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Abstract. We introduce a CEGAR-based compositional verification
technique for verifying response guarantees and finding the necessary
assumptions of the response specification about event detectors in hierar-
chical event-based systems. By taking advantage of the structure of such
systems, only the relevant event specifications are considered, and from
these only a part of their specifications is learnt as response assumptions.
Whenever a spurious counterexample is found (i.e., the abstract coun-
terexample to a response guarantee property is not consistent with the
event specifications), our technique modularly finds the necessary refine-
ments that induce state splitting and add fairness constraints to avoid the
counterexample automatically. Eventually, either the response guarantee
is proved or a real counterexample is found. In addition, new techniques
are presented for more feasible spuriousness checking of counterexamples
of liveness response guarantees, and to avoid including unnecessary parts
of the event detector alphabet in the model of a response.

1 Introduction

According to [25], reactive systems are activated by the outside world, and they
respond and interact with the environment. These outside world occurrences can
be thought of as primitive events that are immediately detected. In CEP (Com-
plex Event Processing) [21,32], primitive events may occur at different sources,
are processed by event processing agents/detectors that may trigger new events,
which are finally consumed by different event consumers. Event detectors observe
the system and environment to identify when an event occurs, and can build more
complex event occurrences by detecting sequences, filtering, aggregating informa-
tion, etc. Events have been combined in other software paradigms such as object-
oriented programming (OOP) or aspect-oriented programming (AOP) [30]. In [8],
eventdetectorswere introduced in the context ofAOPso that they cangather infor-
mation, be hierarchically composed, and triggered (detect an event occurrence)
depending on the lower-level events detected and internal state. Event detectors
do not directly influence the underlying system during their evaluation and change
only their local variables until the event is detected; then thedetection is announced
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and parameter values (possibly including gathered information) are exposed to
other event detectors and responses that can change the system. Here we consider
event detectors and responses as in [8] for hierarchical event-based systems.

In this work we propose a reusable compositional verification technique and
associated tool called DaVeRS (Developing and Verifying Response Specifica-
tions) that under certain assumptions is fully-automated. DaVeRS can verify
properties of responses and learn the necessary assumptions about event detectors
that allow a successful proof using model checking. The technique takes advan-
tage of the event specifications and their hierarchical structure to check responses
modularly using a compositional CEGAR-like (Counterexample Guided Abstrac-
tion Refinement) [11] approach combined with an assume-guarantee mechanism.
Assuming that the specifications of the events are correct, the system either learns
sufficient assumptions about the event detectors to prove the response guarantee
being considered, or shows a counterexample sequence of states that violates the
desired guarantee and is consistent with all event specifications.

At each step the response and an abstraction of the relevant event detec-
tor specifications is considered. Appropriate refinements are obtained when the
property is not proven, and we can show that the problem is the current abstrac-
tion (and not the actual system). In this case, the counterexample found for the
abstract system is called spurious relative to the concrete version.

This work encourages modularity on two levels. First, the result of using our
abstract-refinement approach yields a minimal collection of events and conjuncts
from their specifications that are needed to verify key properties of a response.
This allows the isolation of responses and (only) needed event detectors into
reusable modules in a library. Second, as will be shown, the techniques applied
are themselves modular, involving checks of many small models, rather than an
(unfeasible) global model check.

We also introduce two crucial optimizations, that, as seen in the evaluation
section, can often make this approach feasible. In order to compare our abstract
counterexample to each event detector separately–essential for the modularity
described above, it seems necessary to have all of the shared variables among event
detectors present in the abstract model to be checked. This would guarantee that
any restrictions to those variables that follow from one event detector will be taken
into account when we check the counterexample against another detector. We
show that this approach (used in related work) is unnecessary overkill, and present
a compositional approach that only adds variables and restrictions as absolutely
needed. As shown in Sect. 6, this approach leads to significantly improved perfor-
mance in many cases. We also show new techniques for checking spuriousness and
refining liveness properties without the repeated unwinding of the abstract loop
used in previous works. These new techniques are also relevant for other compo-
sitional CEGAR approaches where the concrete model is finite.

Therefore, the main contributions of this work are:

– Presenting a set of basic assumptions and formalization of reactive systems
with hierarchical event specifications as the parallel composition of finite fair
discrete systems so that a compositional CEGAR approach can be applied.
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– Introducing an alphabet refinement optimization (applicable to other compo-
sitional CEGAR approaches as well) to obtain more accurate refinements and
avoid redundant iterations.

– Showing an instrumentation-based technique for checking spuriousness of live-
ness property counterexamples that avoids unfolding an abstract counterex-
ample a very large number of times.

– Including new techniques to find and refine the model with liveness properties.

Note that we consider responses, but the technique is also applicable to a com-
plex event detector that depends on lower-level detectors and primitive events.

We have implemented a tool – DaVeRS – using the tools presented in this
paper to evaluate our ideas over different case studies.

Although most of the paper is devoted to the internal operation of the tool,
note that this insight is not needed by a typical user. Only the assume-guarantee
specifications of the event detectors and the desired guarantees of the responses,
and how they react to detected events must be provided. The DaVeRS tool is
then completely automatic.

As a running example, we consider the response that adds a helicopter mis-
sion in a Car Crash Crisis Management System (CCCMS) [31]. This response
depends, among other conditions, on the occurrence of an accident with seri-
ous injuries, ambulances not being close enough or being unable to access the
location of the crisis, and weather conditions allowing helicopter flight in the
area. Applying formal verification allows proving important properties such as
“the helicopter mission will always be proposed whenever the necessary condi-
tions hold”, “a helicopter will not be sent whenever an ambulance would arrive
sooner”, and others, thus improving system reliability.

Our case studies include several guarantees of the CCCMS system, a Dis-
count response depending on a library of complex event detectors determining
different marketing strategies, and a set of responses and event detectors related
to security concerns in an email application. These examples illustrate the appli-
cation of the techniques in different contexts. Input files and iteration examples
of the case studies are available at a website1.

Section 2 presents the background and basic definitions to understand our
model of events and responses, and modular verification and CEGAR tech-
niques. Section 3 presents the basic assumptions and the formalization which
allow us to represent hierarchical reactive systems as parallel components and
thus use a compositional CEGAR approach. Section 4 explains the methodol-
ogy, expanding on how each CEGAR-step is applied in our context. In Sects. 5
and 6, some implementation details, the evaluation, results and discussion are
presented. Section 7 presents related work and Sect. 8 concludes.

1 http://www.cs.technion.ac.il/ssdl/research/davers.

http://www.cs.technion.ac.il/ssdl/research/davers
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2 Background and Basic Definitions

2.1 LTL

For specifications describing computations along time, we use Linear Temporal
Logic (LTL).

Given a Kripke structure M = 〈S, I,R, L〉 over a set of atomic propositions
AP with:

– S is the set of states
– I ⊆ S is the set of initial states
– R ⊆ S × S is the transition relation
– L : S → 2AP , i.e. the atomic propositions that hold at each state

A state s satisfies an atomic proposition p in AP if and only if p ∈ L (s). The
semantics of the boolean operators is as expected, for example, a state s satisfies
ϕ ∧ ψ if and only s satisfies ϕ and also s satisfies ψ.

A path in the Kripke structure is a sequence π = s0s1 . . . such that s0 ∈ I (s0
is an initial state), and for every i, (si, si+1) ∈ R (there is a transition according
to the transition relation).

In addition to boolean operators, formulas can be built with temporal oper-
ators. For example,

– Xϕ (At the next state ϕ).
– Gϕ (From now on, globally ϕ).
– Fϕ (Eventually ϕ).

The semantics of these operators is given by the satisfaction relation (�).
Given a path π = π0, π1, . . . and i representing a state in the path (πi):

– (π, i) � Xϕ if and only if (π, i + 1) � ϕ (the path starting from the next state
satisfies ϕ).

– (π, i) � Gϕ if and only if for all j ≥ i (π, j) � ϕ.
– (π, i) � Fϕ if and only if exists j ≥ i (π, j) � ϕ.

Given a model M and an LTL formula ϕ, ϕ holds in M if and only if for
every path π in M , (π, 0) � ϕ. That is, every path starting from the initial states
satisfies the given formula.

In Sect. 4.6, we will also use the path quantifiers A (for every path) and E
(exists path), used in the branching version of temporal logic. Similarly to first
order logic quantifiers (∀ and ∃), for any formula ϕ, Aϕ is equivalent to ¬E¬ϕ.
Formulas in LTL must be satisfied by every path, so they can be considered
as having an implicit A path quantifier at the beginning, and do not include
explicit path quantifiers.

Given an LTL formula ϕ, it is possible to build a state machine containing
every possible path satisfying the formula [13]. This state machine is called the
tableau of ϕ.
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We will consider Kripke structures with fairness constraints (F) which parti-
tion the states between those fair and unfair, and the language of the state machine
will be given by the fair paths (containing infinite fair states) only. For example,
the tableau of the formula F p is seen in Fig. 1. In the graphic, p does not hold in
the first state (s1), p holds in the second one (s2), and p does not hold in the third
one (s3). s1 and s2 are initial states, and s2 and s3 are the fair states (indicated by
the double circle). A path is said to be fair if it has infinite fair states. For example,
the path s1s2s3s3s3 . . . is a fair path (infinite times in s3) while the path s1s1s1 . . .
is not fair (and in particular it does not satisfy F p). The fairness constraints can
be given by explicitly enumerating the fair states, or by a propositional formula
ϕ so that a state is fair if and only if it satisfies ϕ.

Fig. 1. Fairness example

2.2 Events

We distinguish between event occurrences and their detection. Following the
definition of [21]: “An event is an occurrence within a particular system or
domain; it is something that has happened, or is contemplated as having hap-
pened in that domain”. We call these event occurrences to distinguish them
from the programming entities or modules, termed event detectors, that ana-
lyze and announce complex event occurrences. Primitive event occurrences are
immediately detected (without a separate detector).

Examples of events detected in a CCCMS are: “a car crash has just been
announced”, “an electric storm has begun in the area”, “a fire just started from
one of the cars in the accident”, “there are now no helicopters available”, etc.
The first three could be considered as primitive input events. A detector of the
last event would need to track assignment and release of helicopters from other
tasks in order to detect when none are available.

There are several works combining events with existing programming par-
adigms [3,8,20,22,28,34]. In this case, primitive events are given by the base
system (or responses). For example, there could be a system with a module
WeatherAnalyzer responsible for analyzing weather conditions and broadcast-
ing particular situations. The primitive event “an electric storm has begun in
the area” in such a system would be given by “the base system has a method
call to broadcast(electric storm) by WeatherAnalyzer”.

