
Chapter 2
Efficient Tag Search in Large RFID Systems

This chapter introduces the tag search problem in large RFID systems. A new
technique called filtering vector is designed to reduce the transmission overhead
during search process, thereby improving the time efficiency. Based on this tech-
nique, we present an iterative tag search protocol. Some tags are filtered out in
each round and the search process will eventually terminate when the result meets a
given accuracy requirement. Moreover, the protocol is extended to work under noisy
channel. The simulation results demonstrate that our protocol performs much better
than the best existing work.

The rest of this chapter is organized as follows. Section 2.1 gives the system
model and the problem statement. Section 2.2 briefly introduces the related work.
Section 2.3 describes our new protocol in detail. Section 2.4 addresses noisy wire-
less channel. Section 2.5 evaluates the performance of our protocol by simulations.
Section 2.6 gives the summary.

2.1 System Model and Problem Statement

2.1.1 System Model

We consider an RFID system consisting of one or more readers, a backend server,
and a large number of tags. Each tag has a unique 96-bit ID according to the EPC
global Class-1 Gen-2 (C1G2) standard [9]. A tag is able to communicate with the
reader wirelessly and perform some computations such as hashing. The backend
server is responsible for data storage, information processing, and coordination. It is
capable of carrying out high-performance computations. Each reader is connected
to the backend server via a high speed wired or wireless link. If there are many
readers (or antennas), we divide them into non-interfering groups and any RFID
protocol can be performed for one group at a time, with the readers in that group
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executing the protocol in parallel. The readers in each group can be regarded as
an integrated unit, still called a reader for simplicity. Many works regarding multi-
reader coordination can be found in literature [5, 7, 17].

In practice, the tag-to-reader transmission rate and the reader-to-tag transmission
rate may be different and subject to the environment. For example, as specified
in the EPC global Class-1 Gen-2 standard, the tag-to-reader transmission rate is
40–640kbps in the FM0 encoding format or 5–320kbps in the Miller modulated
subcarrier encoding format, while the reader-to-tag transmission rate is about
26.7–128kbps. However, to simplify our discussions, we assume the tag-to-reader
transmission rate and the reader-to-tag transmission rate are the same, and it is
straightforward to adapt our protocol for asymmetric transmission rates.

2.1.2 Time Slots

The RFID reader and the tags in its coverage area use a framed slotted MAC
protocol to communicate. We assume that clocks of the reader and all tags in
the RFID system are synchronized by the reader’s signal. During each frame, the
communication is initialized by the reader in a request-and-response mode, namely
the reader broadcasts a request with some parameters to the tags and then waits for
the tags to reply in the subsequent time slots.

Consider an arbitrary time slot. We call it an empty slot if no tag replies in this
slot, or a busy slot if one or more tags respond in this slot. Generally, a tag just needs
to send one-bit information to make the channel busy such that the reader can sense
its existence. The reader uses “0” to represent an empty slot with an idle channel
and “1” for a busy slot with a busy channel. The length of a slot for a tag to transmit
a one-bit short response is denoted as ts. Note that ts can be set larger than the time
of one-bit data transmission for better tolerance of clock drift in tags. Some prior
RFID work needs another type of slots for transmission of tag IDs, which will be
introduced shortly.

2.1.3 Problem Statement

Suppose we are interested in a known set of tag IDs X D fx1; x2; x3; � � � g, each
xi 2 X is called a wanted tag. For example, the set may contain tag IDs on a certain
type of products under recall by a manufacturer. Let Y D f y1; y2; y3; � � � g be the
set of tags within the coverage area of an RFID system (e.g., in a warehouse). Each
xi or yi represents a tag ID. The tag search problem is to identify the subset W of
wanted tags that are present in the coverage area. Namely, W � X. Since each tag in
W is in the coverage area, W � Y . Therefore, W D X\Y . We define the intersection
ratio of X and Y as
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RINTS D jWj
minfjXj; j Yjg : (2.1)

Exactly finding W can be expensive if X and Y are very large. It is much more
efficient to find W approximately, allowing small bounded error [28]—all wanted
tags in the coverage area must be identified, but a few wanted ones that are not in
the coverage may be accidentally included.1

Our solution performs iteratively. Each round rules out some tags in X when it
becomes certain that they are not in the coverage area (i.e., Y), and it also rules out
some tags in Y when it becomes certain that they are not wanted ones in X. These
ruled-out tags are called non-candidate tags. Other tags that remain possible to be
in both X and Y are called candidate tags. At the beginning, the search result is
initialized to all wanted tags X. As our solution is iteratively executed, the search
result shrinks towards W when more and more non-candidates are ruled out.

Let W� be the final search result. We have the following two requirements:

1. All wanted tags in the coverage area must be detected, namely W � W�.
2. A false positive occurs when a tag in X � W is included in W�, i.e., a tag not in

the coverage area is kept in the search result by the reader.2 The false-positive
ratio is the probability for any tag in X � W to be in W� after the execution of
a search protocol. We want to bound the false-positive ratio by a pre-specified
system requirement PREQ, whose value is set by the user. In other words, we
expect

jW� � Wj
jX � Wj � PREQ: (2.2)

Notations used in this chapter are given in Table 2.1 for quick reference.

2.2 Related Work

2.2.1 Tag Identification

A straightforward solution for the tag search problem is identifying all existing tags
in Y . After that, we can apply an intersection operation X \ Y to compute W. EPC
C1G2 standard assumes that the reader can only read one tag ID at a time. Dynamic
Framed Slotted ALOHA (DFSA) [4, 8, 19–21] is implemented to deal with tag
collisions, where each frame consists of a certain number of equal-duration slots.

1If perfect accuracy is necessary, a post step may be taken by the reader to broadcast the identified
IDs. As the wanted tags in the coverage reply after hearing their IDs, those mistakenly included
tags can be excluded due to non-response to these IDs.
2The nature of our protocol guarantees that all tags in Y � W are not included in W�.
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Table 2.1 Notations

Symbols Descriptions

X Set of wanted tags

Y Set of tags in the RFID system

W Intersection of X and Y , i.e., W D X \ Y

Xi Set of remaining candidate tags in X, i.e., search result

at the beginning of the ith round of our protocol;

Yi Set of remaining candidate tags in Y at the beginning

of the ith round of our protocol

Ui Difference between Xi and W, i.e., Ui D Xi � W

Vi Difference between Yi and W, i.e., Vi D Yi � W

j � j Cardinality of the set

h.�/ A uniform hash function

FV.�/ Filtering vector of a set

It is proved that the theoretical upper bound of identification throughput using DFSA
is approximately 1

e tags per slot (e is the natural constant), which is achieved when
the frame size is set equal to the number of unidentified tags [25]. As specified in
EPC C1G2, each slot consists of the transmissions of a QueryAdjust or QueryRep
command from the reader, one tag ID, and two 16-bit random numbers: one for
the channel reservation (collision avoidance) sent by the tags, and the other for
ACK/NAK transmitted by the reader. We denote the duration of each slot for tag
identification as tl. Therefore, the lower bound of identification time for tags in Y
using DFSA is

TDFSA D e � j Yj � tl: (2.3)

