct a solution of Cauchy
problem (2.13) with the initial value from D without using the semigroup theory.
Then we extend the result to all initial values from Dom(W), see Propositions 18—
20.

2.2.6.1 Homogeneous Equations with Initial Values in D

To simplify the notation, set Zy x up = (Z,(x) * up(x)) |;=0:= uo. We define the
function

u(x, ) = Z,(x) * up(x), forr > 0. (2.14)
Since Z;(x) € L! fort > 0 and ug € D(Q)) € L*>(Q}), the convolution exists and

is a continuous function, see e.g. [100, Theorem 1.1.6].

Lemma 17 Take uy € D with the support of iy contained in B, and u (x, 1), t > 0
defined as in (2.14). Then the following assertions hold:

(i) u(x,t)is continuously differentiable in time for t > 0 and the derivative is given
by

dulx. _ _
ug; 1) _ —K]'—g—lm (e KrAw(lléll,,)Aw(”g||p)1BZ(§)) * 1o (X);
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(ii) u(x,t) € Dom(W) for any t > 0 and

(Wi (x,1) = =T, (e WA, (g0, 1,8)) % o).

Proof (i) The proof is similar to the one given for Lemma 110 in Chap. 4. (ii) Note
that e UL (&), A, (IE],)e™ W ) e cn 2N L fort > 0, ie.
u(x,t) € Dom(W) for t > 0. Now

(Wu)(x. 1) = =k Fel (Aw([E]l,) Feor (u(x. 1))
= —cFL, (gl eI (©))

= kPt (AnEl e 01 @) (6) )

_ _K]_—E—_lm (e—KrAw(llsllp)Aw(||g||p)13;(g)) * U (x).

As a direct consequence of Lemma 17 we obtain the following result.

Proposition 18 Assume that uy € D. Then function u (x,t) defined in (2.14) is a
solution of Cauchy problem (2.13).

2.2.6.2 Homogeneous Equations with Initial Values in L2

We define

T(fu = 2.15)

foru € L?.
Lemma 19 The operator T(t) : L? Q) — L’ (Qp) is bounded for any fixed t > 0.

Proof For t > 0, the result follows from the Young inequality by using the fact that
Z, € L', cf. Theorem 13 (iii). |

Proposition 20 The following assertions hold.

(i) The operator W generates a Cy semigroup (T (t))i>0. The operator T (1)
coincides for each t > 0 with the operator T(t) given by (2.15).

(ii) Cauchy problem (2.13) is well-posed and its solution is given by u(x,t) = Z; *
up, t > 0.
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Proof (i) By Proposition 7 (iii) the operator W generates a Cp semigroup (7 (£)):>o.
Hence Cauchy problem (2.13) is well-posed, see e.g. [24, Theorem 3.1.1]. By
Proposition 18, 7(t)|p = T(¢)|p and both operators 7(¢) and T(¢) are defined
on the whole Z? and bounded, cf. Lemma 19. By the continuity we conclude that
T(t)] = T(r) on L?>. Now the statements follow from well-known results of the
semigroup theory, see e.g. [24, Theorem 3.1.1], [41, Chap. 2, Proposition 6.2]. W

2.2.6.3 Non-homogeneous Equations
Consider the following Cauchy problem:

Wix,t) — Wulx,1) = g(x,1), x € Q1 €[0,7].T > 0,
(2.16)
u(x,0) = up(x), up(x) € Dom(W).

We say that a function u(x,f) is a solution of (2.16), if u(x,f) belongs to
C ([0, T), Dom(W)) N C! ([O T],LZ(Q; ) and if u(x,?) satisfies equation (2.16)
fort € [0, T].

Theorem 21 Assume that uy € Dom(W) and g € C([O,oo),Lz(QZ) N

L' ((0, 00), Dom(W)). Then Cauchy problem (2.16 ) has a unique solution given
by

u(x, ) = [@;; Z(x— &, Hug(§)d"E +/0 [@; Z(x—&,t—0)g(&,0)d"€d0o.