Event detectors can update their internal state depending on lower-level event
detectors. When an event detector announces detection of an event occurrence
(in our version, by executing a trigger operation), other detectors and responses
can react. This could be implemented by a broadcast mechanism or by having
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relevant event modules “listening” for the detection of the event. This imple-
mentation detail is not treated here.

Another issue to consider is the event duration. Based on [8], two main
approaches are (1) event detectors are reevaluated within each response and
between responses (2) given the events detected at a certain point, all responses
are applied (no matter if some response may disable the event detection or change
the data that affects another response).

The first approach is the one following AspectJ semantics, where an aspect
may change the joinpoint matching depending on dynamic information. The
second approach may be easier to understand (if the event is detected then no
matter which other responses are activated, every response reacting to it will be
applied), but does not capture the changes done by other responses. Thus, in
this work, we consider the first semantics in the context of reactive systems: at
each location of the base system or response where primitive events could occur,
the different event detectors are evaluated, thus determining whether a response
reacting to an event detector should be applied.

Note that in AspectJ [29], the main language used to express aspects in
Java, joinpoints given by a method call or a method execution could last an
interval of time (e.g., from the time the method is called until it returns). In
[33], a fine grained joinpoint model is presented so that each joinpoint takes an
instant of time. That is, there is a joinpoint for the actual call, and a different
one for the returning point of a method. Between the two possible semantics
of primitive events (region-in-time or point-in-time), we will consider primitive
events as those given by the point-in-time joinpoint model [33]. This removes any
ambiguity regarding when complex event detectors should be evaluated, while
still allowing programs considering the region-in-time semantics to be translated
to this model.

Specifications of event detectors (called event specifications) [17] include
assumptions about the system and underlying events, where exactly the event
should be detected, and what is expected about the information exposed by
the event detector. Primitive event specifications do not assume anything about
lower-level events, but provide the event name and exposed information abstrac-
tions to be used by higher-level event specifications. In [17], it was observed
that expressing how different lower-level event detector sequences affect the
current event detector may be easier with state machines or regular expres-
sions. Thus, to represent event assumptions and guarantees including both state
machine definitions and LTL properties, event specifications can be formalized
by E = 〈X, I, T, P 〉 where X is the set of variables (including those representing
the event detection, lower-level events detected, and internal state), I and T are
the initial and transition relation constraints, and P is the set of LTL constraints
including the event assumptions and guarantees (possibly including safety and
liveness formulas). When event detectors are being verified the assumption is
used to check the event guarantees. Here we assume that events have already
been verified and consider LTL assumptions and guarantees together in P .
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Among the variables in X, the subset representing event detectors and their
exposed information will be called the interface alphabet of E, since these are
the variables possibly affecting or affected by other event specifications.

An abstraction of the event specification Ei that does not add any constraints
is given by E′ = 〈∅,TRUE,TRUE, ∅〉. We denote this as TRUE(Ei).

By considering event specifications, we are abstracting from the implemen-
tation. Thus, the results of our technique are sound (to be justified by the cor-
rectness proofs), although not complete. That is, if the verification technique
succeeds assuming correct event specifications, then the property holds for the
actual event implementations. However, a counterexample may seem consistent
with all event specifications (really contradicting the desired guarantee), but if
more precise event specifications were available, it might be shown spurious. One
advantage of using specifications instead of the actual implementation is that the
ideas are relevant both while the software is being modeled (because specifica-
tions are used rather than implemented code) and when an implementation is
already available (where typical model extraction software is used [14,16]). Other
advantages of using event specifications are: (1) proof reusability on any system
satisfying the event detectors’ and responses’ assumptions, (2) abstraction from
implementation details, (3) readability of the learnt assumptions, and (4) finer-
grained specification dependency understanding: since the learnt assumptions
represent a subset of the event specifications needed to prove a property, we can
see which event detectors and which parts of their specification may affect that
property.

2.3 Responses

In reactive systems, not only the event detectors are relevant but also how the
different responses (event consumers) affect the system. In this work we consider
responses similar to aspects in AOP. Similar to aspects, responses are activated
whenever an interesting event is detected. For instance, given the detection of
the event representing reaching a call to a method m, a response can add func-
tionality before or after m or even override the execution of m with its own
implementation. Differently from event detectors, responses can affect the exe-
cution flow and state of the system.

We will consider responses given by: A = 〈XB ,XR, ED,M,P, PEv, R〉 such
that

– XB is the set of variables of the underlying system.
– XR is the set of variables local to the response (e.g. response program counter,

internal fields).
– ED is a propositional logic formula (on XB) expressing when the response is

applied, i.e., to which event detector it reacts.
– M is a finite state machine representing the actual response. It includes initial

response states for each activation, a response transition relation, and return
states.

– P is an LTL formula (on XB) expressing the base system assumption.



48 C. Disenfeld and S. Katz

– PEv is a combination of state machine definitions and LTL formulas (Sect. 2.2)
expressing the response assumption about underlying events.

– R is an LTL formula (on XB ∪ XR) expressing the guarantee.

We will note the partial specification of a response A as SpecA = 〈P,R〉.

2.4 Modular verification

Since reactive systems consist of event detectors and responses, we extend the
ideas presented in MAVEN [24] for verifying aspects and adapt and change them
to this more general setting while introducing new techniques. In particular the
methodology allows the correctness proof of a response guarantee to be reused
for different systems by including in its specification an assumption about the
underlying system, an assumption about the underlying event detectors, and the
guarantee it is expected to satisfy.

As in [24], verification of a response relative to its specification first constructs
a model containing the assumption (P ) about the base system augmented with
the response model given by the state machine (M). This involves weaving the
response to the tableau of that assumption at the necessary locations: that is,
adding the necessary transitions from the tableau of the assumption (TP ) to
the response and back at the correct places. The obtained model (TP + M)
represents every possible path satisfying the response assumptions augmented
with the response behavior and is used to model check temporal logic guarantee
properties about the resulting system. If the model check succeeds, the guarantee
is true for any system satisfying the response assumptions when the response is
woven to it. The given composition does not include PEv, that is, it represents
the response assumption with the response woven when no assumption about the
underlying events is needed. In Sect. 3.2 we describe how the response assumption
about the event detectors affects the composition.

2.5 CEGAR

CEGAR [11] is an automatic abstraction-refinement technique to verify systems
where an overapproximation of the system is considered. The overapproximation
represents an abstraction of the concrete system where any path belonging to the
concrete system is represented in the abstract one, but more paths may belong
as well (the model obtained gets simpler by abstracting from variable values and
predicates affecting transitions). When the verification of the abstract system
fails, either the counterexample is real or spurious, i.e., the counterexample was
found because of the overapproximation and not because of the incorrectness
of the concrete system. The abstract counterexample is simulated in the con-
crete model to identify whether the abstract model should be refined. When the
counterexample is found spurious, the abstract system is automatically refined
by adding information from the concrete system that makes the previous coun-
terexample impossible in the refined version, and a new attempt to verify is
initiated.
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For example, given the concrete system in Fig. 2, and the property given by
the LTL formula (1), a possible initial abstraction (Fig. 3) could include the pred-
icates appearing in the formula. In the figure, each abstract state (ai) represents
a set of concrete states (cj), e.g. the state a2 in the abstract model represents
both the states c2 and c3 of the concrete model. Since there is an edge from c2
to c3 in the concrete model, there is a self loop in a2.

G (x > 1.5 =⇒ F (x = 0)) (1)

In general, CEGAR techniques calculate the abstract transition relation, so
that for every concrete path there exists an abstract path capturing the same
states although the abstract model is less precise and contains spurious paths.
When the property is checked in the abstract model, a counterexample is found:
π = a0a1a2a2a2.... This counterexample cannot occur in the concrete model
(thus it is spurious) and using CEGAR, a refinement that avoids the counterex-
ample is automatically found. For example, in this case, by splitting the state a2

with the predicate x = 3, we obtain the model in Fig. 4 (the transition relation
is updated according to the new states). Checking again the property, it is found
to be satisfied. Note that in this case the refined model (Fig. 4) contains the
same number of states as in the concrete version (Fig. 2). However, in general
the number of states required for a CEGAR technique to reach a conclusion is
much smaller than in the concrete model.

In this work, we will show how we build the abstract model for event and
response specifications, how we verify whether a response property holds in the
current abstraction, how given a counterexample we analyze spuriousness in new
ways, and how we find the necessary refinements to start a new CEGAR cycle.

x=0

x=1

x=2

x=3

c0

c1

c2

c3

Fig. 2. Concrete model Fig. 3. First abstraction Fig. 4. Refined

Tools implementing CEGAR differ in their program representation for ver-
ification, techniques for detecting spuriousness and finding refinements, or the
subset of temporal logic considered. Many of these tools interact with SAT or
SMT (Satisfiability Modulo Theories) [6] solvers to check spuriousness and to
find appropriate refinements. Both SAT and SMT solvers include a tool that
obtains the unsat-core of an unsatisfiable set of formulas. The unsat-core is a
minimal set of the original set sufficient to prove the model unsatisfiable.
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When a counterexample to a safety formula is found in the abstract version,
it is sound to consider a finite number of steps (n). Thus, it is enough to simulate
the counterexample at most n steps in the concrete version to check whether it
is spurious and in case it is, to find the necessary refinements (for example, using
the unsat-core tool). The work in [11] shows that there is also a finite number
of simulation steps necessary to simulate a liveness property counterexample to
check spuriousness given by unfolding the loop of the abstract counterexample
the maximum number of concrete states represented in an abstract state for
each state in the loop. Then it is guaranteed that the worst case scenario of
the length of the concrete loop matching the abstract one will be covered, but
this leads to a bound which is often impractical. Here, we show a more efficient
instrumentation approach to check spuriouness for liveness. Using it, we can
efficiently detect whether the counterexample is spurious and find the necessary
refinements.

2.6 Compositional CEGAR

There has been previous work applying CEGAR modularly, i.e. checking spuri-
ousness and finding refinements considering one module (of a generalized alpha-
bet parallel composition [35]) at a time. The generalized alphabet parallel com-
position of two components A and B allows the components to move to their
next state asynchronously on non-shared symbols, and requires them to be able
to synchronize (both take the same step) on shared symbols that need to be
consistent in both components. We will show how hierarchical event-based sys-
tems (under certain assumptions) can be reduced to this formal model, allowing
almost separate spuriousness checking of an abstract counterexample for each
component.