One limitation of the current DFSA is that the information contained in collision
slots is wasted. Some recent work [3, 12, 15, 16, 24, 27] focuses on Collision
Recovery (CR) techniques, which enable the resolution of multiple tag IDs from a
collision slot. Benefiting from the CR techniques, the identification throughput can
be dramatically improved up to 3.1 tags per slot in [16]. Suppose the throughput is
� tags per slot after adopting the CR techniques. The lower bound for identification
time is

TCR D j Yj
�

� tl: (2.4)

Note that after employing the CR techniques the real duration of each slot can be
longer than tl. The reason is that the reader may need to acknowledge multiple tags
and the tags may need to send extra messages to facilitate collision recovery.
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2.2.2 Polling Protocol

The polling protocol provides an alternative solution to the tag search problem.
Instead of collecting all IDs in Y , the reader can broadcast the IDs in X one by
one. Upon receiving an ID, each tag checks whether the received ID is identical to
its own. If so, the tag transmits a one-bit short response to notify the reader about its
presence; otherwise, the tag keeps silent. Hence, the execution time of the polling
protocol is

TPolling D jXj � .tid C ts/; (2.5)

where tid is the time cost for the reader to broadcast a tag ID.
The polling protocol is very efficient when jXj is small. However, it also has

serious limitations. First, it does not work well when jXj � j Yj. Second, the energy
consumption of tags (particularly when active tags are used) is significant because
tags in Y have to continuously listen to the channel and receive a large number of
IDs until its own ID is received.

2.2.3 CATS Protocol

To address the problems of the tag identification and polling protocols, Zheng et al.
design a two-phase protocol named Compact Approximator based Tag Searching
protocol (CATS) [28], which is the most efficient solution for the tag search problem
to date.

The main idea of the CATS protocol is to encode tag IDs into a Bloom filter and
then transmit the Bloom filter instead of the IDs. In its first phase, the reader encodes
all IDs of wanted tags in X into an L1-bit Bloom filter, and then broadcasts this
filter together with some parameters to tags in the coverage area. Having received
this Bloom filter, each tag tests whether it belongs to the set X. If the answer is
negative, the tag is a non-candidate and will keep silent for the remaining time. After
the filtration of phase one, the number of candidate tags in Y is reduced. During the
second phase, the remaining candidate tags in Y report their presence in a second
L2-bit Bloom filter constructed from a frame of time slots ts. Each candidate tag
transmits in k slots that it is mapped to. Listening to channel, the reader builds the
Bloom filter based on the status of the time slots: “0” for an idle slot where no tag
transmits, and “1” for a busy slot where at least one tag transmits. Using this Bloom
filter, the reader conducts filtration for the IDs in X to see which of them belong to
Y , and the result is regarded as X \ Y .

With a pre-specified false-positive ratio requirement PREQ, the CATS protocol
uses the following optimal settings for L1 and L2:



14 2 Efficient Tag Search in Large RFID Systems

L1 D jXj log�

�
� ˛jXj

ˇj Yj ln PREQ

�
; (2.6)

L2 D jXj
ln �

�
ln PREQ � ˛

ˇ

�
; (2.7)

where � is a constant that equals 0.6185, ˛ and ˇ are constants pertaining to the
reader-to-tag transmission rate and the tag-to-reader transmission rate, respectively.
In CATS, the authors assume ts is the time needed to delivering one-bit data, and
˛ D ˇ, i.e., the reader-to-tag transmission rate and the tag-to-reader transmission
rate are identical. Therefore, the total search time of the CATS protocol is

TCATS D .L1 C L2/ � ts

D jXj
�

log�

� �jXj
j Yj ln PREQ

�
C ln PREQ � 1

ln �

�
� ts:

(2.8)

2.3 A Fast Tag Search Protocol Based on Filtering Vectors

This section presents an Iterative Tag Search Protocol (ITSP) to solve the tag search
problem in large-scale RFID systems. We will ignore channel error for now and
delay this subject to Sect. 2.4.

2.3.1 Motivation

Although the CATS protocol takes a significant step forward in solving the tag
search problem, it still has several important drawbacks. First, when optimizing
the Bloom filter sizes L1 and L2, CATS approximates jX \ Yj simply as jXj.
This rough approximation may cause considerable overhead when jX \ Yj deviates
significantly from jXj.

Second, it assumes that jXj < j Yj in its design and formula derivation. In reality,
the number of wanted tags may be far greater than the number in the coverage area of
an RFID system. For example, there may be a huge number jXj of tagged products
that are under recall, but as the products are distributed to many warehouses, the
number j Yj of tags in a particular warehouse may be much smaller than jXj.
Although CATS can still work under conditions of jXj >> j Yj, it will become
less efficient as our simulations will demonstrate.

Third, the performance of CATS is sensitive to the false-positive ratio require-
ment PREQ. The performance deteriorates when the value of PREQ is very small.
While the simulations in [28] set PREQ = 5 %, its value may have to be much smaller
in some practical cases. For example, suppose jXj D 100;000, and jWj D 1000. If
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we set PREQ D 5 %, the number of wanted tags that are falsely claimed to be in Y
by CATS will be up to jX � Wj � PREQ D 4995, far more than the 1000 wanted tags
that are actually in Y .

We will show that an iterative way of implementing Bloom filters is much more
efficient than the classical way that the CATS protocol adopts.

2.3.2 Bloom Filter

A Bloom filter is a compact data structure that encodes the membership for a set of
items. To represent a set S D fe1; e2; � � � ; eng using a Bloom filter, we need a bit
array of length l in which all bits are initialized to zeros. To encode each element
e 2 S, we use k hash functions, h1, h2, � � � , hk, to map the element randomly to k bits
in the bit array, and set those bits to ones. For membership lookup of an element b,
we again map the element to k bits in the array and see if all of them are ones. If so,
we claim that b belongs to S; otherwise, it must be true that b … S. A Bloom filter
may cause false positive: a non-member element is falsely claimed as a member
in S. The probability for a false positive to occur in a membership lookup is given
as follows [2, 23]:

PB D
 

1 �
�

1 � 1

l

�kn
!k

� �
1 � e�kn=l

�k
: (2.9)

When k D ln 2 � l
n , PB is approximately minimized to

�
1
2

�k D �
1
2

�ln 2 l
n . In order to

achieve a target value of PB, the minimum size of the filter is � ln PB
.ln 2/2 n.

CATS sends one Bloom filter from the reader to tags and another Bloom filter
from tags back to the reader. Consider the first Bloom filter that encodes X. As
n D jXj, the filter size is � ln PB

.ln 2/2 jXj. As an example, to achieve PB D 0:001, the
size becomes 14:4 � jXj bits. Similarly, the size of the second filter from tags to the
reader is also related to the target false-positive probability.

Below we show that the overall size of the Bloom filter can be significantly
reduced by reconstructing it as filtering vectors and then iteratively applying these
vectors.

