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Abstract. Selecting a minimal-cost team from a set of agents, with
associated costs, to complete a given set of tasks is a common and impor-
tant multiagent systems problem. Some degree of fault-tolerance in such
teams is often required which enables the team to continue to complete
all tasks even if a subset of the agents are incapacitated. A k-robust
team is one that is capable of completing all assigned tasks when any k
team members are not available. The corresponding decision problem of
selecting a k-robust team that costs no more than a desired cost thresh-
old has been shown to be NP-Complete. We present and experimentally
evaluate, for varying problem sizes and characteristics, heuristic and evo-
lutionary approximation approaches to find optimal-cost k-robust teams
which can be used for large problems. We present a Linear Programming
approximation algorithm that produces optimal results for small problem
sizes and prove that it is a 2In(m+ k) + O(In m)-factor approximation of
the optimal solution, where m is the number of tasks to be completed.
We also present three heuristic algorithms and an evolutionary compu-
tation approach which scales up to larger problems. Another advantage
of the evolutionary scheme is that it can approximate the Pareto-frontier
of teams trading off robustness and cost.

Keywords: Robust teams - Approximation algorithms - Weighted set
multicover

1 Introduction

Team formation is a critical activity in multiagent systems, particularly in coop-
erative settings. Teams are often formed in a distributed setting where demands
of the situation necessitates otherwise self-interested agents to join together in
cooperative teams or coalitions [19]. A significant amount of work in the coop-
erative game theory and in the multiagent systems community on coalition for-
mation addresses this scenario. These approaches seek fair payoff distribution
schemes between team members to incentivize agents joining and staying in
stable coalitions.

Teams can be also formed in a centralized manner with prior knowledge of
the capabilities and expertise requirement in the domain as well as the price
or cost of including each agent in the team. A centralized decision maker is
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provided requirements for fulfilling a set of tasks in a domain, where each task has
certain resource and/or capability requirements, using a set of available agents
with given capabilities and resource capacities. Typically the emphasis in such
a scenario (e.g., forming a team of robots to explore inhospitable environments)
is to guarantee a degree of certainty of outcomes while minimizing cost. Many
real life scenarios can be framed as an instance of this team formation problem,
e.g., choosing team of first responders, surveillance and reconnaissance missions
with unmanned vehicles, robotics assembly tasks, assisting disabled patients with
chores at their homes, etc.

The problem of selecting a minimal cost team of agents with the necessary
capabilities to achieve a given set of tasks can be posed as an optimization
problem. Recently, a variant of this problem has been studied which exam-
ines the robustness of such teams. Robustness is defined by the number of
team members, k, that may be lost without compromising the ability of the
rest of the team members achieving all tasks [17]. The loss of team members
is prevalent particularly with robot teams, where robots may become physi-
cally incapacitated or isolated, lose power or connectivity, get disoriented, or
be impaired by software errors. Such incapacitated members can no longer con-
tribute to completing team tasks and can therefore limit the effectiveness of
the team. The corresponding Task-Oriented Robust Team Formation (TORTF)
optimization problem can have variants: (A) given a cost budget, finding the
team which is robust against the loss of the largest number of agents, i.e., a
k-robust team with the maximal k value, (B) given a desired robustness level k,
finding a k-robust team of minimal cost, and (C) a dual-objective constraint opti-
mization problem with a pareto-frontier of solutions trading off team cost and
team robustness. Though the corresponding decision problems are NP-complete,
Okimoto et al. present an exact algorithm for solving variant C and evaluates
it on small problem sizes [17]. The TORTF problem can be mapped into the
Weighted Set Multicover (SMC) problem, which has been widely studied in the
theoretical computer science literature. A variety of exact algorithms have been
proposed for the SMC [15], all of which understandably are of exponential com-
plexity and hence cannot be used for large problem sizes.