Under this schema, previous work assumed that any alphabet symbol belong-
ing to more than one component should belong to the abstracted component as
well (correctness in [35]). However, including any symbol in the alphabet that
may affect more than one conponent may not be necessarily relevant for the
guarantee being considered, that may not even use the component with the
alphabet symbol. By including all the shared symbols, when an abstract coun-
terexample is found for a particular property, the irrelevant variables receive
some random values. Since there is no reason to assume that these values are
consistent with the component, abstract counterexamples are likely to be found
spurious against components because of these arbitrary values, that will be elim-
inated by refinement. But such refinements are irrelevant for the guarantee being
checked, and just delay finding relevant refinements. We will show how to apply
CEGAR with only those shared symbols in the abstract version really necessary
to ensure consistency, and evaluate the technique in the case studies.
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3 Parallel Composition Representation

In this section we present the basic assumptions and formal model to be consid-
ered when an assume-guarantee strategy is applied for hierarchical event-based
systems.

3.1 Basic Assumptions

The ideas in this paper, though shown for CCCMS, Discount and Security case
studies, are applicable to any system where there is a distinction between event
detectors and responses. Event detectors observe the system to indicate when
interesting things occur. They can be hierarchically composed and have an inter-
nal state, but they do not change the state of the underlying system while eval-
uating. Responses react to an event detected, and may change the state of the
underlying system or its control flow. In order to use DaVeRS and apply our app-
roach, correct event specifications (Sect. 2.2), the response state machine and a
partial response specification (given by the assumption about the base system
and desired guarantee) should be available. The response assumption about the
events is learnt by our technique.

3.2 Formal Model

Following MAVEN [24], applying verification to a response when only primitive
events are considered is done by weaving the response to the tableau of the
response assumption and checking whether the response guarantee holds.

Given that complex event evaluations do not affect the underlying system
(besides by possibly being detected and causing the response to be applied),
the evaluation stage can be modelled as occurring instantaneously, thus having
at the same state all the evaluations of event detectors. In this summarized
version, for each current state of the underlying system and lower-level event
detectors, there is one state representing the result of these internal calculations.
Given a model of a non-summarized event specification, the summarized version
can be obtained by calculating the closure from each possible starting event
evaluation point till the end of event evaluation, thus obtaining the summary of
changes in one state. When the response guarantee does not have the X (next)
operator and does not refer to the intermediate states within event evaluation,
it can be shown that the summarized and non-summarized version of the event
detectors include the same paths (ignoring internal event evaluation states) thus
equivalently satisfying LTL formulas with the given conditions.

For example, the event detector indicating that “the crisis location has prob-
lematic access”, may require some internal calculations and checks. In the sum-
marized version, every state where the lower-level events detected and system
state would cause the event detector to be triggered, includes the atomic propo-
sition representing its detection (and every state that would not cause its detec-
tion, does not include the atomic proposition).
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Now, since every event evaluation is considered instantaneous, a process alge-
bra notation can be used to justify the techniques. By applying a generalized
parallel composition (||) over the shared symbols to the event specifications we
obtain a model in which at each state – according to the current state of the
underlying system, current state of the event detectors, and primitive events
detected – we can see which complex events are detected, what information is
exposed, and how their internal state is updated.

The generalized parallel composition [35] allows synchronizing on part of
the symbols (those shared among components), and interleaved behavior on the
remaining ones. If two components share the symbols in X, to apply a transition
influencing a symbol in X in one component, the other component must also
be able to apply the transition on that symbol. For symbols outside X, the
component behaviors are interleaved.

We will note the event specification composition by E1|| . . . ||EN where each
Ei is the event specification of the event i.

We want to consider those paths of the system consistent with the event spec-
ifications. To do so, we consider the model (TP + M)||E1|| . . . ||EN , which rep-
resents every path satisfying the response assumption with the response woven
(TP +M) (Sect. 2.4) such that it is also consistent with every event specification
(. . . ||E1|| . . . ||EN ).

3.3 Running Example

Figure 5 shows a fragment of the library of event detectors relevant to the
CCCMS example. The arrows represent dependencies including temporally (if
ei has occurred in the past) and non-occurrence ones (depending on another
event detector not occurring). For instance, the event shouldSendHeli depends
on the event problematicAccess being detected and on badWeather not being
detected at the current state; while helicoptersAvailable depends on the history
of helicopters that left (helicopterSent) and returned (helicopterBack). When a
box contains multiple names, the first represents the event detection and the
rest represent the exposed information. Boxes without exiting arrows represent
primitive events.

The response that adds the helicopter mission is activated whenever should-
SendHeli is detected (based on a use case of [31]), that is: there is a crisis with
serious injuries in a certain location (shouldGoToLocation) not easily accessible
by normal transportation (problematicAccess), the weather conditions do not
constrain helicopter flying in the area (not badWeather), there are helicopters
available (helicoptersAvailable) and a response was obtained (phoneCompanyRe-
sponse) validating the witness information (phoneCompanyIsValidated). Each
of the complex event detectors has its specification regarding its detection and
exposed information. For example, the specification of badWeather indicates that
this event is detected if and only if there is a snow storm or extreme turbulence.

Following the formal representation of event specifications in Sect. 2.2, the
specification of badWeather would be given by SpecbadWeather = 〈X, I, T, P 〉
where:
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– X = {badWeather, snowStorm, extremeTurbulence} (i.e. all the variables
representing the detection or the lower-level events and exposed information
the specification directly depends on).

– I and T are TRUE
– P = {G (badWeather ⇐⇒ (snowStorm ∨ extremeTurbulence))}

Fig. 5. Event dependency graph example

Note that when the event specifications are composed, we obtain at each state
the information from all the event detectors, for instance, any state in the compo-
sition including shouldSendHeli will also include ¬badWeather, ¬snowStorm
and ¬extremeTurbulence (as if the evaluation of badWeather were instanta-
neous).

The event dependency graph illustrates the different components and the
hierarchical nature of event-based systems. Each of the boxes will represent a
component of a parallel composition, thus getting each component abstracted
almost on its own (with only the essential interface from previously checked event
detectors); and while in the CEGAR cycle, counterexample spuriousness check-
ing and refinement finding will also be applied considering each component on its
own (preserving modularity). The actual input to our technique is the response
and the set of event specifications. Since each event specification includes the
variables of the lower-level event detectors it depends on, this hierarchy can be
inferred automatically.
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The following response reacts to shouldSendHeli and represents that when-
ever a helicopter should be sent to a certain location crisisLocation, the actual
mission of sending an helicopter to that location is added to all the missions to
be performed.
Response a ddHe l i c o p t e rM i s s i o n
when ( Loca t i on c r i s i s L o c a t i o n ) : s hou l dSendHe l i ( c r i s i s L o c a t i o n )

a l lM i s i o n s . add ( new SendHe l i c o p t e rM i s s i o n ( c r i s i s L o c a t i o n ) ) ;

For this example, we consider the following response guarantee:

“If there is a crisis at a certain location (shouldGoToLocation), but
there is a snow storm (snowStorm), the helicopter mission is not added
(¬HMAdded).”

(2)

We can express this in LTL by

G((shouldGoToLocation ∧ snowStorm) → ¬HMAdded) (3)

The variable HMAdded indicates whether the helicopter mission has already
been added to allMisions. This variable is not related to the event detectors but
to how the response affects the system.

Had we not used a CEGAR approach, model checking would be applied to
the model presented in the previous section ((TP + M)||E1|| . . . ||EN ), including
multiple irrelevant variables and transitions that make calculating the transition
relation difficult. In our example, we would have to build the composition of the
response assumption and response composed with all the event specifications,
when in fact we only need the information about badWeather, and from the
specification of badWeather we do not need to know about extremeTurbulence.

4 Method

To avoid applying direct verification to the model in the previous section, the
abstract model we consider is (TP +M)||E′

1|| . . . ||E′
N where E′

i is an overapprox-
imation of Ei (i.e. I → I ′, T → T ′, and P ′ ⊆ P ) representing the assumption
of the response A about Ei, and thus making the composition much simpler
(at the first iteration E′

i = TRUE(Ei) - as presented in Sect. 2.2). As long as
these assumptions are refined (refining some Ei), since the N +1 components are
composed, the refinement affects the paths of the augmented response model.

Given a system that satisfies the mentioned assumptions, a CEGAR-like algo-
rithm can be applied (Algorithm1). The input to the algorithm is the response
definition (A) and partial response specification 〈P,R〉 (P initially not including
any assumption about the event specifications, R the desired response guaran-
tee), and the event specifications S.

Initially (line 1), we obtain from all the possible events those from which
possible refinements may be obtained (Sect. 4.1), and (line 2) initialize E′ with
TRUE (every event specification abstraction is TRUE(Ei), in the first iteration
(TP + M)||E′ = (TP + M)). At each iteration, E′ includes partial information
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obtained from the event specifications necessary to check the response. In line 4
we build the model and in line 5 we check whether it satisfies R (Sect. 4.2). Since
the actual abstraction represents an overapproximation of the actual model to be
checked, if it is satisfied with the current refinements, then it is satisfied in the
actual model (line 6). Otherwise, in line 6 we check whether the counterexample
is due to the abstraction (spurious) or real (Sect. 4.3). If found spurious (line 10),
refinements to avoid the current abstract counterexample are obtained (Sect. 4.7).
Otherwise, the counterexample is real (line 12) and the CEGAR cycle ends.

Algorithm 1. Compositional CEGAR for Hierarchical Reactive Systems
input : M, 〈P, R〉: Response model and response partial specification

S : Set[E]: Event Specification Library
output: satisfied?: Indicates whether the response guarantee is guaranteed

with the given assumptions so far
E′: Event specifications’ abstraction

1 S′ = “get subset of relevant events from S”;
2 E′ = TRUE;
3 while (True) do
4 modelToCheck = (TP + M)||E′;
5 if modelToCheck � R then
6 satisfied? = True;
7 return

8 else
9 spurious? = “check spuriousness using S′”;

10 if spurious? then E′ = E′∪ “get spuriousness reasons” ;
11 else
12 satisfied? = False;
13 return

14 end

15 end

16 end

At each step, the event specification abstractions (response assumption about
the events) are refined by adding constraints to I, T , or P and refining X accord-
ingly. Since PEv is an abstraction of the event specifications, at every step any
path in E1|| . . . ||EN is a path in PEv.