Proof The result follows from Proposition 20 by using some well-known results of
the semigroup theory, see e.g. [24, Proposition 4.1.6]. |

2.2.7 The Taibleson Operator and the p-Adic Heat Equation

We set

rO@:=" """ fora cR\{0
,o () = p_a,oro{e \ {0}.

1-—

This function is called the p-adic Gamma function. The function

ko (x) = L a € R\{0,n}, xeQ
o)
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is called the multi-dimensional Riesz Kernel; it determines a distribution on D(Q;)
as follows. If & # 0, n, and ¢ € D(Q}), then

—a

1—p™ 1—p —n "
(ke (x), @(x)) = wn @) + a_n/ [[x]1; " (x) d"x
l—p 1- IIxll,>1
1 _p_a o—n n
+ n I[x][; " (@ (x) — ¢(0)) d"x. (2.17)
1=p*™" Jil, <1

Then ky € D/(QI’;), for R\ {0, n}. In the case @ = 0, by passing to the limit in (2.17),
we obtain

(ko). () 1= lim (ke (), () = (0),

i.e., ko(x) = § (x), the Dirac delta function, and therefore k, € D’ (Qﬁ), for R\ {n}.
It follows from (2.17) that for o > 0,

1—p®
Geao = L oW - ponan @19

Definition 22 The Taibleson pseudodifferential operator DY, o > 0, is defined as

(D§p)(x) = F L, (IE]1% Fap) . for ¢ € D(QL).

By using (2.18) and the fact that (Fk—) (x) equals [|x|[], & # —n, in D/(Q[’;),
we have

(D%9) (x) = (kg % 9) (%)

1- pa —a—n n
= [ b ey ey @19)
—p @
Then the Taibleson operator belongs to the class of operators W introduced before.

The right-hand side of (2.19) makes sense for a wider class of functions, for
example, for locally constant functions ¢ (x) satisfying

/| el < oo
x||p=1

A similar observation is valid in general for operators of W type. The equation

ou(x, t)

9 +kDjuw)(x,t)=0, xe€Q), >0,
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where « is a positive constant, is a multi-dimensional analog of the p-adic heat
equation introduced in [111].

2.3 Elliptic Pseudodifferential Operators, Parabolic-Type
Equations and Markov Processes

In this section we consider following Cauchy problem:

WD+ (f @B W) =0,xeQn=1,1>0

(2.20)
u(x,0) =9 (x),
where f (9, B) is an elliptic pseudodifferential operator of the form
(f @B ) (x.) = Feb (If @1 Fiosd (x:)
Here B is a positive real number, and f (§) € Q,[&,....,&,] is a homogeneous

polynomial of degree d satisfying the property f (§) = 0 < & = 0. We establish
the existence of a unique solution to Cuachy problem (2.20) in the case in which
@ (x) is a continuous and an integrable function. Under these hypotheses we show
the existence of a solution u (x, f) that is continuous in x, for a fixed ¢ € [0, T],
bounded, and integrable function. In addition the solution can be presented in the
form

ux, ) =Zx,t)*x¢x)

where Z (x, 1) is the fundamental solution (also called the heat kernel) to Cauchy’s
Problem 2.20:

Zotf. ) =20 = [, (—x-E)e VOhae e >0 21
Y

The fundamental solution is a transition density of a Markov process with space
state @;.

2.3.1 Elliptic Operators

Let h(§) € Q,[£,....,&,] be a non-constant polynomial. In this section we work
with operators of the form k (9, ) ¢ = F~! (|h|§ ]-"QS) ,B>0,¢€D (QZ) We
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will say that k (9, B) is a pseudodifferential operator with symbol |h|§ = |h (§)|g
The operator 4 (9, B) has a self-adjoint extension with dense domain in L.

Definition 23 Let f(§) € Q,[&,,....§,] be a non-constant polynomial. We
say that f(§) is an elliptic polynomial of degree d, if it satisfies: (i) f (£) is a
homogeneous polynomial of degree d, and (ii) f (§) =0 & & =0.