In this paper we present our work on developing and evaluating approxima-
tion algorithms for variation B of the TORTF optimization problem, i.e., the
problem of generating the minimal-cost k-robust team. We present a suite of
approximation algorithms for this problem: three greedy heuristic algorithms, a
genetic algorithm based optimization approach and a Linear Programming based
approximation for the SMC problem and prove that it is a 2In(m+k)4+O(Inm)-
factor approximation. The genetic algorithm variant, NSGA-II [3], is designed to
solve Multi-Objective Optimization problems and hence can be used to address
variant C of the TORTF problem. We evaluate the relative efficiencies of these
optimization techniques on a testbed of TORTF problems, varying the number
of agents, the number of tasks, the tasks/agent ratio, the cost distributions of the
agents, etc. We present an in-depth analysis of the experimental results, includ-
ing scalability considerations, and present guidelines for choosing an algorithm
given problem characteristics.
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2 Problem Definition

Each agent in a TORTF scenario is capable of doing a subset of the needed
tasks. A team is a set of agents that can complete a task iff any of its members
can complete it. Each agent has an associated cost for adding that agent to the
team. The goal of TORTF is to find a team of minimal cost such that even
if any k agents are removed from the team, the team retains the capability of
completing all assigned tasks. In practical team formation scenarios, there are
often cases where some members may be incapacitated and may not be able to
complete some or many of the tasks required of them. In those scenarios, other
agents are expected to step up and complete the tasks in their place.

A TORTF problem can be specified as the tuple (A, 7, ¢, «, k), where
A={ay,...,a,} is aset of agents, T = {t1,...tm} is a set of tasks, ¢c: A — RT
is the cost function assigning a cost to each agent, and a : A — 27 is the function
that lists the subset of tasks that an agent can complete. Unlike some other task
assignment problems, there are no time/resource constraints, and hence an agent
is expected to complete all tasks that it is capable of doing.

Furthermore, if S C A is a team of agents, then the total cost of forming the

team is c(S) = >, cgcla).

Definition 1 (Efficiency). [17] defines a team S C A to be efficient if and
only if the team members as a group can complete all tasks:

Ua(a):T.

a€S

We will prefer to use the term robust or effective to describe this property, since
we are also interested in the efficiency of the algorithms in this paper.

Definition 2 (k-robustness). A team, S C A, is krobust, where k €
{0,...,n— 1}, if and only if it is efficient when any k agents are removed from
the team:

VS C S8 < k= S — Sis efficient.

Furthermore,

k-robust(S) = max{k|S is k-robust}

s robustness of a team — the mazimum number of agents which can be removed
from the team without violating efficiency. We define the robustness of a team
for a single task to be the number of tearmn members that can perform the task:

k-robust; (S) = |{a; € S|t; € a(a;)}]

Computing k-robust(S) can be done in O(n) time, as explained in [17]. The
procedure computes the number of agents that can complete each task in 77
the k-robustness is then the minimum number of agents assigned to some task
minus 1. We examine two optimization problems: (a) Find the least-cost k-
robust team, and (b) compute the Pareto frontier of teams that minimize cost
and maximize k.
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3 Related Work

Team formation is a critical problem for multiagent domains that require agent
cooperation. Research on team formation has been focused on applications such
as robotics [6], engineering projects [20] or business projects [22]. Deciding an
optimal team for a project can also have different types of constraints, for exam-
ple, social ties or compatibility between pairs of agents [7]. Another approach
by [10] examines teams that collaborate to vote to make decisions. They com-
pare teams of informed but not diverse voters with more uninformed but diverse
voters and found that diverse teams are more effective. Optimal voting rules
for selecting a diverse team are proposed in [10] which can overcome a uniform
team of well-informed agents. One factor that needs to be accounted for in team
formation is the possibility that some agents will not be able to contribute to
the group after the team is selected due to unforeseen circumstances.

Several papers focus on coalitional skill games, for example, Bachrach and
Rosenschein [11] uses a simple model of cooperation among agents. Each agent
has skills and each task requires a set of skills; it is only possible to complete the
tasks if the coalition’s agents cover the set of required skills for the task. Bachrach
et al. [9] focuses on Coalition Structure Generation (CSG), which partitions a
set of agents into groups to maximize the sum of the values of all coalitions.
Finding an optimal coalition structure is NP-hard.

The k-robustness problem is an agent-based formulation of the weighted set
multicover problem. The set cover problem was one of the original 21 problems
to be proven NP-complete by Karp [5], and the natural greedy approximation
was proven to be within a factor of H,, (the partial sum of the first n terms of
the Harmonic series) for the unweighted problem in [4,8] and for the weighted
problem in [2]. Furthermore, it has been proven that there cannot exist an effi-
cient approximation better than Inn for the set cover [12] (the aforementioned
greedy mechanism has this factor since H, = Inn + O(1)). The weighted set
multicover problem is proven to be NP-hard [17,21].