If every call to the model checker or SMT solver terminates (in reasonable
time), the technique terminates: every iteration includes at least one refinement
(if spurious) and there is a finite number of refinements (obtained from the event
specifications). The technique is sound: if verification (after a number of refining
iterations) succeded, then the guarantee indeed holds for the concrete model
(every step preserves soundness).

When the CEGAR cycle ends, either the response guarantee holds (and the
necessary assumptions about the event detectors have been obtained) or a real
counterexample has been obtained.
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On success, knowing the fine-grained dependencies (which part of which event
specifications are required for a guarantee) allow us to change event detectors or
specifications and know exactly which response guarantees are affected. More-
over, the assume-guarantee model used for response and event specifications
implies that given any concrete system S, it is enough to check whether S satis-
fies the response assumption about the underlying system, and the learnt event
assumptions required to prove the response guarantee (R) to assure that S with
the response activated at the correct places will satisfy R.

On failure, due to the essential-alphabet strategy contribution (Sect. 4.3),
in most cases only a few iterations are necessary to find that there is a real
counterexample consistent with all the event specifications. This counterexam-
ple contains only the variables of the response and those included in the refine-
ments. Then, the counterexample becomes easier to understand (there are fewer
variables to be considered).

4.1 Relevant Events

The input contains a library of event specifications. However, not every event
may be necessary to check the response guarantee and DaVeRS automatically
considers only those potentially relevant. The only event specifications that may
include relevant refinements are those sharing some alphabet symbol with the
response and those affecting (directly or indirectly) these event detectors. Lower-
level event detectors must be considered because the necessary refinements may
be in their specifications.

All other event specifications do not share the alphabet symbols with the
response nor affect higher-level events sharing some alphabet symbol with the
response, and thus do not add any path restriction that would imply a refine-
ment.

In our example, all the event detectors in the fragment of the library pre-
sented are relevant (affect the detection of shouldSendHeli and are potential
sources of refinements to prove the guarantee). However, other events such as
“fire started”, “heat wave”, “police at location” are not relevant according to
the current definition: they do not affect shouldSendHeli or the event detectors
relevant to the response guarantee.

4.2 Verification

To apply verification, the model (TP + M)||E′ is built. TP + M is built as in
Sect. 2.4. In each step, E′ represents partial information of the event specifica-
tions, that is, E′

1|| . . . ||E′
N . If E′

i contains LTL formulas, the state machine repre-
sentation of these formulas is considered. Therefore, building the state machine
(TP + M)||E′ is done by including all the constraints of both (TP + M) and all
the current response assumptions about the events (E′).

The response guarantee is an LTL formula, thus can be checked for the built
model with any LTL model checker.
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Figure 6 shows the helicopter response model on its own and Fig. 7 shows the
response model after weaving it to its assumption (that the base system does not
itself add the helicopter mission). The response model indicates that whenever
shouldSendHeli is detected, after that state the variable allMissions includes
the helicopter mission. In the woven model (Fig. 7, as in line 4 of Algorithm 1),
the system can remain at the initial state (performing actions irrelevant to our
response) until shouldSendHeli is detected. At those locations the response is
woven, and at the return state the execution continues from the base system
where it should with the updated state. Note that this model is very simple
(almost trivial): it does not include any information about the remaining events.
Any atomic proposition not appearing can have any value.

Fig. 6. Response: Helicopter mission Fig. 7. Assumption + Helicopter mission

In the given example, our desired property (Property (3)) is not initially
satisfied: there could be a path where shouldSendHeli (which activates the
response) is detected together with shouldGoToLocation and snowStorm, causing
the response to be activated, even when there is a snow storm. The unexpected
behavior is due to the initial overapproximation of the system that does not
include (yet) the indirect connection where both shouldSendHeli and snowStorm
cannot be detected in the same state.

4.3 Checking Spuriousness

As mentioned before (Sect. 2.6), contrary to previous work we allow the abstract
version not to automatically include the concrete model alphabet. We will
Algorithm 2. Checking spuriousness - essential-shared alphabet
input : E1, . . . , En: Event specifications

V1, . . . , Vn: Variables determining the needed abstractions
π: Abstract counterexample

output: spurious: indicates whether π is spurious with E1|| . . . ||En

1 prevAbstractModel = MTrue;
2 for i in 1..n do
3 currModel = prevAbstractModel —— Ei;
4 spurious = not “π is consistent with currModel”;
5 if spurious then break;
6 else prevAbstractModel = “currModel abstracted to COI(currModel,

Vi ∪ Σπ)” ;

7 end
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call the strategy of including all the shared symbols of the concrete compo-
nents in their abstractions as full-shared alphabet strategy, and the strategy we
present as essential-shared alphabet strategy, i.e. we only include the symbols
essential to prove the guarantee. When the abstract version does not contain
all the shared symbols of the concrete components (the event specifications),
and if no further steps are taken, a counterexample could be consistent with
every event specification but not with their composition. For example, given
G (snowStorm → badWeather) belonging to SpecbadWeather (as in Sect. 3.3)
and G (shouldSendHeli → ¬badWeather) in SpecshouldSendHeli (similarly spec-
ified), then there cannot be a state satisfying shouldSendHeli ∧ snowStorm.
However, if the abstract version of the response does not include in its alphabet
badWeather, then the problematic state is consistent with each event specifica-
tion (for each modular check there is an assignment of badWeather making the
state possible), but not with their composition. The problem has to do with the
shared alphabet among event specifications not being included in the abstract
counterexample. Our approach to deal with this situation is to sequentially con-
sider each event specification with a needed subset of the alphabet interface of
other event specifications. That way, we can abstract the response alphabet (i.e.
not include variables that do not affect the current guarantee).

Given an event specification sequence, we first compute {Vi}: V0 is empty and
Vi (i > 0) contains Vi−1 and the variables of Ei that some event specification
appearing later in the sequence includes. The event specification sequence, {Vi}
(representing the variables to which each event model should be abstracted),
and the abstract counterexample are the input to Algorithm2 which checks
spuriousness for the essential-shared alphabet strategy.

The first event specification of the sequence does not need to be composed
with a previous event specification abstracted, thus prevAbstractModel is ini-
tialized as MTrue (i.e., the model accepting every path). Every other event spec-
ification Ei is composed with the Cone of Influence (COI) [13] reduction of the
previous model to the variables that may affect following events in the sequence.

When a model is given by a set of variables V (i.e. the set of states is every
combination of the values of the variables in V ), an initial constraint (which
values are allowed for each variable at the initial states), and a transition relation
constraint given by how each variable is affected by the values of the variables
at the previous state (i.e. v′

i = fi (V ), where v′
i represents the value of vi at the

next state), the Cone of Influence C of a set of variables V ′ ⊆ V is the minimal
set of variables such that:

– V ′ ⊆ C
– if for some vl ∈ C, its fl depends on vj , then vj ∈ C

Then, the COI reduction of the system is built considering only the variables
in V ′ and the equations determining their next value. The COI reduction is
obtained syntactically from the model definition. Therefore, it does not depend
on the size of the model, but on the size of the model description, making it
very feasible in practice. Moreover, due to the hierarchical structure of the event
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detectors, in general only a small set of variables will be required to be included
in the abstraction.

At each step, we abstract currModel (last composed with Ei) to the COI of
Vi and the alphabet of the counterexample to guarantee that events appearing
later in the sequence will be affected by the shared symbols appearing in the
current event specification (when composed with the abstraction of the previous
model).

If the counterexample is found spurious, then it is inconsistent with
currModel, which contains the composition of the necessary interfaces with
the last event specification considered. This model will be used later to find the
appropriate refinements. In the worst case scenario, the COI reduction of the
model is the actual model. If this is the case for all the event specifications till
step i, then we are checking spuriousness against the actual composition of these
event specifications. However, we are considering hierarchical reactive systems
with multiple event detectors, and since not every event specification depends
on every other event specification, the obtained model is much smaller than the
full composition.

In our running example, shouldSendHeli implies that there is not badWeather
(within the specification of shouldSendHeli).

With our algorithm (essential-shared alphabet), badWeather does not belong
to the initial alphabet. Then, in the first CEGAR cycle the counterexample is:

π = (¬HMAdded),

⎛
⎜⎜⎝

shouldSendHeli
shouldGoToLoc

snowStorm
¬HMAdded

⎞
⎟⎟⎠,

⎛
⎝

shouldGoToLoc
snowStorm
HMAdded

⎞
⎠

That is, the event shouldSendHeli is detected in the second state of the
abstract counterexample, and in the third state the helicopter mission is added
to the set of missions. In the first iteration of Algorithm 2, the counterexample is
checked with the specification of shouldSendHeli as given (prevAbstractModel
does not add any restrictions in the first iteration of Algorithm2). Since the spec-
ification of shouldSendHeli does not refer directly to snowStorm, the abstract
counterexample is possible (not spurious so far), and prevAbstractModel is
updated. Among the variables within the specification of shouldSendHeli, there
is badWeather which appears later in the sequence of events. Since badWeather
is part of the variables to calculate the COI reduction (it is required by a
future event specification in the sequence, the property referring to badWeather
and shouldSendHeli (G (shouldSendHeli =⇒ ¬badWeather)) is preserved in
prevAbstractModel. In the second iteration of the algorithm, the abstraction of
the previous model is composed with the specification of badWeather. Check-
ing the counterexample with the composition shows the abstract counterexam-
ple spurious. From this composition the necessary refinements will be obtained
(Sect. 4.7): (shouldSendHeli implies not badWeather, and snowStorm implies bad-
Weather) which prevent future counterexamples with shouldSendHeli and snow-
Storm in the same state.
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Had we not used our optimization, variables shared among components
would have been included in the abstract model, and the model checker would
have given random values to those variables in the abstract counterexample,
thus adding potentially irrelevant refinements. For example, given the following
abstract counterexample

π = (¬HMAdded),

⎛
⎜⎜⎜⎜⎝

shouldSendHeli
shouldGoToLoc

¬helicoptersAvailable
snowStorm
¬HMAdded

⎞
⎟⎟⎟⎟⎠

,

⎛
⎝

shouldGoToLoc
snowStorm
HMAdded

⎞
⎠

may add the refinement that there must be helicopters available for the event
shouldSendHeli to be detected, but that refinement is irrelevant for the property
being checked.

Event Ordering. In both approaches (full-shared, essential-shared alphabet)
the order in which the event specifications are considered can significantly affect
the performance. Since the goal is to find the refinements as soon as possible,
we have observed that a good event ordering is a prioritized search such that
starting from the response event detector, we next consider the root of the unex-
plored subtree in the event dependency graph with the greatest number of atomic
predicates in common with the desired response guarantee.