2.3.3 Filtering Vectors

A Bloom filter can also be implemented in a segmented way. We divide its bit array
into k equal segments, and the ith hash function will map each element to a random
bit in the ith segment, for i 2 Œ1:::k�. We name each segment as a filtering vector
(FV), which has l=k bits. The following formula gives the false-positive probability
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of a single filtering vector, i.e., the probability for a non-member to be hashed to a
“1” bit in the vector:

PFV D 1 �
�

1 � 1

l=k

�n

� 1 � e�kn=l: (2.10)

Since there are k independent segments, the overall false-positive probability of a
segmented Bloom filter is

PFP D . PFV/k � �
1 � e�kn=l

�k
; (2.11)

which is approximately the same as the result in (2.9). It means that the two ways
of implementing a Bloom filter have similar performance. The value PFP is also
minimized when k D ln 2 � l

n . Hence, the optimal size of each filtering vector is

l

k
D n

ln 2
; (2.12)

which results in

PFV � 1

2
: (2.13)

Namely, each filtering vector on average filters out half of non-members.
Figure 2.1 illustrates the concept of filtering vectors. Suppose we have two

elements a and b, two hash function h1 and h2, and an 8-bit bit array. First,
suppose h1.a/ mod 8 = 1, h1.b/ mod 8 = 7, h2.a/ mod 8 = 5, h2.b/ mod 8 = 2,
and we construct a Bloom filter for a and b in the upper half of the figure. Next, we
divide the bit array into two 4-bit filtering vectors, and apply h1 to the first segment
and h2 to the second segment. Since h1.a/ mod 4 = 1, h1.b/ mod 4 = 3, h2.a/ mod 4
= 1, h2.b/ mod 4 = 2, we build the two filtering vectors in the lower half of the figure.

Fig. 2.1 Bloom filter and
filtering vectors
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110 0
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h1(a) h2(b) h1(b)h2(a)

Bloom filter

110 0
1st  FV
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2nd FV
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Fig. 2.2 Iterative use of filtering vectors. Each arrow represents one filtering vector, and the length
of the arrow indicates the filtering vector’s size, which is specified to the right. As the size shrinks
in subsequent rounds, the total amount of data exchanged between the reader and the tags is
significantly reduced

2.3.4 Iterative Use of Filtering Vectors

In this work, we use filtering vectors in a novel iterative way: Bloom filters between
the reader and tags are exchanged in rounds; one filtering vector is exchanged in
each round, and the size of filtering vector is continuously reduced in subsequent
rounds, such that the overall size of each Bloom filter is much reduced.

Below we use a simplified example to explain the idea, which is illustrated in
Fig. 2.2: Suppose there is no wanted tag in the coverage area of an RFID reader,
namely X \ Y D ;. In round one, we firstly encode X in a filtering vector of size
jXj= ln 2 through a hash function h1, and broadcast the vector to filter tags in Y .
Using the same hash function, each candidate tag in Y knows which bit in the vector
it is mapped to, and it only needs to check the value of that bit. If the bit is zero,
the tag becomes a non-candidate and will not participate in the protocol execution
further. The filtering vector reduces the number of candidate tags in Y to about
j Yj � PFV � j Yj=2. Then a filtering vector of size j Yj=.2 ln 2/ is sent from the
remaining candidate tags in Y back to the reader in a way similar to [28]: Each
candidate tag hashes its ID to a slot in a time frame and transmit one-bit response in
that slot. By listening to the states of the slots in the time frame, the reader constructs
the filtering vector, “1” for busy slots and “0” for empty slots. The reader uses this
vector to filter non-candidate tags from X. After filtering, the number of candidate
tags remaining in X is reduced to about jXj � PFV � jXj=2. Only the candidate tags
in X need to be encoded in the next filtering vector, using a different hash function
h2. Hence, in the second round, the size of the filtering vector from the reader to
tags is reduced by half to jXj=.2 ln 2/, and similarly the size of the filtering vector
from tags to the reader is also reduced by half to j Yj=.4 ln 2/. Repeating the above
process, it is easy to see that in the ith round, the size of the filtering vector from
the reader to tags is jXj=.2i�1 ln 2/, and the size of the filtering vector from tags
to the reader is j Yj=.2i ln 2/. After K rounds, the total size of all filtering vectors
from the reader to tags is
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1

ln 2

KX
iD1

jXj
2i�1

<
2jXj
ln 2

; (2.14)

where 2jXj
ln 2

is an upper bound, regardless of the number K of rounds (i.e., regardless
of the requirement on the false-positive probability). It compares favorably to CATS
whose filter size, � ln PB

.ln 2/2 jXj, grows inversely in PB, and reaches 14:4�jXj bits when
PB D 0:001 in our earlier example.

Similarly, the total size of all filtering vectors from tags to the reader is

1

ln 2

KX
iD1

j Yj
2i

<
j Yj
ln 2

; (2.15)

and PFP D .PFV/K � �
1
2

�K
. We can make PFP as small as we like by increasing

n, while the total transmission overhead never exceeds 1
ln 2

.2jXj C j Yj/ bits. The
strength of filtering vectors in bidirectional filtration lies in their ability to reduce the
candidate sets during each round, thereby diminishing the sizes of filtering vectors in
subsequent rounds and thus saving time. Its power of reducing subsequent filtering
vectors is related to jX � Wj and j Y � Wj. The more the numbers of tags outside
of W, the more they will be filtered in each round, and the greater the effect of
reduction.

2.3.5 Generalized Approach

Unlike the CATS protocol, our iterative approach divides the bidirectional filtration
in tag search process into multiple rounds. Before the ith round, the set of candidate
tags in X is denoted as Xi (� X), which is also called the search result after the
.i � 1/th round. The final search result is the set of remaining candidate tags in X
after all rounds are completed. Before the ith round, the set of candidate tags in Y
is denoted as Yi (� Y). Initially, X1 D X and Y1 D Y . We define Ui D Xi � W and
Vi D Yi � W, which are the tags to be filtered out. Because W is always a subset of
both Xi and Yi, we have

jUij D jXij � jWj
jVij D j Yij � jWj: (2.16)

Instead of exchanging a single filtering vector at a time, we generalize our
iterative approach by allowing multiple filtering vectors to be sent consecutively.
Each round consists of two phases. In phase one of the ith round, the RFID reader
broadcasts a number mi of filtering vectors, which shrink the set of remaining
candidate tags in Y from Yi to YiC1. In phase two of the ith round, one filtering
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filtering vectors
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Fig. 2.3 Generalized approach. Each round has two phases. In phase one, the reader transmits
zero, one, or multiple filtering vectors. In phase two, the tags send exactly one filtering vector to
the reader. In the example shown by the figure, m1 D 2 and m2 D 0, which means there are two
filtering vectors sent by the reader in the first round, while no filtering vector from the reader during
the second round

vector is sent from the remaining candidate tags in YiC1 back to the reader, which
uses the received filtering vector to shrink its set of remaining candidates from Xi

to XiC1, setting the stage for the next round. This process continues until the false-
positive ratio meets the requirement of PREQ.

The values of mi will be determined in the next subsection. If mi > 0, multiple
filtering vectors will be sent consecutively from the reader to tags in one round.
If mi D 0, no filtering vector is sent from the reader in this round. When this
happens, it essentially allows multiple filtering vectors to be sent consecutively from
tags to the reader (across multiple rounds). An illustration is given in Fig. 2.3.