A number of exact algorithms have been developed to solve the weighted set
multi-cover problem [13-15,17]. The algorithm developed in [17] calculates the
entire Pareto frontier of solutions using a branch-and-bound approach. However,
this algorithm is unusable for even moderately large number of agents or tasks.
The fastest exact algorithm discussed in [15] uses a dynamic programming app-
roach to build multiset covers that builds up a solution from combinations of
multisets. This algorithm runs in O((k + 2)™) time, which is the fastest known
optimal algorithm that we know of.

The natural greedy algorithm for weighted set cover yields an H,,-
factor approximation. Similar approximations have been found for the
unweighted /weighted set multicover problems [21]. The approximation factor
is derived by showing that the “prices” assigned to tasks by the greedy algo-
rithm satisfy the dual of the integer programming formulation of the problem,
where the dual represents feasible lower bounds on the true cost of the optimal
allocation. Since the greedy approximation satisfies the dual and since the dual



18 C. Crawford et al.

of the LP relaxation is within a factor of H,, of the integer solution, the greedy
approximation is also within a factor of H,,.

4 Approximations of the TORTF Problem

We now present the approximation approaches for the TORTF problem that we
evaluate in this paper. We assume that for each of these algorithms, for the given
k, a k-robust team exists. It is simple to verify existence: since a k robust team
will also be L-robust for any L < k, then a k-robust team exists if and only if
k-robust(A) > k.

4.1 Greedy Algorithms

We first describe a set of greedy approaches to approximate solutions to a
TORTF problem.

Greedy Heuristic 1: We present (see Algorithm 1) the naive greedy approach
as one method for selecting a robust team G. This algorithm has been studied
extensively for the weighted set multi-cover problem, and has been proven to be
an H,-factor approximation of the optimal solution [21]. This algorithm and its
derivative, Heuristic 2, run in O(n?) time.

Heuristic 1 selects the agent with minimum price, which is the cost of the
agent per needed task it can complete. In other words, the greedy algorithm
iteratively selects the cheapest agent given the number of additional tasks that
they can do and will help the team achieve the specified level of robustness. This
process is repeated until the team is k-robust.

Algorithm 1. Greedy Heuristic 1
1: procedure AGENT-TEAM(A, 7, ¢, a, k)
2: G0
while k-robust(G) < k do
C « {t; € T|k-robust;(G) < k}
Choose a* «— aragen;in%
G—GU{a"}
return G

Greedy Heuristic 2: This modification of the first greedy approach focuses on
tasks which can be completed by the fewest number of agents. Unlike the last
method, which considered the entire set .4 when choosing the best agent, this
mechanism only considers agents that can perform the task ¢*, which corresponds
to the task with the fewest number of unselected agents that can complete it.
Our motivation behind this approach is to minimize losses on the most restrictive
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choices. As the first greedy heuristic progresses, it will need to find k agents to
complete t*. However, as more and more agents are selected, the number of
unselected agents capable of completing t* becomes smaller. To alleviate this
issue, this variation of the greedy heuristic selects t* to cover immediately and
continues to make similarly greedy choices subsequently (see Algorithm 2 for the
complete algorithm).

Algorithm 2. Greedy Heuristic 2

1: procedure AGENT-TEAM(A, T, ¢, a, k)

2: G—10

while k-robust(G) < k do
C — {t; € T|k-robust;(G) < k}
t* «— argminja € A\ G :t € a(a)|

teC
TA—{a€ A\G:t" € afa)}
Choose a* < arg min
ac€TA

G—GU{a"}

return G

c(a)
la(a)nC|

Greedy Heuristic 3: In this heuristic, agents are selected based on their
marginal utility. The marginal utility is the difference between the benefit
of a team with that agent and without the agent. The algorithm (see Algo-
rithm 3) greedily selects agents at each turn, always choosing the agent that
maximizes marginal utility given the previously selected set of agents. Let
7(G) = {t; € T : k-robust;(G) < k} is the set of uncovered tasks not k-covered
by the already selected set of agents G. The marginal utility for a not yet selected
agent a, given the currently selected set of team members G, is approximated as

w3 (NG v

tea(a

—(e@+ > ((“‘EQ)G 311)-ct<cu{a}>, (1)

tea(a)

where z; is the number of agents available to complete an uncovered task ¢ and
r4 is the additional robustness needed for that task (k —k-robust,(G)) given the
set of agents G chosen so far. The function € is the sum of the average costs per
uncovered task of agents that can complete ¢:

c(a)

c(G) = _ (2)
a:aEA\GZax:ld tea(a) la(a) N 7(G)|

The first term in the expression for u is the average potential cost when a is
not added to the team with respect to task ¢, i.e., it is the “average” cost of r;
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Algorithm 3. Greedy Heuristic 3