4.4 Modular Approach - Correctness

This section is more technical and proves correctness of Algorithm 2.
Compositional CEGAR approaches in which the abstraction of the com-

ponents includes the alphabet of the concrete components (without alphabet
refinement) has been proven to be correct in [9] based on Lemma 1.

Lemma 1 (from [35]). A path belongs to the parallel composition of a set of
components if and only if its projection to the alphabet of each component Ci is
a path in Ci.

We have shown in Sect. 3.2 that our model represents hierarchical reactive
systems as the parallel composition of the event specifications and the response
augmented model, making those ideas applicable.

We now show correctness of our optimization for alphabet refinement, by
showing that a path belongs to the alphabet of the composition of two com-
ponents if it belongs to the COI reduction of the first one composed with the
second one. This can then be easily extended to any number of components by
induction.

We first present some auxiliary notations, definitions and propositions that
we will use to prove the correctness of our approach.
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Notation

– We will use M to represent any model.
– For any path π and alphabet Σ, π �Σ represents the path projected to include

only the symbols appearing in Σ.
– For any model M and alphabet Σ, M �Σ represents M abstracted to the

variables appearing in Σ.
– For any model M and alphabet Σ, COI (M,Σ) represents the variables of M

that belong to the cone of influence of Σ.
– Given a model M , path π, alphabet Σ, [M ] Σ represents M �COI(M,Σ) and

[π]MΣ represents π �COI(M,Σ). The superscript representing the model will be
omitted when clear.

Definition 1. A path π over an alphabet Σπ is consistent with a model M over
an alphabet ΣM if and only if there exists a path π̂ ∈ M such that π̂ �Σπ

= π �ΣM
.

π̂ will be called the witness of π being consistent with M .

The next two propositions are trivial but will be used to prove the correctness
of our approach.

Proposition 1 expresses that for a path π and model M , if π ∈ M , taking
the COI reduction of the path and of M with any alphabet, maintains the
membership relation.

Proposition 1. If π is a path of a model M , then for an alphabet Σ, [π]MΣ is a
path of [M ]Σ.

This is a corollary from the theorem in [13]: Let f be a CTL* formula with
atomic propositions in C (where C = COI (M,V ars (f)). Then M � f ⇐⇒
[M ] V ars(f) � f .

Proposition 2 expresses that if a path belongs to the cone of influence reduc-
tion of a composition, then the path belongs to the cone of influence reduction of
each component (restricted to the corresponding alphabet). This can be proven
using a (weak) simulation relation among the two models.

Proposition 2. Given a path π, two models M1, M2, and alphabet Σ, π ∈
[M1||M2]Σ =⇒ π �COI(Mi,Σ)∈ [Mi]Σ for i = 1, 2.

The following lemma explains why it is enough to consider the abstraction of the
previous model with the concrete version of the current model to check whether
an abstract path is consistent with the composition of two components.

Lemma 2. Given M1, M2 two models and M ′
1, M ′

2 their respective overapprox-
imations - not necessarily with the same alphabet, i.e. ΣM ′

i
�= ΣMi

- then, for
any path π in M ′

1||M ′
2, π is consistent with M1||M2 if and only if π is consistent

with [M1] ΣM2∪Σπ
||M2

Proof. Let Mabs = [M1] ΣM2∪Σπ
. Then, Mabs||M2 represents the composition of

two components when using alphabet refinement.
Note that ΣMabs = COI (M1, ΣM2 ∪ Σπ).
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⇒) Assuming π is consistent with M1||M2, we want to see that π is consistent
with Mabs||M2.
Since π is consistent with M1||M2, then there exists π ∈ M1||M2 such that
π �Σπ

= π �ΣM1||M2
(from the definition of being consistent with).

Since π ∈ M1||M2, then by the traces definition of composed components
[35], π �ΣM1

∈ M1 and π �ΣM2
∈ M2. Therefore, π �ΣM1

is a witness of π being
consistent with M1 and π �ΣM2

is a witness of π being consistent with M2.
We now show that π = π̄ �Σ

Mabs∪ΣM2
(the witness of π being consistent

with M1||M2, restricted to the alphabet of Mabs||M2) is a witness for π being
consistent with Mabs||M2.

1. We first show that π is a trace of Mabs||M2, i.e. π �Σ
Mabs

∈ Mabs and
π �ΣM2

∈ M2.
π �Σ

Mabs
∈ Mabs:

(a) π �Σ
Mabs

=
(
π̄ �Σ

Mabs∪ΣM2

)
�Σ

Mabs

= π̄ �Σ
Mabs

(by definition of π

and �).
(b) Since π ∈ M1||M2, [π]ΣM2∪Σπ

is a path in [(M1||M2)]ΣM2∪Σπ
(by

Proposition 1).
(c) Then, by Proposition 2, ([π]ΣM2∪Σπ

) �COI(M1,ΣM2∪Σπ) is a path in
[M1]ΣM2∪Σπ

.
(d) By definition, ([π]ΣM2∪Σπ

) �COI(M1,ΣM2∪Σπ)= π̄ �COI(M1,ΣM2∪Σπ)=
π̄ �Σ

Mabs
.

(e) From 1a and d, π �Σ
Mabs

= ([π]ΣM2∪Σπ
) �COI(M1,ΣM2∪Σπ) and from

1c, π �Σ
Mabs

is a path in [M1]ΣM2∪Σπ
= Mabs.

π �ΣM2
∈ M2:

π �ΣM2
=
(
π̄ �Σ

Mabs∪ΣM2

)
�ΣM2

= π̄ �ΣM2
. We already have that π �ΣM2

is a witness of π being consistent with M2. Therefore, π �ΣM2
is a witness

of π being consistent with M2.

2. We now show that π �Σπ
= π �Σ

Mabs||M2
:

– π �Σπ
=
(
π̄ �Σ

Mabs∪ΣM2

)
�Σπ

=
(
π̄ �Σ

Mabs||M2

)
�Σπ

by the definition of

π .

–
(
π̄ �Σ

Mabs||M2

)
�Σπ

= (π̄ �Σπ
)�Σ

Mabs||M2

by the definition of �.
– (π̄ �Σπ

)�Σ
Mabs||M2

= π �Σ
Mabs||M2

due to π̄ being the witness of π being

consistent with M1||M2.

⇐) Assuming that π is consistent with Mabs||M2, we want to see that π is con-
sistent with M1||M2.
By assumption, there exists π̄ ∈ Mabs||M2 witness of π being consistent
with Mabs||M2. Thus, π̄ �Σ

Mabs
belongs to Mabs. Since Mabs is an abstrac-

tion of M1, there exists a concrete path π̄c
1 in M1 such that restricted to
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COI (M1, ΣM2 ∪ Σπ) is equal to π̄ �Σ
Mabs

, i.e. [π̄c
1] ΣM2∪Σπ

= π̄ �Σ
Mabs

.
Let πc = (π̄c

1 × π̄), that is, the labels at each state are obtained from the cur-
rent state at π̄c

1 and π̄. From the way π̄c
1 was obtained, any shared symbols

between the states of the two paths are consistent.
We will now show that πc ils a witness of π being consistent with M1||M2.
πc ∈ M1||M2: To prove this, we just need to prove that restricted to the
corresponding alphabets it belongs to both components.
1. πc �ΣM1

is equivalent to restricting to the variables of π̄c
1. By construction

π̄c
1 ∈ M1, therefore πc �ΣM1

∈ M1.
2. πc �ΣM2

is equivalent to considering π̄ �ΣM2
. Since π̄ is the witness of π

being consistent with Mabs||M2, π̄ �ΣM2
belongs to M2.

πc �Σπ
= π �ΣM1||M2

: Both sides of the equation are equal to π, thus the paths
obtained by each restriction are equal. ��

Corollary 1. Given n components M1, . . . ,Mn and their abstractions M ′
1, . . . ,

M ′
n, for any path π in M ′

1|| . . . ||M ′
n, π is consistent with M1|| . . . ||Mn if and

only if:

1. π is consistent with M1

2. π is consistent with [M1] ΣM2∪Σπ
||M2

3. π is consistent with
[(

[M1] ΣM2∪ΣM3∪Σπ
||M2

)]
ΣM3∪Σπ

||M3

. . .

n. π is consistent with
[
. . .
[
[M1]⋃n

i=2 Σi∪Σπ
||M2

]
⋃n

i=3 Σi∪Σπ

. . .

]

Σn∪Σπ

||Mn

The proof is applying the previous lemma inductively on the number of elements
in the composition.

The previous proof almost provides the basis of Algorithm2. We will now
show how each iteration is obtained from the composition of n components.

We use the following auxiliary proposition (provable with the definitions
given and showing that there is a simulation relation such that [M ]Σ∪Σ′ ≤
[M ]Σ).

Proposition 3. Given a path π, a component M and two alphabets Σ and Σ′,
if π is consistent with [M ]Σ, then π is consistent with [M ]Σ∪Σ′ .

In Corollary 1, we saw that a path π is consistent with the composition of
the concrete components by proving the n items in the list. However, it would
seem that each proof item requires calculating a new abstraction of the previous
components. For instance in 1. we use M1 as is. In 2. M1 is abstracted to the
COI of ΣM2 ∪ Σπ. In 3. M1 is abstracted to the COI of ΣM2 ∪ ΣM3 ∪ Σπ.

We now show that each component can be abstracted only one time.

Corollary 2. Given n components M1, . . . ,Mn and their abstractions M ′
1, . . . ,

M ′
n, for any path π in M ′

1|| . . . ||M ′
n, all the conditions in Corollary 1 hold if and

only if all the following are satisfied
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1. π is consistent with M1

2. π is consistent with [M1]⋃n
i=2 Σi∪Σπ

||M2

3. π is consistent with
[(

[M1]⋃n
i=2 Σi∪Σπ

||M2

)]
⋃n

i=3 Σi∪Σπ
||M3

. . .

n. π is consistent with
[
. . .
[
[M1]⋃n

i=2 Σi∪Σπ
||M2

]
⋃n

i=3 Σi∪Σπ

. . .

]

Σn∪Σπ

||Mn

Proof. Each item in this corollary implies the corresponding item in Corollary 1
because of Proposition 3. Therefore if all the conditions in Corollary 2 are satis-
fied, then all the conditions in Corollary 1 hold.