2.3.6 Values of mi

Let K be the total number of rounds. After all K rounds, we use XKC1 as our search
result. There are in total K filtering vectors sent from tags to the reader. We know
from Sect. 2.3.3 that each filtering vector can filter out half of non-members (in our
case, tags in X�W). To meet the false-positive ratio requirement PREQ, the following
constraint should hold:

. PFV/K �
�

1

2

�K

� PREQ: (2.17)

Hence, the value of K is set to d� ln PREQ

ln 2
e. (We will discuss how to guarantee meeting

the requirement PREQ in Sect. 2.3.9.)
Next, we discuss how to set the values of mi, 1 � i � K, in order to minimize

the execution time of each round. We use FV.�/ to denote the filtering vector of a
set. In phase one of the ith round, the reader builds mi filtering vectors, denoted as
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FVi1.Xi/, FVi2.Xi/, � � � , FVimi.Xi/, which are consecutively broadcasted to the tags.
From (2.12), we know the size of each filtering vector is jXij= ln 2. After the filtration
based on these vectors, the number of remaining candidate tags in YiC1 is on average

j YiC1j � jVij � . PFV/mi C jWj
� jVij � .1=2/mi C jWj
D jVij=2mi C jWj:

(2.18)

In phase two of the ith round, the tags in YiC1 use a time frame of 1
ln 2

� j YiC1j slots
to report their presence. After receiving the responses, the reader builds a filtering
vector, denoted as FVi.YiC1/. After the filtration based on FVi.YiC1/, the size of the
search result XiC1 is on average

jXiC1j � jUij � PFV C jWj
� jUij=2 C jWj
D .jXij C jWj/=2:

(2.19)

We denote the transmission time of the ith round by f .mi/. In order to make a fair
comparison with CATS, we utilize the parameter setting that conforms with [28].
Therefore, f .mi/ D 1

ln 2
� mi � jXij � ts C 1

ln 2
� j YiC1j � ts, which is set to be:

f .mi/ D ts
ln 2

.mijXij C jVij=2mi C jWj/ : (2.20)

To find the value of mi that minimizes f .mi/, we take the first-order derivative and
set the right side to zero.

df .mi/

dmi
D ts

ln 2
.jXij � ln 2jVij=2mi/ D 0 (2.21)

Hence, the value of f .mi/ is minimized when

mi D ln.ln 2jVij=jXij/
ln 2

: (2.22)

Because mi cannot be a negative number, we reset mi D 0 if ln.ln 2jVij=jXij/
ln 2

< 0.

Furthermore, mi must be an integer. If ln.ln 2jVij=jXij/
ln 2

is not an integer, we round mi

either to the ceiling or to the floor, depending on which one results in a smaller value
of f .mi/.

For now, we assume that we know jWj and j Yj in our computation of mi. Later
we will show how to estimate these values on the fly in the execution of each round
of our protocol. Initially, jX1j .D jXj/ is known. jV1j can be calculated from (2.16).
Hence, the value of m1 can be computed from (2.22). After that, we can estimate
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j Y2j, jX2j, and jV2j based on (2.18), (2.19), and (2.16), respectively. From jX2j
and jV2j, we can calculate the value m2. Following the same procedure, we can
iteratively compute all values of mi for 1 � i � K.

We find it often happens that the mi sequence has several consecutive zeros at the
end, that is, 9p < K, mi D 0 for i 2 Œ p; K�. In this case, we may be able to further
optimize the value of mp with a slight adjustment. We first explain the reason for
mp D 0: It costs some time for the reader to broadcast a filtering vector in phase
one of the pth round. It is true that this filtering vector can reduce set Yp, thereby
reducing the frame size of phase two in the pth round. However, if the time cost of
sending the filtering vector cannot be compensated by the time reduction of phase
two, it will be better off to remove this filtering vector by setting mp D 0. (This
situation typically happens near the end of the mi sequence because the number of
unwanted tags in the remaining candidate set Yp is already very small.) But if all
values of mi in the subsequent rounds (after mp) are zeros, increasing mp to a non-
zero value m0

p may help reduce the transmission time of phase two of all subsequent
rounds, and the total time reduction may compensate more than the time cost of
sending those m0

p filtering vectors.
Consider the transmission time of these .K � p C 1/ rounds as a whole, denoted

by G.m0
p; p/. It is easy to derive

G.m0
p; p/ D

�
m0

p

ln 2
jXpj C K � p C 1

ln 2

� jVpj
2m0

p
C jWj

��
ts: (2.23)

To minimize G.m0
p; p/, we have

m0
p D

(
0 if � < 0

� if � 	 0
(2.24)

where � D ln.ln 2.K�pC1/jVpj=jXpj/
ln 2

. As a result, mp is updated to m0
p, while other mi,

i ¤ p, remains unchanged.
Here, we give an example to illustrate how to calculate the values of mi. Suppose

jXj D 5000, j Yj D 50;000, jWj D 500, and PREQ D 0:001, so K D d � ln 0:001
ln 2

e D
10. Using (2.22), we can calculate the values from m1 to m10. The result is listed
in Table 2.2. There is a sequence of zeros from m7 to m10. Thus, we can make an
improvement using (2.24), and the optimized result is shown in Table 2.3.

Table 2.2 The initial values
of mi.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 0 0 0 0
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Table 2.3 The optimized
values of mi.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 2 0 0 0

2.3.7 Iterative Tag Search Protocol

Having calculated the values of mi, we can present our iterative tag search protocol
(ITSP) based on the generalized approach in Sect. 2.3.5. The protocol consists of K
iterative rounds. Each round consists of two phases. Consider the ith round, where
1 � i � K.

2.3.7.1 Phase One

The RFID reader constructs mi filtering vectors for Xi using mi hash functions.
According to (2.12), we set the size LXi of each filtering vector as

LXi D 1

ln 2
� jXij: (2.25)

The RFID reader then broadcasts those filtering vectors one by one. Once receiving
a filtering vector, each tag in Yi maps its ID to a bit in the filtering vector using
the same hash function that the reader uses to construct the filter. The tag checks
whether this bit is “1”. If so, it remains a candidate tag; otherwise, it is excluded
as a non-candidate tag and drops out of the search process immediately. The set of
remaining candidate tags is YiC1.

If the filtering vectors are too long, the reader divides each vector into blocks of
a certain length (e.g., 96 bits) and transmits one block after another. Knowing which
bit it is mapped to, each tag only needs to record one block that contains its bit.

From (2.13), we know that the false-positive probability after using mi filtering
vectors is .PFV/mi � .1=2/mi . Therefore, j YiC1j � jVij � .PFV/mi C jWj � jVij=2mi

C jWj.

2.3.7.2 Phase Two

The reader broadcasts the frame size LYiC1
of phase two to the tags, where

LYiC1
D 1

ln 2
.jVij=2mi C jWj/ : (2.26)

After receiving LYiC1
, each tag in YiC1 randomly maps its ID to a slot in the time

frame using a hash function and transmits a one-bit short response to the reader in
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that slot. Based on the observed state (busy or empty) of the slots in the time frame,
the reader builds a filtering vector, which is used to filter non-candidates from Xi.

The overall transmission time of all K rounds in the ITSP is

TITSP D
KX

iDi

.mi � LXi C LYiC1
/ � ts: (2.27)

2.3.8 Cardinality Estimation

Recall from Sect. 2.3.6 that we must know the values of jXij, jWj, and jVij to
determine mi, LXi , and LYiC1

. It is trivial to find the value of jXij by counting the
number of tags in the search result of the .i � 1/th round. Meanwhile, we know
jVij � jVi�1j=2mi�1 and jV1j D j Y1j � jWj. Therefore, we only need to estimate jWj
and j Y1j.