1: procedure AGENT-TEAM(A, T, c, a,k)
2: G—10
while k-robust(G) < k do
Choose a* «— argmax u(a;, G)
a; EA\G
G—GU{a"}
return G

randomly selected agents who can complete the task. The second term computes
how much potential cost is added if we first select a and then select the rest of
the team. The marginal utility of adding the agent to the team is then the sum of
the difference between these two terms, over all the tasks that this agent can do.

4.2 Genetic Algorithm

The team formation problem can be framed as a multiple-objective optimization
problem: maximizing k and minimizing cost. While previous algorithms compute
the solution for only one k, knowing solutions for other k£ might help find better
teams at k-robustness. We apply a multi-objective genetic algorithm to compute
the entire Pareto frontier of solutions to the TORTF problem. That is, this GA
will not be given a single k value to optimize, but will instead attempt to learn
team allocations to ensure k-robustness for any k.

We adapt the implementation of the Nondominated Sorting Genetic Algo-
rithm (NSGA-II) [3]. The NSGA-II algorithm tracks both a parent and child
population. To optimize solutions on the Pareto frontier, NSGA-II adds a pre-
processing step to each generation: the population is broken into non-dominating
fronts, sorted by the domination relation. Another metric further sorts the solu-
tions inside each front based on their diversity; this encourages the GA to select
solutions across the entire Pareto frontier. The first N solutions among this
group are put inside the parent population. The following M solutions compose
the child population, and are generated using GA operators on the parent popula-
tion. We are interested in solving the general optimization problem, but solutions
for one k value may help inform solutions for other k values, assuming that the
best teams with varying robustness would share some overlap in members. The
NSGA-II algorithm is ideal since it is designed to find diverse solutions across
the Pareto frontier.

NSGA-II is much slower than the heuristic and linear programming
approaches. The time complexity of the preprocessing step is O(2N?), where
N is the size of the chromosome pool. While this is faster than the naive app-
roach to sorting the pool by multiple objectives, it runs significantly longer than
the other algorithms presented.

Chromosomes in our GA are represented as bitstrings; if b = by,...,b, is a
bitstring, then agent a; € A belongs to the corresponding team iff b; = 1. Our
algorithm uses Tournament selection with p = 0.65: when generating the pool
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of chromosomes for crossover, it randomly selects two chromosomes from the
parent pool and places the better chromosome in the new pool with probability
p, otherwise it adds the worse chromosome. Crossover is uniform: each bit has
an equally likely probability of being copied from the first or second parent. The
probability of crossover occuring is 95 %, otherwise a parent is copied directly
to the child pool. Bitwise mutation is performed next: a randomly chosen bit
is flipped with a mutation probability of 10% per chromosome in the newly
generated child pool. We use a parent pool size of 150 and a child pool size of
200, and run experiments for 1500 generations.

4.3 Linear Programming Approach

The team formation problem can be formulated as an integer programming
problem as follows:

n
MINIMIZE Z cla;) - x;
i=1
SUBJECT TO Z T; > k+1 j=1,....m
iitje(lé(ai)
T; € {O, 1}

The variable vector x represents our choice of including agents in the team;
if z; = 1, then agent a; € A belongs to our team, and otherwise they do not.
In the LP relaxation of the integer program, we allow the integral vector x to
assume real values with 0 < z; < 1. This is an exact solution to the fractional
weighted set multicover; that is, if we could choose “fractions” of agents to solve
some tasks, then this would be an optimal team. To compute the solution to the
LP relaxation, we use the linear programming package PuLP [16]. As algorithm
times are not compared in this paper (since we implemented NSGA-II in a
different language from the others) there was no difference in choosing PuLP
over other state-of-the-art LP solvers.