Lemma 24 (i) There are infinitely many elliptic polynomials. (ii) For any n € N ~
{0} and p # 2, there exists an elliptic polynomial h (&, ..., &,) with coefficients in
Z, and degree 2d(n) := 2d such that

By ED, = G EDN (2.22)

Proof (i) Assume that i (§,,...,§,) is an elliptic polynomial of degree d. Take
T € Q, such that the equation x*> = 7 has no solutions in Q. thenh (§y,..., 5,,)2 —
113 iﬁ_l is an elliptic polynomial of degree 2d. Since there are elliptic quadratic forms
for 1 < n < 4, see e.g. [22, Chapter 1], one concludes the existence of infinitely
many elliptic polynomials. (ii) By choosing t € ZI’,‘, it follows from (i) that if

h(&,...,&,) is an elliptic polynomials of degree d with coefficients in Z*, then
h€...., Sn)z — téi‘_’;l is elliptic with coefficients in Z7. We pick d such that p
does not divide d. We prove by induction on n that 2 (§,,...,&, ) — rén ‘1 satis-
fies (2.22). Assume, as induction hypothesis, that 4 (§,, .. E ) satisfies (2.22). If

2d
hre 8] # [ men e g0 - nH\ [ )
If )h(él, o E) )p = ﬁ‘_’H K taking &, | = p"uy+1, with u, 11 € Z, we have

LG A I L1 TR AL
We note thath(p_lél,...,p_lsn) — )| € ZY, otherwise

h(p_mslv L ap_mgn)z - T“n+1 = O mOdp

and by using that p does not divide 2d, i.e. p # 2 and the Hensel lemma, there

exists a nontrivial solution of & (§,,....§, ) — En ‘1 = 0, which is impossible.
. . 2d —om
Finally, by using [ €1, &, = 11 DI = [y’ = p7, we
2d
have [ (€. ... £,)’ rgnﬂ‘ o (G m

Lemma 25 Let f(§) € Q,[&], § = (§,,....§,), be an elliptic polynomial of
degree d. Then there exist positive constants Co = Cy(f), C; = C1(f) such that

Collglly < £ ©)], < Cr|Elly., for every € € Q. (2.23)
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Proof Without loss of generality we may assume that £ # 0. Let E € Q;‘ be an
element such that ‘é ‘ = ||§]l, # 0. We first note that
P

@l =8 |7 (E)] - (2.24)

. o1 . . .
with§ & € S = {z¢€ Z;; lzll, = 1}. Now ||, is continuous on SS, that is a
compact subset of Zj, then inf.eg; | f (2)|,, and sup_cg | f (2)|, are attained on S,
and since |f|, > 0 on S, we have Sup_egn |f (2)], = infresn | f (2)], > O. Therefore
from (2.24) we have

(Ziensfg F @ |,,) { <1, < (ZSSSIE |f(z)|,,) g .

Along this section f (§) will denote an elliptic polynomial of degree d. Now,
since ¢f (§) is elliptic for any ¢ € Q7 when f () is elliptic, we will assume that all
the elliptic polynomials have coefficients in Z,.

Lemma 26 Let A C Q) be an open compact subset such that 0 ¢ A. There exist

a finite number of points éi €A i=1,---,Ly and a constant M .= M (A,f) €
N~ {0} such that

A= LI &+ (0M2)" and \f @) g uay= |1 (E)] 1= 100 Lo

Proof By (2.23),for & € A,

@)y = ColElly = Conf ] = p™ 40,
where M’ := M’ (A, f) is a positive integer constant. Now for éi €AandyeZ],
f (éi +pMy) =f(§i) +pT (éi,y) :
where T (é i y) is a polynomial function in ?;' - ¥, with

sup
SieA,yGZ;‘,

T (éi,y) L <p'.
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WesetM =M’ + § + 1. Then

1), = 1 () o i)

, =1 (&)

Now, sinc~e A is open compact, there exist a finite number of points é ; € A, such that
A=L] &+ (pMZP)n' u
Remark 27 Lemma 26 is valid for arbitrary polynomials satisfying only f (§) =
0 < & = 0. Indeed, by using that A is compact and that |f (£)], is continuous,
there exists a constant M’ such that | f (§) l, = pMfor& € A.

p '

Definition 28 Iff (§) € Z, [£] is an elliptic polynomial of degree d, then we say that

|f] pﬁ is an elliptic symbol, and that f (9, 8) is an elliptic pseudodifferential operator
of order d.