Besides serving as a filter, a filtering vector can also be used for cardinality
estimation, a feature that is not exploited in [28]. Since no filtering vector is available
at the very beginning, the first round of the ITSP should be treated separately:
We may use the efficient cardinality estimation protocol ART [26] to estimate j Yj
(i.e., j Y1j) if its value is not known at first. As for jWj, it is initially assumed to be
min fjXj; j Yjg.

Next, we can take advantage of the filtering vector received by the reader in
phase two of the ith (i 	 1) round to estimate jWj without any extra transmission
expenditure. The estimation process is as follows: First, counting the actual number
of “1” bits in the filtering vector, denoted as N�

1 , we know the actual false-positive
probability of using this filtering vector, denoted by P�

i , is

P�
i D N�

1 =LYiC1
; (2.28)

because an arbitrary unwanted tag has a chance of N�
1 out of LYiC1

to be mapped to a
“1” bit, where LYiC1

is the size of the vector. Meanwhile, we can record the number
of tags in the search results before and after the ith round, i.e., jXij and jXiC1j,
respectively. We have jXij D jUij C jWj, jXiC1j D jUiC1j C jWj, and jUiC1j �
jUij � P�

i . Therefore,

jWj � jXiC1j � jXij � P�
i

1 � P�
i

: (2.29)

For the purpose of accuracy, we may estimate jWj after every round, and obtain the
average value.
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2.3.9 Additional Filtering Vectors

Estimation may have error. Using the values of mi and LYi computed from estimated
jWj and j Yij, a direct consequence is that the actual false-positive ratio, denoted as
PT , can be greater than the requirement PREQ. Fortunately, from (2.28), the reader is
able to compute the actual false-positive ratio P�

i , 1 � i � k, of each filtering vector
received in phase two of the ITSP. Thus, we have

PT D
KY
1

P�
i : (2.30)

If PT > PREQ, our protocol will automatically add additional filtering vectors to
further filter XKC1 until PT � PREQ (as described in Sect. 2.3.4).

2.3.10 Hardware Requirement

ITSP cannot be supported by off-the-shelf tags that conform to the EPC Class-
1 Gen-2 standard [9], whose limited hardware capability constrains the functions
which can be supported. By our design, most of the ITSP protocol’s complexity
is on the reader side, but tags also need to provide certain hardware support. Besides
the mandatory commands of C1G2 (e.g., Query, Select, and Read), in order for a tag
to execute the ITSP protocol, we need a new command defined in the set of optional
commands, asking each awake tag to listen to the reader’s filtering vector, hash its
ID to a certain slot of the vector for its bit value, keep silent and go sleep if the value
is zero, and respond in a hashed slot (by making a transmission to make the channel
busy) if the value is one. Note that the tag does not need to store the entire filtering
vector, but instead only need to count to the slot it is hashed to, and retrieve the value
(0/1) carried in that slot.

Hardware-efficient hash functions [1, 13, 22] can be found in the literature.
A hash function may also be derived from the pseudo-random number generator
required by the C1G2 standard. To keep the complexity of a tag’s circuit low,
we only use one uniform hash function h.�/, and use it to simulate multiple
independent hash functions: In phase one of the ith round, we use h.�/ and mi

unique hash seeds fs1; s2; � � � ; smig to achieve mi independent hash outputs. Thus,
a tag id is mapped to bit locations .h.id ˚ s1/ mod LXi/, .h.id ˚ s2/ mod LXi/,
� � � , .h.id ˚ smi/ mod LXi/ in the mi filtering vectors, respectively. Each hash seed,
together with its corresponding filtering vector, will be broadcast to the tags.
In phase two of the ith round, the reader generates a new hash seed s0 and
sends it to the tags. Each candidate tag in YiC1 maps its id to the slot of index�
h.id ˚ s0/ mod LYiC1

�
, and then transmits a one-bit short response to the reader in

that slot.
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2.4 ITSP over Noisy Channel

So far the ITSP assumes that the wireless channel between the RFID reader and
tags is reliable. Note that the CATS protocol does not consider channel error, either.
However, it is common in practice that the wireless channel is far from perfect due
to many different reasons, among which interference noise from nearby equipment,
such as motors, conveyors, robots, wireless LAN’s, and cordless phones, is a crucial
one. Therefore, this section is to enhance ITSP by making it robust against noise
interference.

2.4.1 ITSP with Noise on Forward Link

The reader transmits at a power level much higher than the tags (which after
all backscatter the reader’s signals in the case of passive tags). It has been
shown that the reader may transmit more than one million times higher than tag
backscatter [14]. Hence, the forward link (reader to tag) communication is more
resilient against channel noise than the reverse link (tag to reader). To provide
additional assurance against noise for forward link, we may use CRC code for
error detection. The C1G2 standard requires the tags to support the computation
of CRC-16 (16-bit CRC) [9], which therefore can also be adopted by future tags
modified for ITSP. Each filtering vector built by the reader can be regarded as a
combination of many small segments with fixed size of lS bits (e.g., lS D 80). For
each segment, the reader computes its 16-bit CRC and appends it to end of that
segment. Those segments are then concatenated and transmitted to tags. When a
tag receives a filtering vector, it first finds the segment it hashes to and computes
the CRC of that segment. If the calculated CRC matches the attached one, it will
determine its candidacy by checking the bit in the segment which it maps to. For
mismatching CRC, the tag knows that the segment has been corrupted, and it will
remain as a candidate tag regardless of the value of the bit which it maps to.

Suppose we let lS D 80, then

LXi D
1

ln 2
� jXij
lS

� .lS C 16/ D 1:2jXj
ln 2

: (2.31)

We assume the probability that the noise corrupts each segment is PS (PS is expected
to be very small as explained above). A corrupted segment can be thought as
consisting of all “1”s. Hence, the false-positive probability for a filtering vector sent
by reader, denoted by PRT , is roughly
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PRT �
LXi
96

� PS � lS C LXi
96

� .1 � PS/ � lS � PFV

LXi
96

� lS

D 1 C PS

2
:

(2.32)

We can also get

j YiC1j � jVij � . PRT/mi C jWj (2.33)

and now (2.20) can be rewritten as

f .mi/ D ts
ln 2

�
1:2mijXij C

�
1 C PRT

2

�mi

jVij C jWj
�

: (2.34)

Therefore, f .mi/ is optimized when

mi D lnŒ.ln 2 � ln.1 C PRT//jVij=1:2jXij�
ln 2 � ln.1 C PRT/

: (2.35)

2.4.2 ITSP with Noise on Reverse Link

Now let us study the noise on the reverse link and its effect on the ITSP. Since the
backscatter from a tag is much weaker than the signal transmitted by the reader, the
reverse link is more likely to be impacted by noise.

First, channel noise may corrupt a would-be empty slot into a busy slot. The
original empty slot is supposed to be translated into a “0” bit in the filtering vector
by the reader; if a candidate tag is mapped to that bit, it is ruled out immediately.
However, if that slot is corrupted and becomes a busy slot, the corresponding
bit turns into “1”; a tag mapped to that bit will remain a candidate tag, thereby
increasing the false-positive probability of the filtering vector.