To translate the LP relaxation into a team formation solution, we order
agents by a(l), . ,a(") such that z > ... > (™. The team chosen is the
smallest cutoff point ¢ such that the team {a,...,a(®} is k-robust. However
there is no guarantee that this ordering may provide an optimal solution. We
are interested in finding an approximation bound on this method, and use a
randomized rounding mechanism which has been used for a similar proof to
the set cover problem [18,24]. Consider the random algorithm for solving the
team formation problem that performs the following during each iteration of
the algorithm: For each agent a; that does not yet belong to our team, place
a; in the team with probability x;, where x is the solution vector to the linear
relaxation of the integer program. Our method will perform about as well as
this random algorithm, since it selects the most likely agents to be chosen in the
random method.
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Theorem 1. The randomized rounding method is a 2In(m+k)+O(Inm)-factor
(m=1)*
mk -

approximation of the TORTF problem with probability

Proof. Let OPT}Y to be the optimal cost of the fractional set k-cover, and OPT to
be the optimal cost of the integral set k-cover. Our proof will show the random-
ized rounding algorithm produces a probably approximate factor approximation
of the integral cover by showing that it will have an expected upper bound cost
and a high probability of being completed within a certain number of steps of
the randomized rounding algorithm.

Let « be the solution vector to the linear relaxation. The randomized round
algorithm constructs a team in an iterative manner: for each iteration, we add
agent a; to our team with probability x; where x; is the value found via the LP
relaxation method. The expected upper bound on the cost of members added in
a team for a single iteration of the algorithm is

E[c(new members)] = Z P(a; added to team)c(a;) = Z x;c(a;) = OPTy.
i=1

i=1

Hence, at each iteration, the expected cost of the team being formed increases
by OPTy. After T iterations, the expected cost of the constructed team will be
T -OPTy. Since OPTy < OPT, T -OPTy < T -OPT; if the team produced
is k-robust, then it would be a T-factor approximation. We choose a T relative
to m that is large enough such that the approximation factor is (relatively)
competitive and the likelihood of the team being k-robust is also high.

The probability of a t € 7 not being 1-robust after the first iteration, given
that the associated probabilities of adding one of the p agents that can complete
tis zq,...,xp is expressed as:

P(robustness of t does not increase) = (1 —x1)--- (1 —xp). (3)

An upper bound on this probability can be found using the constraint xy +-- -+
xp > k4 1:

(I—zy) - (1—zp) > e ™ e @ = 770 > ek, (4)

Suppose ¢ agents in our team cover t; let the probabilities of the uncovered
agents being selected by z1,...,z,—, (we arbitrarily reorder x for simplicity).
Since each z; <1,

k=1<zi+-+z,—-1<z1 4+ Fzp—124

Therefore, removing any arbitrary ¢ agents will guarantee that z14---+x,_q >
k — ¢, and the associated probability of a team increasing robustness for ¢ when
already g-robust is e *+4,

Now, suppose that we run this greedy method for %hlm rounds; then, the

2/klnm _

likelihood of not covering task ¢ is (e=%) # The probability of any
1

task being uncovered is m - —5 = % Furthermore, suppose that when a team
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reaches (¢ — 1)-robustness, we run the algorithm for 2= Inn iterations. Then,
the probability of a task being uncovered during this series of iterations is
n(e~k+a)2/(k=g)lnm — % Run this algorithm for ¢ = 0,1, ..., k; the probability
of having any tasks uncovered during any of these steps becomes

o) g

q=0

The total number of iterations is

kz_:l 2 Inm =2 1—&—1—|—-~-—|-1 Inm (6)
q:Ok—q N 2 k

= 2H; Inm. (7)

Since Hi = Ink + O(1), the total number of iterations for this algorithm is
approximately 21n(m + k) + O(Inm). Therefore, with probability (mn:kl )k, this
algorithm will approximately be a factor 2In(m + k) + O(lnm) of OPT}.

The likelihood of the randomized rounding algorithm being within this factor
is largest for large m and small k. These cases are more relevant to our interests,
since we usually do not a huge robustness when forming teams, but we are
interested in cases when dealing with a large number of tasks. O

5 Results and Discussion

To test our approximation algorithms, we compare their average cost perfor-
mance on varying datasets. These datasets are constructed to reflect realistic
scenarios in selecting a robust team. As we will show, each algorithm is able to
perform marginally better than the others in different scenarios.

5.1 Datasets

We constructed several sample datasets to represent realistic team formation
scenarios.

Uniform Cost, Uniform Tasks: Agent cost is uniformly distributed from 1 to
1000, and the number of tasks an agent can do are uniformly distributed from
1 to m. This dataset is similar to that used in [17].