By Lemma 24, the Taibleson operator is elliptic for p # 2. However, there
B

£ -t
P

are elliptic symbols which are not radial functions. For instance,

B
[max{|§ 1|12,, p! |§2|§}] . Then, there are two different generalizations of the

Taibleson operator (or Vladimirov operator): the W operators which are pseudod-
ifferential operators with radial symbols, and the elliptic operators which include
pseudodifferential operators with non-radial symbols.

2.3.2 Decaying of the Fundamental Solution at Infinity

Lemma 29 For every t > 0, |Z(x,1)| < Ctdb , where C is a positive constant.
— I .
Furthermore, e V&l ¢ L1 g5 a function of €, for every t > 0.

Proof Let an integer m be such that p"~! < (Ct) d < p™. By applying (2.23),

< [—ClEN? me ,—p" VB E| %P
|Z(x, 1) < [e 't < [e d"¢
Q Q

—(m— dﬁ n n
= [ g < i (fe—llzllff“d"z) b
@ @

—11zl19P . . .
The result follows from the fact that e 1¥l>" is an integrable function. |
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Define

ZLtf ) =2 = [ g, (—x-8)eVOhae LeN,
(PiLZn)”

where 8 > 0,7 > 0,andf (§) € Z, [§,,...,§,] is an elliptic polynomial of degree d.

Lemma 30 [f x|, > PM*1 and pMaP ||x||;dﬁ < 1, where M is the constant defined
in Lemma 26, then there exists a positive constant C such that

120 (x. )] < Ct ], P
Proof By applying Fubini’s Theorem,

Ben=% ) ’fx,,< OO (.25)

=0

By using the fact that ||x||, > p™*' > 1, [}, x, (—x- &) d§ = 0, and thus (2.25) can
‘p
be rewritten as

Zen=3 ", fx,,( <61 @) . (2.26)

=1
We set
1G.D:=1(.f.B.3.D = [x,(~P'x &) If S d"E. forj>0,1>1,
zy
and
1G.1.85) :=1(x.f.B.j.1.S5) = [x, (=P'x- &) |f ©)|S' d"¢.
o
forj > 0,1 > 1. By decomposing Z as the disjoint union of (pr)n and Sy,
10.0) = [x,(—x-&|f @5 dt
z;
= [ x, (x5 ELdE+ [x,(—x-O)If ©)) a"¢

(r2,)" So

=p P (1,0 +1(0,1,5).
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By iterating this formula k-times, we obtain
k . ~
1(0,0) =Y p P (j,1,8p) + p~kEDOHPA () 1 1,1) .
j=0
Hence I (0, /) admits the expansion

[} . ~
1(0,0) =Y p " tPT (j,1,8p) . (2.27)

j=0

On the other hand, since Sj is open compact and f is elliptic, by applying Lemma 26,
we obtain

- Lo
1G.4) = 3 p™, (0 &) |1 (B)

Bl .
[x, (=P ™x-y)d"y. (2.28)
bz

Now by using

0ifj < —M — ord (x)
S xp (=P ™Mx-y)d'y =
Z 1ifj>—-M —ord (x),

with ord(x) = min, ord (x;), we can rewrite I (j, [, A) as

Ly

o S (pix-E) [r (B[] ity = -m— om0

(2.29)
0 otherwise.
We set o := o (x) = =M — ord (x) > 1 because ||x|, = p~*® > pM*! With this

notation, by combining (2.27)—(2.29) and using that f (§) has coefficients in Z, and
Eezri=1,...1

Bl

p

o (L1
ro.nl <y (1 ()

00
) Z p—j(n+/3dl)
J

<'=a

< LO ”x” —n —aﬂld
- 1 _p_(”+ﬂd)
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By using this estimation for |/ (0, /)| in (2.26),

Lo —n [ pMdB ||~
o= (| ) (1 ),

finally, by using the hypothesis p™¢# ||x||;dﬁ <1, we have
1Zo (x.0)| < Ct |lx]; .