Second, noise may also occur during a busy slot. Although the noise and the
transmissions from tags may partially cancel each other in a slot if they happen
to reach the reader in opposite phase, it is extremely unlikely that they will exactly
eliminate each other. As long as the reader can still detect some energy, regardless of
its source (it may even come from the noise), that slot will be correctly determined
as a busy slot, and the corresponding bit in the filtering vector is set to “1” just as it is
supposed to be. However, if we take the propagation path loss, including reflection
loss, attenuation loss, and spreading loss [11], into account, there is still a chance
that a busy slot may not be detected by the reader. This may happen in a time-varying
channel where the reader may fail in receiving a tag’s signal during a deeply faded
slot when the tag transmits. We stress that this is not a problem unique to ITSP, but
all protocols that require communications from tags to readers will suffer from this
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problem if it happens that the reader cannot hear the tags. ITSP is not robust against
this type of error. But there exists ways to alleviate this problem—for instance, each
filtering vector from tags to the reader is transmitted twice. As long as a slot is busy
in one of two transmissions, the slot is considered to be busy.

Next, we will investigate the reverse link with noise interference for ITSP under
two error models.

2.4.2.1 ITSP Under Random Error Model (ITSP-rem)

The random error model is characterized by a parameter called error rate PERR,
which means every slot independently has a probability PERR to be corrupted by
the noise. Influencing by the channel noise, the reader can detect more busy slots
as some empty slots turn into busy ones, which raises the false-positive probability
of phase-two filtering vectors. Suppose the frame size of phase two in a certain
round is l, the original number of busy slots is about l � PFV � l=2. At the reader’s
side, however, the number of busy slots averagely increases to l=2 C l=2 � PERR D
.1CPERR/�l

2
. After encoding the slot status into a filtering vector, the false-positive

probability of that filtering vector is

P0
FV �

.1CPERR/�l
2

l
D 1 C PERR

2
: (2.36)

To satisfy the false-positive ratio requirement,
�
P0

FV

�K � PREQ should hold.
Therefore, the search process of ITSP-rem contains at least

K D d ln PREQ

lnŒ.1 C PERR/=2�
e (2.37)

rounds. Also, we can derive

jXiC1j � jUij � P0
FV C jWj

� jUij.1 C PERR/=2 C jWj: (2.38)

With K, jXij, j Yij and mi, 1 � i � K, the search time of ITSP-rem can be calculated
using (2.31) (2.26) (2.27).

2.4.2.2 ITSP Under Burst Error Model (ITSP-bem)

In telecommunication, a burst error is defined as a consecutive sequence of received
symbols, where the first and last symbols are in error, and there exists no continuous
subsequence of m (m is a specified parameter called the guard band of the error
burst) correctly received symbols within the error burst [10]. A burst error model
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describes the number of bursts during an interval and the number of incorrect
symbols in each burst error, which differs greatly from the random error model.

According to the burst error model presented in [6], both the number of bursts
in an interval and the number of errors in each burst have Poisson distributions.
Assume the expected number of bursts in an l-bit interval is �, the probability
distribution function for the number of bursts can be expressed as

h.x/ D
1X

iD0

�i

iŠ
e��ıxi; (2.39)

where ıxi is the Kronecker delta function [18]. Meanwhile, if the mean value of
errors due to a burst in the l bits is � , then the probability distribution function of the
number of error is given by

g. y/ D
1X

jD0

� j

jŠ
e�� ıyj: (2.40)

Therefore, the probability of having w errors in an interval of l bits is

Pl.w/ D e�� �w

wŠ

1X
iD0

iw

iŠ
�ie�i� : (2.41)

In other words, for a frame with l slots, the probability that w slots will be corrupted
by the burst noise is Pl.w/.

Now we evaluate the ITSP under the burst error model, denoted as ITSP-bem.
Given a filtering vector with size of l-bit, recall from (2.41) that the probability of
having w errors in this l-bit vector is Pl.w/. In this case, each original “0” bit has a
probability w

l to be corrupted by the errors, and becomes a “1” bit. Consequently,
the false-positive probability of the filtering vector is expected to be:

P0
FV � 1

2
C 1

2

lX
wD0

Pl.w/ � w

l
: (2.42)

After obtaining the value of P0
FV , the ITSP-bem can use (2.37), (2.38), to determine

the values of other necessary parameters.
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2.5 Performance Evaluation

2.5.1 Performance Metric

We compare our protocol ITSP with CATS [28], the polling protocol (Sect. 2.2.2),
the optimal DFSA (dynamic frame slotted ALOHA), and a tag identification
protocol with collision recovery [15], denoted as CR, which identifies 4.8 tags per
slot on average, about 13 times the speed of the optimal DFSA. For ITSP and CATS,
their Bloom filters (or filtering vectors) constitute most of the overall transmission
overhead, while other transmission cost, such as transmission of hash seeds, is
comparatively negligible. Both protocols need to estimate the number of tags in
the system, j Yj, as a pre-protocol step. According to the results presented in [28],
the time for estimating j Yj takes up less than 2 % of the total execution time of
CATS. Hence, we do not count the estimation time of j Yj in the simulation results
because it is relatively small and does not affect fair comparison as both protocols
need it. Consequently, the key metric concerning the time efficiency is the total size
of Bloom filters or filtering vectors, and then (2.8) can be used for calculating the
search time required by CATS, while (2.27) for ITSP.

After the search process is completed, we will calculate the false -positive ratio
PFP using PFP D jW��Wj

jX�Wj , where W� is the set of tags in the search result and W is
the actual set of wanted tags in the coverage area. PFP will be compared with PREQ

to see whether the search result meets the false -positive ratio requirement.

2.5.2 Performance Comparison

We evaluate the performance of our protocol and compare it with the CATS
protocol. In the first set of simulations, we set PREQ D 0:001, fix j Yj D 50;000,
vary jXj from 5000 to 640,000, and let RINTS = 0.1, 0.3, 0.5, 0.7, 0.9. In the second
set of simulations, we set PREQ D 0:001, fix jXj D 10;000, vary j Yj from 1250 to
40,000 to investigate the scalability of ITSP with tag population from a large range,
and let RINTS = 0.1, 0.3, 0.5, 0.7, 0.9. For simplicity, we assume tid D 96ts, and
tl D 137ts, in which a 9-bit QueryAdjust or a 4-bit QueryRep command, a 96-bit
ID and two 16-bit random numbers can be transmitted. Tables 2.4 and 2.5 show
the number of ts slots needed by the protocols under different parameter settings.
Each data point in these tables or other figures/tables in the rest of the section is
the average of 500 independent simulation runs with ˙5 % or less error at 95 %
confidence level.