We consider other datasets where the number of tasks are normally distrib-
uted. For the following three datasets, the number of tasks is normally distrib-
uted on N(187%,5). The mean was chosen because the systems using this value
would have a maximal k-robustness of 5 to 14, depending on the configuration.
A high maximal robustness guarantees that there are a large number of k-robust
teams for sufficiently small k.
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Uniform Cost, Normal Tasks: In this dataset, cost is uniformly distributed from
1 to 1000. It considers the scenario in which each agent can perform approxi-
mately the same number of tasks, but their costs may vary widely. For example,
a business hiring contract workers to complete a project will select from a pool
of workers that can complete approximately the same number of tasks. However,
the amount that each worker wants to be paid may not be a function of how
many tasks they can complete, so there may be no correlation between the two.

Constant Cost, Normal Tasks: The cost is kept constant at c¢(a) = 1. This is
equivalent to the unweighted variant of the set multicover problem. The cost of
hiring different team members may not be roughly the same in certain scenarios.
Therefore, it is more important to minimize the size of the team required to
achieve robustness rather than reducing cost.

Proportional Cost, Normal Task: The cost for each agent is determined by the
number of tasks they can perform. Let T'(a) = |a(a)|; the cost for each agent is
sampled uniformly from N(2-T'(a),2). This corresponds to many scenarios where
agents are valued based on how many tasks they can complete. For example,
when forming a team of robots, the cost of adding a member would depend
on what tasks they complete. If each task is equally challenging to complete,
then the cost of an agent should be directly proportional to the number of
tasks they can complete. The challenge of this problem is that forming teams is
“approximately additive;” that is, the cost of hiring 4 agents to perform n tasks is
approximately equal to the cost of hiring one agent to do those tasks. Therefore,
teams with the same k-robustness should have approximately the same cost. The
optimization problem will be taking advantage of the noise factor that appears
in sampling an agent’s cost from a normal distribution.

5.2 Results

We compare the algorithms across multiple metrics. Since we are not aware
of any other state-of-the-art approximation algorithms for solving the TORTF
problem or set multicover, we only compare the algorithms presented in this
paper. Figure 1 compares the average costs of teams computed by each algorithm
for each dataset and for varying numbers of agents. The cost of teams increases
with the number of agents available for the three normally distributed datasets,
since the number of tasks assigned to each agent is inversely proportional to the
number of agents in the system. The maximimal k-robustness of teams in these
datasets stays approximately the same regardless of the number of agents or
tasks, and the number of teams with a particular k-robustness should stay the
same as well. Therefore, the relative performances of each algorithm for an agent
population size reveal how each algorithm performs with more agents available
in situations where the number of teams avaiable is approximately equally dense.
When the number of tasks is uniformly distributed, the average cost decreases
since agents that can perform more tasks are more likely to appear. The average
cost of the best teams found by each algorithm does not change as significantly
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Fig. 1. Distribution of costs per algorithm performed on 60 instances (for each number
of agents) on multiple datasets with m = 110 and k = 4.

for the proportional cost dataset. Since every k-robust team should have similar
cost, the small decrease is understandable. What decrease does occur is due to
having more cost-efficient agents to choose from.

Surprisingly, the performance of the heuristic algorithms for different k& val-
ues is not significantly different, as shown in Fig. 2. One point to note is that the
variance in performance of the algorithms decrease, i.e., they perform more con-
sistently, for larger values of k. This is because the number of at least k-robust
teams decreases as the value of k increases. Table 1 compares the performances of
the algorithms presented in this paper against that of an integer program solver
in the PuLP package [16], which we were able to run only on very small problem
sizes, on the proportional cost/normal task dataset for few agents and tasks.
Average error is the average difference between the algorithmic solution and
percent correct is the percentage of solutions that achieved optimal cost. This
comparison measures the approximation quality of the algorithms for smaller
problem sizes. While the linear program and heuristic algorithms achieve the
highest percentage of optimal teams, NSGA-II consistently finds teams with
near-optimal cost.

Greedy Heuristic 1 selects the agent with minimum cost per task. As Fig. 1
shows, Heuristic 1 performs well in all datasets and over all agent sizes. The
greedy decisions made by Heuristic 1 makes it likely to choose some optimal
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Table 1. Algorithm cost performance against the optimal solution, computed on 60
instances of the proportional cost/normal task dataset with 30 agents, 20 tasks and
k=2.