Proposition 31 If p"@1||x|>% < 1, then |Z (x,0)| < Ct||x||; ™", for x € Q" and
t>0.

Proof By Lemma 29, y, (—x-§) e MO ¢ L1 a5 a function of g, for x € Q) and
t > 0 fixed. Then, by using the dominated convergence theorem,

Z(t) = lim Z () = lim [y, (—x-&)eVOhge,
L—>oo L—o0 (p_LZ ),,
P

By a change of variables we have

— —plBd p -
Zr (x, 1) = anpr (—p Ly, zg-) e P @N; ds = ptz, (p Lx’pLﬂdt).
Zy

Now by applying the Lemma 30,

A
a

zan<amn( P !
T =224 ) T R

where C is a constant independent of L. Therefore
|Z (x.0)] = lim |Z (x.0)| < Cr x| P4,
L—>o0
if pMaP e ||x]| P < 1. [

Theorem 32 For any x € Q) and any t > 0,

—dB—

:
1 (el < A (Il +0i0)

where A is a positive constant.
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Proof Tf 194 < p=™ [[x[l,,» then 1h < |x||, because M > 1, and by applying
Proposition 31,

—dﬂ—n 1 1 1 _dﬂ_n
Z@o) = o, = Co () Il + o

2dﬁ+nCt

<
- 1 dﬂ+ﬂ
(Il + 1)

Now if [|x], < tﬁld, by applying Lemma 29,

—df—n n
2nce (ol +1i0) = O = (Z ().

When considering Z(x, f) as a function of x for ¢ fixed we will write Z(x) as
before.

Corollary 33 With the hypothesis of Theorem 32, the following assertions hold.: (i)
Z,(x) €L (Q;),for 1 < p < oo, fort > 0; (ii) Z;(x) is a continuous function in Xx,
fort > 0 fixed.

Proof (i) The first part follows directly from the estimation given in Theorem 32. (ii)

The continuity follows from the fact that Z;(x) is the Fourier transform of eV (E)lﬁ,
t > 0, that is an integrable function by Lemma 25. |

2.3.3 Positivity of the Fundamental Solution

Theorem 34 Z(x,1) > 0 for every x € Q) and every t > 0.

Proof We start by making the following observation about the fiber of f : Q) — @,
at A € Q.

(Claim A) f~! (1) is a compact subset of Q-

Since f is continuous f ! (1) is a closed subset of Q. By applying (2.23),

’

. ' A1)
fWME{Se@JMbS(%)

and thus f~! (1) is a bounded subset of Q-
(Claim B) The critical set C; = {§ € Q% Vf (§) = 0} of the mapping [ is
reduced to the origin of Q7.
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This claim follows from the Euler identity

TG
d;si g =1 ©-

and the fact that f is an elliptic polynomial.

On the other hand, since g, (—x-§) 1;-1(3) (§) € D (Qp), as a function of &, for
A # 0, by applying integration on fibers to Z (x, 7), see Chap. 1, formula (1.3), with
t > 0 fixed,

Z(x,1) = / e~y / Xp (=x-8) |yaLl | dA,
Q\{0} \(§)=2

where |yq | is the measure induced by the Gel’fand-Leray form along the fiber
f71(A). Hence in order to prove the theorem, it is sufficient to show that

F(A,x):= / Xp (=x-8)yaLl | = 0, forevery x € Q) \ {0}.
(&)=2

Let E be a fixed point of /! (1), A € Q, \ {0}. By Claim B we may assume, after
renaming the variables if necessary, that aag (é ) # 0. We set y = ¢ (§) with

o £ j=1,...,n—1
v {f(§+pe§) —f(8)j=n.