From the tables, we observe that when RINTS is small (which means jWj is small),
the ITSP performs much better than the CATS protocol. For example, in Table 2.4,
when RINTS D 0:1, the ITSP reduces the search time of the CATS protocol by as
much as 90.0 %. As we increase RINTS (which implies larger jWj), the gap between
the performance of the ITSP and the performance of the CATS gradually shrinks.
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Table 2.4 Performance comparison of tag search protocols. CR means a tag identification
protocol with collision recovery techniques. j Yj D 50;000, PREQ D 0:001

ITSP (RINTS)

jXj 0.1 0.3 0.5 0.7 0.9 CATS Polling CR

5,000 61,463 96,989 105,828 108,346 124,553 126,370 485,000 1,427,083

10,000 108,017 145,553 206,709 199,586 231,236 238,313 970,000 1,427,083

20,000 185,204 255,898 335,426 397,462 403,954 447,772 1,940,000 1,427,083

40,000 304,767 467,433 512,156 598,718 678,066 837,837 3,880,000 1,427,083

80,000 414,686 590,150 656,426 721,347 721,347 1,560,259 7,760,000 1,427,083

160,000 472,677 630,669 721,347 721,347 721,347 2,889,689 15,520,000 1,427,083

320,000 529,835 668,794 721,347 721,347 721,347 5,317,715 31,040,000 1,427,083

640,000 573,270 696,015 721,347 721,347 721,347 10,533,732 62,080,000 1,427,083

Table 2.5 Performance comparison of tag search protocols. CR means a tag identification protocol
with collision recovery techniques. jXj D 10;000, PREQ D 0:001

ITSP (RINTS)

j Yj 0.1 0.3 0.5 0.7 0.9 CATS Polling CR

1,250 13,047 17,364 18,033 18,033 18,033 164,589 970,000 35,677

2,500 24,289 33,337 36,067 36,067 36,067 175,960 970,000 71,354

5,000 42,835 62,862 68,528 72,134 72,134 190,387 970,000 142,708

10,000 73,909 109,281 119,022 137,056 144,269 204,814 970,000 285,417

20,000 95,833 132,546 169,065 167,713 192,960 219,241 970,000 570,833

40,000 111,904 152,606 174,926 228,215 232,904 233,668 970,000 1,141,667

In particular, the CATS performs poorly when jXj 	 j Yj. But the ITSP can work
efficiently in all cases. In addition, the ITSP is also much more efficient than the
polling protocol, and any tag identification protocol with/without CR techniques.
Even in the worst case, the ITSP only takes about half of the execution time of a
tag identification protocol with CR techniques. (Note that the identification process
actually takes much more time since the throughput 4.8 tags per slot may not be
achievable in practical and the duration of each slot is longer.) In practice, the
wanted tags may be spatially distributed in many different RFID systems (e.g.,
warehouses in the example we use in the introduction), and thus RINTS can be small.
The ITSP is a much better protocol for solving the tag search problem in these
practical scenarios.

Another performance issue we want to investigate is the relationship between
the search time and PREQ. The polling protocol, DFSA, and CR do not have false
positive. Our focus will be on ITSP and CATS. We set jXj D 5000, 20;000 or
80;000, j Yj D 50;000, vary RINTS from 0.1 to 0.9, and vary PREQ from 10�6 to 10�2.
Figure 2.4 compares the search times required by the CATS and the ITSP under
different false -positive ratio requirements. Generally speaking, the gap between the
search time required by the ITSP and the search time by the CATS keeps getting
larger with the decrease of PREQ, particularly when RINTS is small. For example, in
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Fig. 2.4 Relationship between search time and PREQ. Parameter setting: j Yj D 50;000;
(a) jXj D 5000, (b) jXj D 20;000, (c) jXj D 80;000

Fig. 2.4c, when PREQ D 10�2 and RINTS D 0:1, the search time by the ITSP is about
one third of the time by the CATS; when we reduce PREQ to 10�6, the time by the
ITSP becomes about one fifth of the time by the CATS. The reason is as follows:
When RINTS is small, jWj is small and most tags in X and Y are non-candidates. After
several ITSP rounds, as many non-candidates are filtered out iteratively, the size of
filtering vectors decreases exponentially and therefore subsequent ITSP rounds do
not cause much extra time cost. This merit makes the ITSP particularly applicable
in cases where the false -positive ratio requirement is very strict, requiring many
ITSP rounds. On the contrary, the CATS protocol does not have this capability of
exploiting low RINTS values.

2.5.3 False -Positive Ratio

Next, we examine whether the search results after execution of the ITSP will indeed
meet the requirement of PREQ. In this simulation, we set the false-positive ratio
requirement based on the following formula:
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PREQ � jWj
� .jXj � jWj/ ; (2.43)

where � is a constant. We use an example to give the rationale: Consider an RFID
system with jXj D 20;000. If jWj D 10;000, PREQ D 0:01 may be good enough
because the number of false positives is about .jXj � jWj/ � PREQ D 100, which
is much fewer than jWj. However, if jWj D 10, PREQ D 0:01 may become
unacceptable since .jXj � jWj/ � PREQ � 200 � jWj. Therefore, it is desirable
to set the value of PREQ such that the number of false positives in the search result
is much smaller than jWj, namely .jXj � jWj/ � PREQ � 1

�
jWj. Let � D 10 and we

test the ITSP under three different parameter settings:

(1) jXj D 5000, j Yj D 50;000, and RINTS varies from 0.1 to 0.9, i.e., jWj varies
from 500 to 4500. PREQ � 500

10�.5000�500/
� 0:01111. We set PREQ D 10�2.

(2) jXj D 20;000, j Yj D 50;000, and RINTS varies from 0.01 to 0.9, i.e., jWj varies
from 200 to 18,000. PREQ � 200

10�.20;000�200/
� 0:00101. We set PREQ D 10�3.

(3) jXj D 80;000, j Yj D 50;000, and RINTS varies from 0.01 to 0.9, i.e., jWj varies
from 500 to 45,000. PREQ � 500

10�.80;000�500/
� 0:00063. We set PREQ D 10�4.

For each parameter setting, we repeat the simulation 500 times to obtain the average
false -positive ratio.

Figure 2.5 shows the simulation results. In (a), (b), and (c), we can see that
the average PFP is always smaller than the corresponding PREQ. Hence, the search
results using the ITSP meet the prescribed requirement of false -positive ratio in the
average sense.

If we look into the details of individual simulations, we find that a small fraction
of simulation runs have PFP beyond PREQ. For example, Fig. 2.6 depicts the results
of 500 runs with jXj D 5000, j Yj D 50;000, jWj D 500, and PREQ D 10�2.
There are about 5 % runs having PFP > PREQ, but that does not come as a surprise
because the false -positive ratio in the context of filtering vectors (ITSP) or Bloom
filters (CATS) is defined in a probability way: The probability for each tag in
X � W to be misclassified as one in W is no greater than PREQ. This probabilistic
definition enforces a requirement PREQ in an average sense, but not absolutely for
each individual run.

2.5.4 Performance Evaluation Under Channel Error

2.5.4.1 Performance of ITSP-rem and ITSP-bem

We evaluate the performance of ITSP-rem and ITSP-bem. To simulate the error rate
PERR in ITSP-rem, we employ a pseudo-random number generator, which generates
random real numbers uniformly in the range Œ0; 1�. If a bit in the filtering vector
is “0” and the generated random number is in Œ0; PERR�, that bit is flipped to “1”.
PS can be simulated in a similar way. As for the burst error in ITSP-bem, we first
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Fig. 2.5 False -positive ratio after running the ITSP
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Fig. 2.6 False -positive ratio by the ITSP of 500 runs

calculate the values of Pl.w/ with different w for a given l. Then each w is assigned
with a non-overlapping range in Œ0; 1�, whose length is equal to the value of Pl.w/.
For each interval, we generate a random number and check which range the number
locates, thereby determining the number of errors in that interval.