For every condition in Corollary 2 proving π consistent with some M̃1||M̃2,
there are conditions in Corollary 2 in which each M̃i appears (perhaps abstracted,
but due to Proposition 1, it still is consistent). Therefore when all the conditions
in Corollary 1 hold, in particular π is consistent with every M̃i appearing in any
condition of Corollary 2. Thus, all the conditions in Corollary 2 are satisfied. ��

The last condition of Corollary 2 includes as sub-expressions the previous
conditions, from here we infer the algorithm.

. . .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣M1︸︷︷︸

(1)

⎤
⎥⎦

n⋃
i=2

Σi ∪ Σπ

︸ ︷︷ ︸
(2)

||M2

︸ ︷︷ ︸
(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n⋃
i=3

Σi ∪ Σπ

︸ ︷︷ ︸
(4)

. . .

Part (1) (matching the first condition of Corollary 2), is when the algorithm
executes line 3 during the first iteration. The first event specification is composed
with MTrue, leaving the specification as is.

If not spurious, we abstract the model to the Cone of Influence of V1 ∪ Σπ.
Recall that Vi contains the symbols of Ei that appear in some event specification
later in the sequence. When abstracting the current model to the COI

⋃n
i=2 Σi,

we are in fact abstracting M1 to the variables that may appear later in the
sequence. This is line 6 of Algorithm 2, first iteration.

Part (3) represents line 3 of the second iteration: composing the previous
abstracted model with the current one. The resulting model is checked and if
not spurious the algorithm continues by abstracting this resulting model to V2

(4). This continues until either the abstract counterexample is found spurious
(one of the conditions in Corollary 2 does not hold) or it is consistent with every
event specification, making the counterexample real.
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4.5 Liveness Abstract Counterexample Spuriousness Checking

In this section we describe in more detail line 4 of Algorithm 2.
Depending on whether the property is a safety or liveness guarantee, different

techniques are used. Our tool interacts with the model checker NuSMV [1], whose
LTL counterexamples are always given by infinite paths, thus we cannot infer
from these whether the original property is safety or liveness. To distinguish
between safety (a prefix is enough) and liveness properties (counterexample given
by an infinite path), in [4] it was shown that given a Büchi automata representing
a property m, the automata represents a safety formula if and only if L(m) =
L(Cl(m)) where Cl(m) is the same as m but with every state being an accepting
state. When the translation of an LTL formula to a state machine does not
include fairness constraints, there are no restrictions regarding the states that
should occur infinite times thus all states are accepting states (therefore, the
state machine represents a safety formula).

Then, when the translation of the formula does not have any fairness con-
straints we infer that the formula is safety. For safety it is enough to simulate the
counterexample (there is a finite path which contains the violation of the safety
property) with currModel. For liveness, we propose the new instrumentation
technique below in place of the usual unfolding seen in Sect. 2.5.

The abstract counterexample (that shows a liveness formula unsatisfied)
looks like: s0, . . . , si︸ ︷︷ ︸

prefix

, si+1, . . . , sj︸ ︷︷ ︸
loop

, si+1, . . . . The prefix can be empty, and the

loop may contain one or more abstract states.
When the counterexample is real, the abstract loop might have to be unfolded

multiple times to find the concrete counterexample. In order to avoid this unfold-
ing, given the abstract counterexample, we know that each abstract loop itera-
tion contains j − i states. Each event specification state machine (that is, con-
sidering the initial and transition relation constraints together with the state
machine translation of the LTL formulas of the specification) is instrumented
with a counter that represents the states within the loop. To check spuriousness
we check whether there is a concrete path that is consistent with the abstract
counterexample.

Given a concrete model M = 〈X, I, T, F 〉, where X is the set of variables and
the different values of the variables determine the set of states, the instrumented
model is given by M̃ =

〈
X̃, Ĩ, T̃ , F

〉
with:

X̃ = X ∪{prefix : 0..i; cnt : 0..j − i}
Ĩ = I ∧prefix = 0 ∧ cnt = 0
T̃ = T ∧ (prefix < i → (prefix′ = prefix + 1 ∧ cnt′ = cnt)) (part 1)

∧ (prefix = i → prefix′ = prefix) (part 2)
∧ ((prefix = i ∧ cnt < j − i) → (cnt′ = cnt + 1)) (part 3)
∧ ((prefix = i ∧ cnt = j − i) → (cnt′ = 1)) (part 4)

That is, we add a variable prefix to identify while in the abstract counterex-
ample prefix, and the counter cnt to identify the different states of the abstract
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loop. Both counters are initialized as 0 and the following transition relation
constraints are added:

part 1. While in the prefix part of the abstract counterexample, increment
prefix.

part 2. While in the loop part of the abstract counterexample, do not return
to the prefix part.

part 3. While in the loop part of the abstract counterexample, if it is not yet
the end of the abstract loop, increment the counter.

part 4. While in the loop part of the abstract counterexample, if it is the end of
the abstract loop, reset the counter to represent the beginning of the abstract
loop.

Note that if the number of states of the concrete model is |S|, the number
of different states in the instrumented model will be at most |S| · (j + 1): in the
worst case scenario, every abstract state of the counterexample is matched by
every concrete state.

Once the event state machine is instrumented according to the abstract coun-
terexample, the LTL formula to be checked is

¬
⎛
⎝s0 ∧ Xs1 ∧ · · · ∧ X . . . X︸ ︷︷ ︸

i

si ∧ X . . . X︸ ︷︷ ︸
i+1

G

(
j−i∧
k=1

(cnt = k =⇒ si+k)

)⎞
⎠ (4)

The first i + 1 conjuncts characterize each state of the abstract prefix and
the remainder what every state within the abstract loop satisfies. Therefore,
this property expresses that no path of the concrete model is consistent with
the abstract counterexample (the formula within the brackets represents a path
consistent with the counterexample). If this formula is satisfied, the counterex-
ample is found spurious with respect to the current event specification; other-
wise, a path has been found showing the counterexample consistent with the
current event specification and the abstract counterexample is checked against
the remaining event specifications. Note that, as before, this formula is checked
against each (concrete) event specification modularly, and not the whole concrete
system.

In our case study, one possible guarantee could be that whenever the location
is provided (locationProvided) by a witness of a crisis within a witness call
(inCall), then that phone call will eventually end (callEnd).

G ((locationProvided ∧ inCall) → F callEnd) (5)

When we try to verify the guarantee (5) with the abstract model, we may
obtain the following abstract counterexample:

π = callStart, locationProvided, (¬callEnd)ω

¬callEnd inCall
¬callEnd
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That is, there is a witness call starting in the first state, in the second one the
location of the crisis is provided, and then there is no state ending the current
call. Then, to check spuriousness with each event specification (and previous
abstractions), we build the formula (6) as in the general formula (4). Since there
is only one abstract loop state, the counter is not necessary.

¬

⎛
⎜⎜⎜⎜⎝

(callStart ∧ ¬callEnd)
∧X (locationProvided ∧ inCall ∧ ¬callEnd)
∧X X G (¬callEnd)

⎞
⎟⎟⎟⎟⎠

(6)

This formula holds whenever the counterexample is spurious (i.e., there is
no concrete path matching the abstract counterexample), and does not hold
whenever the counterexample is real (i.e., there is a concrete path matching the
abstract counterexample).

In Sect. 4.7, we will show how the spuriousness reason of this example is
found (and thus used to refine the model).

4.6 Instrumentation Correctness

To see that instrumenting and checking Formula (4), which is ¬

⎛
⎜⎝

prefix︷︸︸︷. . . ∧
loop︷ ︸︸ ︷

G (. . . )︸ ︷︷ ︸
φ

⎞
⎟⎠,

is indeed sound, we prove that the counterexample is consistent with the concrete
model if and only if the property is not satisfied in the instrumented model.

Let M̃ be the instrumented model M (i.e. M with the counter instrumenta-
tion). M � Eπ represents whether π is a path in the model M .

M � Eπ ⇐⇒︸ ︷︷ ︸
(a)

M̃ � Eπ ⇐⇒︸ ︷︷ ︸
(b)

M̃ � Eφ ⇐⇒ M̃ � ¬¬Eφ ⇐⇒ M̃ �� A¬φ

Relation (a) holds since the instrumentation added to the model does not
restrict nor add paths to M (over the variables of M), and has no effect in the
counterexample. The =⇒ part of (b) is easy to see: if π is a path in M̃ , then
there is an assignment to cnt such that the formula holds in M̃ . The remaining
steps are trivial logic identities. Thus we have obtained that M � Eπ =⇒ M̃ ��
A¬φ, therefore M̃ � A¬φ =⇒ M �� Eπ. If the instrumented model satisfies
formula (4), then the path is not consistent with the model and is found spurious.

We now show the other direction of (b), that M̃ � Eφ =⇒ M̃ � Eπ:
Let π̃ = s̃0, s̃1, s̃2, s̃3, s̃4, s̃4, s̃5, . . . be the witness path of M̃ � Eφ. Since π̃ is a

path in M̃ , then s̃0 must satisfy the initial conditions defined in M and for every
pair of consecutive states s̃i and s̃i+1, M ’s transition relation constraints must
hold. Using this idea and the φ definition, we observe that φ is also consistent
with π: It is clear that any state before the loop of the witness is also at the same
position within π (satisfying any initial and transition constraints); and for every
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state within the loop, the state has a value of the cnt variable, and therefore
should be both consistent with the corresponding abstract state and respect the
transition relation. Therefore we have found an actual path in M consistent with
π. Note that the formula does not force the concrete loop proving the globally
part of the φ to be of the same length as the abstract counterexample. Instead,
it could correspond to k abstract loop iterations. Once this loop has been found
in the concrete instrumented model, every iteration of the concrete loop will be
consistent with k iterations of the abstract one.

Thus, we have obtained that M � Eπ ⇐⇒ M̃ �� ϕ, determining whether
the error is spurious by checking Formula (4) over the instrumented model.

4.7 Refining

Refinement is obtained from an event specification (composed with the previous
event abstractions) against which the counterexample has been found spurious.
Let modelFindRefs be this model from which the refinement will be obtained.
The refinement consists of information (initial or transition relation constraints,
or LTL properties) and variables appearing in these constraints obtained from the
event specifications that the current path (the spurious abstract counterexample)
does not satisfy, but any path behaving consistently with the events does.