By applying the non-Archimedean implicit function theorem (see Chap. 1, Theo-
rem 1) there exist e, / € N such that y = ¢ (£) is a bianalytic mapping from Z, onto

(p'Z,)". Then

E=¢""'(y)= ylu-u)’n—l,ZGj(y) ,

Jj=1

where G; (y) is a form of degree j, and G; (y) # 0. By shrinking the neighborhoods
around £ and the origin, i.e., by taking e and / big enough, we may assume that the
following conditions hold:

(C) the Jacobian J,-1 of ¢! satisfies |J¢—1 (y)\p = |J¢—1 0)
(P'Zy)";

» for every y €
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o0
D) ord | x, Z G;(y) | =0, foranyy € (p'Z,)".
=1

Since f~' (1), A € Q, \ {0}, is a compact subset by Claim A, F (1,x) can
expressed as a finite sum of integrals of the form

/ %o (=55 vl

E+peznnf=1 (1)

Now by changing variables £ = ¢! (y), and using (C), (D), we obtain

/ % (26 [yl

E+pezpnf=' ()

n—1 e}
SLZICIR A B DR BoT) P
j=1 =1

plzgfl
n—1
n—1
=|J¢—1(0)|p / Xy —ijéj d"y
p’Z?fl J=1

= (P70 Yy 0)],) 1z () 2 0,

where 1,,712;71 (x) denotes the characteristic function of p"Z;_l. Therefore
F(A,x) > 0. |

2.3.4 Some Additional Results

We denote by C;, := G, (Q[’;, R) the R-vector space of all functions ¢ : Q) — R
which are continuous and satisfy |¢||;cc = SUPyeqy lp (x)] < oo.

Proposition 35 The fundamental solution has the following properties:
(i) anZ (x,1) d"x =1, foranyt > 0;
P

(ii) if 9€Cp, then lim(y y— (x.0) fQ;;Z x—=y. 0@ () d"y = ¢ (x);
(iii) Z(x,t+71) = fQ,,Z(x —y,0Zy,7)d", fort, ¥ > 0.
P
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Proof

(i) It follows from Corollary 33 and the Fourier inversion formula.
(ii) We setu (x,f) = anZ (x —y,1) ¢ (y) d"y. We have to show that
P

lim  wu(x,t) = ¢ (x0),
(x.)—(x0,0)
for any fixed xp € Q;‘ Since ¢ is continuous at x there exists a ball

B, (x0) = {y e Qr, ||y—x0||p < p_e}, such that |¢ (y) — ¢ (x0)| < ;, for
every y € B", (x9). Then |u (x,1) — ¢ (x0)| < || + |I2|, where

L) : = [ ZGa—y.0le () —¢x)ld"y|.
ly—xoll,<p™¢

|| : = ” { Zx—y.0[p () —¢ (x0)]d"y|.
y=xoll,>p™¢

By using the continuity of ¢ and (i),
€
|11| < 7 fory e Brie ()C()) .
By applying Theorem 32 to |/5|,

bl <2Ct @l [ =yl %" dy.

ly—xoll,>p~¢

Now, since we are interested in the values of x close to xy, we may assume that
[x —xoll, < p~*, then by the ultrametric triangle inequality,

Ix = ¥ll, = max (|lx = xoll,, . lly = x0l,) = lly = xoll, -
and
—dB—
Ll <2Ct gl [ Nlall, "7 d"e < Cat ]l
llzll,>p~
for + > 0, where C; is a positive constant. Note that ||¢||;co = 0, implies

¢ = 0, since ¢ is a continuous function. In this case the theorem is valid. For
this reason we assume that ||¢||;cc > 0. Hence

€ €
|| < ., for (z,x) satisfying ||[x —xof, <p % 0<t< .
2 P 2C ol oo
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(iii) By using that O € 11 for every t > 0,

JpZ =y Z (/) d'y = F! (e‘t‘f(f)‘ﬁe""f(f)‘ﬁ) =Z(xt+7),
p

fort, ¢ > 0.
|
2.3.5 The Cauchy Problem
In this section we study the following Cauchy problem:
D L (f @, B)w) (1) =0, 1> 0
(2.30)
u(x,0) =¢x),
where ¢ € L' N C.
Lemma 36 If ¢ € L', then the function
u,t)= [Zx—y,)p () d"y (2.31)

@
is a classical solution of the equation

du (x,1)

y + (0,8 u)(x,1) =0,t> 0.