We set PREQ D 0:001, PS D 0:01, and RINTS D 0:1; 0:5; 0:9, respectively. The
values of jXj and j Yj are the same as those in Tables 2.4 and 2.5. ls is set to 80 bits
and a 16-bit CRC is appended to each segment on forward link for integrity check.
For ITSP-rem, we consider two cases with PERR = 5 % and 10 %, respectively. For
ITSP-bem, the prescribed parameters are set to be: � D 0:135, � D 7:10 with each
interval to be 96 bits [6].
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Table 2.6 Performance
comparison. j Yj D 50;000,
RINTS D 0:1, PREQ D 0:001

ITSP-rem

jXj ITSP PERR D 5 % PERR D 10 % ITSP-bem

5,000 61,463 74,288 75,812 72,144

10,000 108,017 129,995 133,022 125,779

20,000 185,204 241,026 247,824 238,962

40,000 304,767 361,242 398,198 358,361

80,000 414,686 441,365 458,433 437,256

160,000 472,677 504,565 545,338 499,058

320,000 529,835 567,403 630,174 560,456

640,000 573,270 626,379 690,400 618,913

Table 2.7 Performance
comparison. j YjD50,000,
RINTSD0.5, PREQ D 0.001

ITSP-rem

jXj ITSP PERR D 5 % PERR D 10 % ITSP-bem

5,000 105,828 160,481 166,469 153,838

10,000 206,709 211,513 221,771 210,805

20,000 335,426 371,974 391,983 370,557

40,000 512,156 577,305 617,196 577,305

80,000 656,426 735,592 789,874 735,592

160,000 721,347 793,482 865,617 793,482

320,000 721,347 793,482 865,617 793,482

640,000 721,347 793,482 865,617 793,482

Tables 2.6, 2.7, 2.8, 2.9, 2.10, and 2.11 show the number of ts slots needed
under each parameter setting. The second column presents the results of ITSP
when the channel is perfectly reliable. The third and fourth columns present the
results of ITSP-rem with an error rate of 5 % or 10 %. The fifth column presents the
results of ITSP-bem. It is not surprising that the search process under noisy channel
generally takes more time due to the use of CRC and the higher false-positive
probability of filtering vectors, and the execution time of the ITSP-rem is usually
longer in a channel with a higher error rate. An important positive observation is
that the performance of ITSP gracefully degrades in all simulations. The increase
in execution time for both ITSP-rem and ITSP-bem is modest, compared to ITSP
with a perfect channel. For example, even when the error rate is 10 %, the execution
time of ITSP-rem is about 10–30 % higher than that of ITSP. This modest increase
demonstrates the practicality of our protocol under noisy channel.

2.5.4.2 False-Positive Ratio of ITSP-rem and ITSP-bem

We use the same parameter settings in Sect. 2.5.3 to examine the accuracy of search
results by ITSP-rem and ITSP-bem. Meanwhile, for ITSP-rem, we set PERR = 5 %
or 10 %. For ITSP-bem, the required input parameter setting is � D 0:135 and
� D 7:10, with each 96-bit interval. Simulation results are delineated in Fig. 2.7,
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Table 2.8 Performance
comparison. j YjD50,000,
RINTSD0.9, PREQ D 0.001

ITSP-rem

jXj ITSP PERR D 5 % PERR D 10 % ITSP-bem

5,000 124,553 156,041 163,718 155,972

10,000 231,236 275,394 290,493 275,256

20,000 403,954 454,929 486,150 454,929

40,000 678,066 752,753 814,890 752,753

80,000 721,347 793,482 865,617 793,482

160,000 721,347 793,482 865,617 793,482

320,000 721,347 793,482 865,617 793,482

640,000 721,347 793,482 865,617 793,482

Table 2.9 Performance
comparison. jXjD10,000,
RINTSD0.1, PREQ D 0.001

ITSP-rem

j Yj ITSP PERR D 5 % PERR D 10 % ITSP-bem

1,250 13,047 14,868 15,898 14,174

2,500 24,289 26,626 28,617 25,283

5,000 42,835 46,994 50,863 44,393

10,000 73,909 76,807 84,135 75,983

20,000 95,833 103,255 106,693 102,121

40,000 111,904 133,043 137,348 130,382

Table 2.10 Performance
comparison. jXjD10,000,
RINTSD0.5, PREQ D 0.001

ITSP-rem

j Yj ITSP PERR D 5 % PERR D 10 % ITSP-bem

1,250 18,033 19,837 21,640 19,837

2,500 36,067 39,674 43,280 39,674

5,000 68,528 77,021 82,448 77,021

10,000 119,022 134,208 143,261 134,208

20,000 169,065 202,891 212,105 202,467

40,000 174,926 214,563 224,227 213,970

Table 2.11 Performance
comparison. jXjD10,000,
RINTSD0.9, PREQ D 0.001

ITSP-rem

j Yj ITSP PERR D 5 % PERR D 10 % ITSP-bem

1,250 18,033 19,837 21,640 19,837

2,500 36,067 39,674 43,280 39,674

5,000 72,134 79,348 86,561 79,348

10,000 144,269 158,696 173,123 158,696

20,000 192,960 217,245 232,272 217,245

40,000 232,904 261,277 277,300 261,173
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Fig. 2.7 False -positive ratio after running ITSP-rem, ITSP-bem, and CATS. (a) jXj=5000,
jYj=50,000, PREQ D 10�2, (b) jXj=20,000, jYj=50,000, PREQ D 10�3, (c) jXj=80,000,
jYj=50,000, PREQ D 10�4

where the error rate is given between the parentheses after ITSP-bem. Clearly, the
false-positive ratio in the search results after executing ITSP-rem or ITSP-bem is
always within the bound of PREQ. These results confirm that the false-positive ratio
requirement is met under noisy channel.

2.5.4.3 Signal Loss Due to Fading Channel

We consider the scenario of a time-varying channel in which it may happen that
a signal from a tag is not received by the reader in a deep fading slot. Although
we consider this condition is relatively rare in an RFID system that is configured to
work stably, we acknowledge in Sect. 2.4.2 that ITSP (or CATS) is not robust against
this type of error. However, the problem can be alleviated by the tags transmitting
each filtering vector twice. Figure 2.8 shows the simulation results under parameters
jXj D 10000, j Yj D 5000, jWj D 500, and PREQ D 0:01. The horizontal axis
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Fig. 2.8 False negatives due
to signal loss in time-varying
channel
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shows the error rate, which is defined as the fraction of slots in deep fading, causing
complete signal loss. ITSP-2 denotes the approach of transmitting each filtering
vector from tags to the reader twice. When a wanted tag in W is not identified, we
call it a false negative. The simulation results show that ITSP incurs significant false
negatives when the error rate becomes large. For example, when the error rate is 2 %,
the average number of false negatives is 90.7. ITSP-2 works very well in reducing
this number. When the error rate is 2 %, its number of false negatives is just 1.95.

2.6 Summary

This chapter discusses the tag search problem in large-scale RFID systems. We
present an iterative tag search protocol (ITSP) that improves time efficiency and
eliminates the limitation of prior solutions. Moreover, we extend the ITSP to
work under noisy channel. The main contributions of our work are summarized
as follows: (1) The iterative method of ITSP based on filtering vectors is very
effective in reducing the amount of information to be exchanged between tags and
the reader, and consequently saves time in the search process; (2) the ITSP performs
much better than the existing solutions; (3) the ITSP works well under all system
conditions, particularly in situations of jXj � j Yj when CATS works poorly; (4)
the ITSP is improved to work effectively under noisy channel.
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