Safety Refinement. For safety guarantees, one SMT unsat-core activation
simulating the finite counterexample with modelFindRefs is enough to find the
necessary refinements. Recall that the unsat-core gives a small subset of the con-
straints enough to show unsatisfiability. The part from the event specifications
in that core should be added to the assumption of the response, in order to pre-
vent obtaining the same abstract counterexample in the future. This part may
strengthen the initial states constraints or the relation transition constraints.

Recall that event specifications can include both safety and liveness proper-
ties. The state machine representation of a safety formula does not include any
fairness constraints (i.e. every path belongs to the language of the state machine),
while the state machine representation of liveness formulas must include fairness
constraints (restricting the language of the state machine to include only fair
paths, c.f. Sect. 2.1). When checking a counterexample with an event specifica-
tion, we are actually checking it with the state machine representing the event
specification. Therefore, for every liveness property ϕ, the state machine includes
the transition relation and fairness constraints representing ϕ. When translat-
ing the liveness formulas into their corresponding state machine, we save what
fairness constraints are introduced by each liveness formula within the event
specifications.

For example, given our running example, when the abstract counterexam-
ple was checked with the COI reduction of shouldSendHeli composed with
badWeather, it was found spurious. This composition included the formula
G(shouldSendHeli =⇒ ¬badWeather) translated to a state machine, that is:

(shouldSendHeli =⇒ ¬badWeather) ∈ I
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(shouldSendHeli′ =⇒ ¬badWeather′) ∈ T

The SMT model checked includes these assertions, and when simulating the
abstract counterexample, (shouldSendHeli′ =⇒ ¬badWeather′) is found as
a part of the unsat-core. Since we have saved how each LTL formula is trans-
lated to a state machine, we know that this constraint was introduced by the
property G(shouldSendHeli =⇒ ¬badWeather) within the specification of
shouldSendHeli, and this property is then added to refine the current abstract
model.

Liveness Refinement. For liveness guarantees, the refinement to avoid a spu-
rious abstract counterexample is also obtained from modelFindRefs. This refine-
ment either includes transition relation constraints (refine the model by splitting
the abstract states – including the initial states – so that the current path is no
longer feasible in the model) or liveness properties (finding the necessary refine-
ment first finds the missing fairness constraints, and then the refinement is given
by the liveness formulas within the event specifications introducing those fairness
constraints).

This must be handled differently from safety guarantees since finite path
simulation does not capture fairness refinements. Previous work either consid-
ered only safety formulas (making simulation enough) or considered predicate
abstraction or well-founded sets refinement for which the fairness constraints are
not part of the refinements.

If the abstract counterexample is consistent when checked against modelFind-
Refs but without any fairness constraints (there is a concrete path τ matching
the abstract path in the model without fairness), we know that some fairness
constraint would avoid the abstract counterexample (and the refinement will
be the liveness property whose state machine representation introduced that
fairness constraint).

That is, if F is the set of fairness constraints, then there exists a path τ
witness of π being consistent with modelFindRefs \F . From τ , we can obtain
how many times the abstract loop has to be unfolded to represent a concrete loop.
Thus, modelFindRefs and the counterexample can be translated to SMT to find
the unsat-core that makes the counterexample spurious. The counterexample
loop is translated in the standard way (the last state of the loop is followed by
the first state of the loop) and each fairness constraint f is translated to “at
least one state of the (concrete) loop satisfies f”.

The counterexample was shown consistent with the model without any fairness
constraints but spurious otherwise. Thus, the unsat-core of this translation (that
includes the fairness constraints) will include at least one of those fairness con-
straints. Since we have saved for each liveness formula what fairness constraints
it introduces, from the fairness constraints in the unsat-core we can easily get the
liveness formulas that introduced those constraints and add them as refinements
to the abstract assumption of the response, thus avoiding any concrete counterex-
ample with a loop matching n times the abstract loop. Any abstract counterexam-
ple found in a future iteration will not match these concrete paths. This is similar
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to other CEGAR work: when an abstract counterexample is found, a predicate
splitting a problematic state is added so as to avoid the counterexample. Our fair-
ness refinement “splits” paths when fairness constraints are added.

For instance, let π be the counterexample obtained in the example of Sect. 4.5.
One of the event specifications (witnessInfoProvided) assumes that every

call that starts eventually ends: G (callStart → FcallEnd) and that a call does
not start and end at the same state G¬ (callStart ∧ callEnd). This can be rep-
resented by the state machine in Fig. 8. In the initial state either there is or
there is not a call start (states s1 and s2 respectively). It is possible to stay in
s2 indefinitely (no matter if there is a call end), but when there is call start it
moves to s1, which is not a fair state. Therefore, the only way to achieve a fair
path is by eventually reaching s4 (guaranteeing that every call that has started,
eventually ends).

To find that this information from the event specifications avoids the current
counterexample (π), our technique first detects that the fairness constraint of
this assumption is required.

Fig. 8. State machine representing part of WitnessInfoProvided’s specification

When π is checked with this event specification, π is found to be spurious. If
we check this same abstract counterexample with the event specification without
including any fairness constraints, then the abstract counterexample is consistent
(the state machine without any fairness constraints would allow staying infinitely
in s1 or s3). Thus, we can conclude that the refinement required includes fairness
constraints.

The translation of the current model to an SMT instance includes the
fairness constraint translation that it cannot stay forever in a state where
callStart has occurred, but callEnd does not occur. This constraint will be
part of the unsat core, and since it originated from the liveness property
G (callStart → FcallEnd), this property is added to the assumptions of the
response.

Transition Relation Refinement. Now we describe how we find the necessary
refinements when we have identified that no fairness constraint avoids the
abstract counterexample, i.e. there is some transition (or initial state constraint)
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in the abstract model that is not allowed according modelFindRefs and the refine-
ment will be a transition relation constraint.

For liveness guarantees not requiring liveness property refinements, instead
of simulating the counterexample through repeated SMT activations, we take
advantage of the formula representing the counterexample. If the abstract coun-
terexample is spurious, then there must be some state reachable from the initial
states but without any actual successor in the concrete model (modelFindRefs)
consistent with the abstract counterexample. If we consider the product of mod-
elFindRefs and the state machine representation of the formula representing the
abstract counterexample, then the resulting model will not contain any infinite
path. Thus the model checker outputs that the model is empty and returns the
diameter needed to reach this conclusion. This diameter serves as the bound for
which the state to be split is sure to be found. A single activation of an SMT solver
with that bound can then find the needed refinement using the unsat-core option.

A possible response guarantee could express that whenever the conditions for
shouldSendHeli to be detected hold, then the helicopter mission will be added
(Property (7)).

G((shouldGoToLoc ∧ ¬badWeather ∧ helicoptersAvailable ∧ problematicAccess)

→ F HMAdded)
(7)

If we try to verify the guarantee (7), we may obtain the counterexample

π =

⎛
⎜⎜⎜⎜⎜⎜⎝

¬shouldSendHeli
shouldGoToLoc
¬badWeather

helicoptersAvailable
problematicAccess

¬HMAdded

⎞
⎟⎟⎟⎟⎟⎟⎠

ω

That is, all the conditions for the event shouldSendHeli are satisfied but the
event is not detected with the current abstractions.

In this case, we find the abstract counterexample spurious with the spec-
ification of shouldSendHeli, even when removing any fairness constraints of
the concrete modelFindRefs. Therefore we conclude that in this case we need a
transition relation refinement.

Composing the model representing the abstract counterexample with mod-
elFindRefs shows that there is no infinite path (by considering a diameter of
one state the problematic situation is found) and by simulating one step of mod-
elFindRefs and the abstract counterexample the necessary refinement (Property
(8)) that belongs to the specification of shouldSendHeli is found and added to
the response assumptions.

G((shouldGoToLoc ∧ ¬badWeather ∧ helicoptersAvailable ∧ problematicAccess)

⇐⇒ shouldSendHeli)
(8)
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5 DaVeRS

As noted before, many CEGAR tools use SMT solvers to build the abstract
model or find predicate refinements. In this work, DaVeRS also interacts with
an SMT solver (SMTInterpol [2]) whenever a bound is known (for example,
once the counterexample is known to be spurious because of a missing transition
definition). Otherwise DaVeRS interacts with a BDD-based unbounded model
checking tool (NuSMV [1]).

Recall that event specifications are given by E = 〈X, I, T, P 〉 (Sect. 2.2) rep-
resenting the state machine and temporal logic constraints for the event assump-
tions and guarantees. Responses are given by 〈XB ,XR, ED,M,P, PEv, R〉
(Sect. 2.3), representing the variables of the underlying system and response,
the event detector to which the response reacts, the state machine definition of
the response, and the response partial specification.

The response and event specification are given by text files expressing the con-
tents of each of the categories in their representation, where PEv could initially
be empty. We use the NuSMV language to express variable domains (boolean,
integer range, enumerated types); state machine definitions (initial and transition
relations constraints); and LTL formulas (for the temporal logic assumptions and
guarantees of event detectors and responses). This is the only input required from
the user. DaVeRS automatically applies the techniques presented in this paper.

NuSMV includes a tool (ltl2smv) that allows building the state machine
matching a linear temporal logic formula, in particular for liveness properties it
introduces the fairness constraints required. We interact with this tool both to
build the tableau of the assumption Sect. 4.2, and to obtain the state machine
representation of the LTL properties within event specifications. By saving which
event specification formula introduced which fairness constraints, following the
ideas in Sect. 4.7, we obtain the actual formula that introduced the fariness
refinement.

Once we have obtained the LTL to state machine translation of each event
specification, we can see every event specification given by a state machine where
we can calculate the value of the variables of the next state according to the value
of the variables at the previous state, and thus NuSMV can easily calculate the
cone of influence of an event specification reduced to a set of variables.

For each response guarantee, the relevant events are obtained and if the full-
shared alphabet configuration is used, all the relevant event interface alphabets
are added to the response alphabet, otherwise only the symbols directly neces-
sary for building the augmented model and checking the property are added.
Then, the application executes the CEGAR cycle as explained in the previous
sections until the guarantee has been checked or a real counterexample has been
found, and the assumptions learnt about the events are saved.