Algorithm Avg. error | % Correct
Heuristic 1 7.12 21.67
Heuristic 2 7.05 26.67
Heuristic 3 4.36 28.33
Linear program | 4.76 36.67
NSGA-II 0.03 5.00
Team costs by Algorithm Team costs by Algorithm
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200-

150 ' ' ' . ' ' ' .
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Fig. 2. Distribution of costs per algorithm performed on 60 instances (for each number
of agents) of the proportional cost/normal task dataset for varying k.

agents, and it has the strictest known approximation bound on the heuristics we
compare. For smaller number of agents, its performance was not optimal, but it
outperforms all other algorithms for larger agent sizes. In particular, Heuristic 1
generates the most cost-effective team on average when there are a large number
of agents, since it is guaranteed to generate at most a H,-factor approximation.
In comparison to NSGA-II, Heuristic 1 found optimal-cost teams at a much
higher rate. This is due to the construction of the proportional cost dataset and
the fact that the heuristics we implemented choose agents with minimum cost
per task. For example, if costs were exactly equal to the number of tasks that an
agent can perform, then Heuristic 1 will always assign certain optimal agents the
minimum price. Let O C A be the optimal team, and let C be the set of tasks
that are not k-covered by the current greedy team G. If there is an agent a* € O
such that a(a*) C C, then its cost will be ¢(a*)/|a(a*)| = 1, the minimum cost
possible. Therefore, the greedy algorithm will always have a preference towards
choosing optimal teams.

Like Heuristic 1, Heuristic 2 performs moderately well on all datasets. For
a smaller number of agents, heuristic 2 performs better than Heuristic 1. In
cases with constant or proportional cost, Heuristic 3 performs competitively
with the other greedy heuristics. Among the heuristics and linear program
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performances, Heuristic 3 has the minimum cost difference with the optimal
solution (see Table 1). On datasets using uniform cost, Heuristic 3 vastly under-
performs the other algorithms, which suggests that marginal utility calculations
fail to work when agent costs have high variance or are uncorrelated with the
number of tasks the agent performs.

The linear programming approach that we use is the most consistent in its
performance: when compared against the other algorithms presented, it often
performs among the top 3. Table 1 also shows that this approach can often find
optimal solutions in a dataset where there are many near-optimal teams. Since
the approximation factor on the linear program is similar to that of the greedy
algorithm, it is not surprising that their performances are similar.

The NSGA-II algorithm performed best with a smaller number of agents
across all datasets, as indicated in Fig. 1. We observed that its relative perfor-
mance was not affected by the number of tasks. Since the size of the search
space for the GA increases exponentially only with the number of agents in the
problem increasing, this is not a surprising trend. Moreover, since GAs search
locally about existing solutions to make improvements, NSGA-II often finds
near-optimal results, as shown in Table 1. Since the NSGA-II algorithm com-
putes the entire Pareto frontier of solutions, it runs much slower than the greedy
approximation and the linear program. Therefore, NSGA-II should be used in
scenarios with fewer agents or when multiple values of k need to be computed.

6 Conclusions

We present and experimentally compare a number of approximation algorithms
for producing efficient k-robust team for the team formation problem. Our
heuristic methods are based on a naive greedy algorithm that is proven to be a
H,,-factor of the optimal solution. We also present a linear programming relax-
ation of the optimal, but costly, integer programming formulation, which has
approximately the same approximation factor as Heuristic 1. These methods are
compared to an NSGA-IT based genetic algorithm approach that approximates
the Pareto frontier of solutions to the team formation problem instead of finding
only an optimal team for a single k value.

Results indicate that the NSGA-II method performs near-optimally for
smaller number of agents, but the heuristic and linear programming mechanisms
scale up better in terms of cost-effectiveness. The NSGA-IT method takes much
longer to run compared to the other heuristics but its run time does not depend
on the number of tasks, so it is best to use with a large number of tasks or when
multiple robustness levels need to be compared. Heuristic and linear program-
ming techniques are a better fit for large problems involving many agents and
tasks.

The team formation problem is a re-expression of the weighted set multi-cover
problem, which has been studied extensively in literature. This formulation is
applicable to scenarios where team members are at risk of not completing tasks,
but does not account for time or resource constraints. To study more realistic
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scenarios, we may want to examine cases where an agent can only complete a
fraction of a task, or have an associated probability of being able to complete
a task. Another possible extension would be to restrict the number of tasks
that an agent can be assigned to complete. This would map to real-life scenarios
where team members may be capable of completing many tasks, but time and/or
resource constraints restrict them from completing all of them.
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