In addition, u (x,t) € L, for 1 < p < oo, for every fixed t > 0.

Proof It is clear that one may differentiate in (2.31) under the integral sign:

Z (x,1)

5 * ¢ (x), fort > 0. (2.32)

ou (x,1) a o 0
0 Lo zamr0dy =

On the other hand, since Z (x,7) € L°, 1 < p < oo, for any fixed t > 0 (cf.
Corollary 33), and ¢ € L', thenu (x,f) € L’, 1 < p < oo, for any fixed r > 0, and
its Fourier transform with respect x is eI (Fo) (&) € L, 1 < p < 00, because
(Fo) (§) € L*°, by the Riemann-Lebesgue Theorem, and the fact that f is elliptic.
Now by using Lemma 25 we have |f (£) |§ O ¢ VN L2 for any fixed ¢t > 0.
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Then (f (9, B) uo) (x, t) is given by

(F@.Bw 0 =FL (IF G M) 0 ()

_ J _ B
_ _‘FE—lﬁc (ate rf(E)lp) * ¢ (x),

for t > 0, and since one may differentiate in (2.21) under the integral,

0Z (x,t
Go.p0en=—""" w00, 233)
Now the result follows directly from (2.32) and (2.33). |

Lemma 37 Let u(x,t) be as in Lemma 36. Then the following assertions hold: (i)
u (x, 1) is continuous for any t > 0;(ii) |u (x, )| < ||@|| 0 for any t > 0.

Proof (i) For t > 0, since |f©)f eV (Fp)®) e L', u(xn) =
]:5_—1»: (| f (§)|§ eI (Fo) (E)) is continuous. The continuity at t = 0 follows

from the fact that u (x,0) = ¢ (x) = lim,—¢ u (x,0), cf. Proposition 35 (ii). For
t > 0, the result follows from the Young inequality. |

Theorem 38 If ¢ € L' N Cy, then the Cauchy problem

WD 4 (f (9, B)u) (1) =0, xE QY 1> 0

u(x,0) = ¢ (x)

has a classical solution given by
M(x, t) = f@;z(x_yv t)(p (y)dny

Furthermore, the solution has the following properties:

(1) u(x,1t)is a continuous function in x, for every fixed t > 0;
(2) SUP (1) €Qs x[0.+00) lu(x, )] < |l@llgoos
(3) u(x,t) € LP, 1 < p < oo, for any fixed t > 0.

Proof The result follows from Lemmas 36, 37. |

2.3.6 Markov Processes Over Q;

Theorem 39 Z(x,t) is the transition density of a time and space homogeneous
Markov process which is bounded, right-continuous and has no discontinuities other
than jumps.
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Proof By Proposition 35 (iii) the family of operators

O©0NH @)= [Zx=y.0f()d"y
@

has the semigroup property. We know that Z (x,f) > 0 and © () preserves the
function f (x) = 1 (cf. Proposition 35 (i)). Thus © () is a Markov semigroup. The
requiring properties of the corresponding Markov process follow from Theorem 32
and general theorems of the theory of Markov processes [39], see also Sect.2.2.5.H

Remark 40 By using the results of [42], it is possible to show that there exists a
Lévy process with state space () and transition function

Z;(x) * 1g(x) fort > 0,x € Qﬁ
P(t,x,E) =
1g(x) fort =0,x € Q7,

where E is an element of the family of subsets of Q; formed by finite unions of
disjoint balls and the empty set. However, for the sake of simplicity we state our
results in the framework of Markov processes.
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