When DaVeRS terminates, it outputs whether it succeeded or failed, saves
the response file with the refinements that led to that conclusion, and in case of
failure, outputs the real counterexample.
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6 Evaluation

We have implemented the DaVeRS tool using these techniques and evaluated
it with three extensive case studies: a Car Crash Crisis Management System
(CCCMS) [31], a Discount library (as in [18]) and a security concern in an email
application. These represent contrasting examples of reusable systems with many
options based on event detectors and responses. The goals of the Car Crash
Crisis Management System are to receive information about a possible crisis,
assess and propose the necessary missions, assign internal/external resources,
update the state of the missions, etc. At any moment any of a large number of
events occur possibly causing many events to be detected by the event detectors,
and appropriate responses (often with guarantees verified in advance) can react
and be activated. The Discount case applies discounts according to the events
detected (such as buying a product for which sales have not been enough in the
last period, discounts for the loyalty program customers, or detecting whenever
two of a certain family of products is bought, so that the second one is free).
This case study resembles more a library of reusable event detectors and response
specifications (and implementations). A user involved in e-commerce can decide
which events and responses (that apply discounts of various types) to use over his
existing software for handling purchases. The email application includes event
detectors triggering when user authorization is required and a response that
encrypts any password to be sent. The security concerns in the email application
represent the application of a reusable library to a particular domain.

We have considered 34 guarantees for each case study, including assertions
about the future and past, identifying when the response should be activated or
should not, checking assertions that refer only to the higher-level event or also to
lower-level ones, and referring only to the event detection or also to the exposed
information.

The CCCMS event dependency graph contains seven complex event speci-
fications relying on 16 primitive events such as a phone call just started, there
is a snow storm, etc. The Discount event dependency graph contains six com-
plex event specifications relying on 12 primitive events. The security concern
for the email application event dependency graph contains 12 complex event
specifications relying on 24 primitive events.

Examples of guarantees of the CCCMS case study include checking (1) that
the location parameter with which the helicopter sending mission is created is
the one exposed by lower-level event detectors, (2) that if a helicopter mission is
added then shouldSendHeli must have occurred, and the other way around, or
(3) the guarantee considered as a running example.

The Discount response we have considered gives priority to the “buy one,
get one free” Discount, and only in case this discount is not applied, the other
discounts are considered. Some examples of guarantees of the Discount case
study are checking that indeed the indicated discount is prioritized, or that
loyalty customers receive the appropriate discounts.

The security concern in the email application requires authentication, for
instance, whenever preparing to write an email or accessing the inbox and the
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user has not yet authenticated; or when intending to change the account set-
tings. During authentication, a password is sent, and our concern encrypts this
password (or any other password sent within the application).

Recall that in classical compositional CEGAR all potentially relevant vari-
ables are included in advance (full-shared alphabet strategy), and loop unfolding
is used to check liveness. We compared this with our new techniques for adding
only needed variables and instrumenting loops with a counter for liveness spuri-
ousness checking.

We compared the different strategies against the different guarantees mea-
suring the time taken by each. All the experiments were carried out on a 2.5 GHz
Intel Core i5 (quad-core) with 4 GB RAM running 64-bit Ubuntu 14.04.

For all the case studies, if all the relevant event specifications are included as
initial assumptions of the response (CEGAR not applied), the technique takes
more than 15 min for each example.

Fig. 9. CCCMS - satisfiable properties

Figure 9 shows the time taken by the classical compositional CEGAR
techniques full shared+unfolding (triangles) and our essential shared+instru-
mentation (boxes) for CCCMS satisfiable guarantees. The x axis represents the
kind of guarantee (S: Safety, L: Liveness) and the number of iterations required
to reach the conclusion when the essential-shared alphabet + instrumentation
strategy was used (full-shared alphabet + unfolding always took the same or
more iterations). The y axis shows the time in seconds. The inverse triangle on
the top of the figure represents when the classical techniques were off the scale of
the figure. All such cases took more than 15 min, except for two liveness proper-
ties that took 3 and 10 min, respectively. Both for safety and liveness guarantees,
our approach works significantly better. In particular, the improvement is even
more noticeable for liveness formulas, where our technique took less than 20 s
for every guarantee considered.
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Figure 10 shows the time taken for unsatisfiable CCCMS guarantees (includ-
ing safety and liveness formulas). Here too, our technique improved over the clas-
sical techniques considerably, due to the irrelevant variables needed in classical
techniques, and the unfolding strategy used for liveness spuriousness checking.
Some guarantees considered giving very similar results to the ones presented in
the graphic were not included.

Figure 11 shows the time taken for satisfiable safety guarantees belonging to
the Discount (D) and Security (S) case studies. Both techniques show a signifi-
cant performance improvement when applying our optimizations.

The Discount case study event specifications are more complex than in the
other case studies (include information about the customers, products, coun-
ters). For this example, liveness and unsatisfiable guarantees reached timeout
(15 min) for most guarantees when checking with classical techniques, while our
techniques provided results in less than three minutes. For the only two liveness
guarantees where the classical techniques terminated, it took around 7 min with
the classical techniques and less than two minutes with ours.

The Security case study contains more event detectors (primitive and com-
plex) than the other case studies, making the bound for unfolding liveness guar-
antee counterexamples significantly larger when using classical techniques. Thus,
classical techniques reached timeout for every liveness guarantee in the Security
case study (satisfiable and unsatisfiable), while our technique took less than
15 s. For unsatisfiable safety guarantees considered, our technique took less than
20 s, while classical techniques took between 40 s and 2 min (depending on the
complexity of the guarantee).

The results in the graphics (and the timeout results) suggest scalability
improvements over existing techniques, since now fewer iterations are required
to check guarantees, and liveness spuriousness checking can be applied, and ter-
minate in reasonable time. As long as many event specifications are involved, our
alphabet refinement optimizations avoids automatically including the interface
alphabet of all these, thus considering only the necessary refinements.

Fig. 10. CCCMS - unsatisfiable prop-
erties

Fig. 11. Discount, security - satisfiable
safety properties
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7 Related Work

In [18], the idea of using CEGAR for event systems is proposed, but here we
formalize the model and assumptions, show the mechanism and elaborate a tool
implementation, including new techniques for handling liveness and reducing the
state space that were not presented there.

There are several CEGAR approaches, each with its own way of building
the abstract model, verifying, analyzing counterexamples and refining. Among
the non-compositional ones, [5,12,27] consider only safety formulas, simulate
abstract counterexamples against the system’s implementation, and learn new
predicates that refine the abstract model. The work in [11,15] present non-
compositional CEGAR approaches for also checking liveness formulas. The
bound to which liveness counterexamples can be simulated to detect spuriousness
in [11] can be very large, and refinements consist of predicates that make the spu-
rious counterexample unreachable, but fairness constraints are not added to the
abstract model. As seen in the evaluation section, using instrumentation instead
of unfolding the abstract counterexample loop to this bound gives better per-
formance results. In [15], Terminator uses predicate abstraction-refinement for
safety formulas and well-founded sets abstraction refinement to prove program
fair termination and check liveness specifications. Although we use a symbolic
model checker to verify liveness formulas, the fair binary reachability algorithm
presented in that work could also be used and then spuriousness checking and
refinement finding applied as we have presented. One could argue that from the
ranking functions variables and current predicates, one can obtain which of the
event specification parts are relevant (that we obtain by translating the event
specification to SMT and obtaining the unsat-core). Future work will analyze
performance differences between these.

Instrumenting a model to check properties has been considered before [7,15].
In both works, the model is instrumented to check liveness properties as safety.
Though our instrumentation is based on the same principle as theirs (every
liveness counterexample consists of a prefix and a loop), the problem addressed
and instrumentation itself are different. In those papers, the input is a liveness
specification to be checked in a model, in ours it is a path of the abstract model
to be checked in the concrete model. Moreover, the instrumentation proposed in
[7] is based on non-deterministically guessing the initial loop state and checking
if it is reachable later in the path (thus checking every possible state). If the
original state machine contained |S| states, the instrumented state machines
contains |S|2 states. Thus, the obtained state machine is much larger than with
our instrumentation (|S|·j - Sect. 4.5). The work in [15] instruments the program
to include fairness related assertions as well and reduces the problem to analyzing
binary fair reachability (checking that every possible cycle satisfies the fairness
constraints). In that paper as well, due to the instrumentation used (guessing
the fair state), the instrumented state machines contains more than |S|2 states.

Other works have considered compositional CEGAR approaches [9,10,23,26]
for safety guarantees. The abstract components in [9,10,26] have to include every
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symbol shared among components, only [23] includes a way to refine the alphabet
of the composition of two components.

Our work is mostly useful for event-based systems relying on complex events.
That is, our approach is most useful for approaches including hierarchically com-
posed events [3,8,19] rather than related work adding events to existing para-
digms including limited composition (at most boolean composition) as [22,34].
For example, tracematches and trace-based aspects [3,19] trigger the execution
of a response depending on a regular pattern of events (detected). These regu-
lar patterns include the lower-level events they rely on (described by pointcuts)
and the regular expressions to which a method reacts (response). For each regu-
lar expression, an event dependency graph can be built. The event dependency
graph includes two levels: the one of the joinpoints captured by pointcuts, and
the one of the regular expression. We could apply DaVeRS to understand which
of the pointcuts are relevant to which guarantees.

8 Conclusions

We have presented a practical tool and a CEGAR-based compositional veri-
fication technique for verifying response guarantees and finding the necessary
assumptions of the response specification about event detectors in hierarchical
event-based systems.

The responses and event detectors are specified with state machines and tem-
poral logic formulas, that can either represent a design stage (before implement-
ing in a programming language), or an abstraction of an implemented system.

The basic assumptions about hierarchical event-based systems allow the sys-
tem to be represented as a parallel composition and thus apply a compositional
CEGAR technique. At each step, the response augmented model is built consid-
ering only an abstraction of the event specifications, and when a counterexample
is found, spuriousness checking and refinement finding is done modularly.

We have presented improvements to state of the art CEGAR techniques for
checking spuriousness of liveness property counterexamples, and for including
alphabet refinement (even over shared alphabet symbols). The results in the
evaluation section validated these as really improving performance with respect
to techniques in related work.
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8. Bockisch, C., Malakuti, S., Akşit, M., Katz, S.: Making aspects natural: events and
composition. In: AOSD 2011. ACM (2011)

9. Chaki, S., Clarke, E., Groce, A., Ouaknine, J., Strichman, O., Yorav, K.: Efficient
verification of sequential and concurrent C programs. Formal Meth. Syst. Des. 25,
129–166 (2004)

10. Chucri, F.: Exploiting model structure in CEGAR verification method. Ph.D.
thesis, University of Bordeaux I (2012)

11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

12. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31980-1 40

13. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001)

14. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: FLAVERS: a finite state verification
technique for software systems. IBM Syst. J. 41, 140–165 (2002)

15. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. ACM SIGPLAN Not. 42, 265–276 (2007)

16. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Păsăreanu, C.S., Robby,
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