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Abstract. Clustering categorical sequences is currently a difficult prob-
lem due to the lack of an efficient representation model for sequences.
Unlike the existing models, which mainly focus on the fixed-length tuples
representation, in this paper, a new representation model on the variable-
length tuples is proposed. The variable-length tuples are obtained using
a pruning method applied to delete the redundant tuples from the suffix
tree, which is created for the fixed-length tuples with a large memory-
length of sequences, in terms of the entropy-based measure evaluating
the redundancy of tuples. A partitioning algorithm for clustering cate-
gorical sequences is then defined based on the normalized representation
using tuples collected from the pruned tree. Experimental studies on
six real-world sequence sets show the effectiveness and suitability of the
proposed method for subsequence-based clustering.

Keywords: Sequence clustering · Representation model · Variable-
length tuples · Pruning method · Entropy-based measure

1 Introduction

Data clustering has a wide range of applications and has been one of the essential
methods used in knowledge systems. In the past decades, it was studied exten-
sively in the statistics, machine learning and data mining communities, and a
number of clustering algorithms have been proposed [1,2]. However, most of them
are principally designed for attribute-value data, say, vector data. Currently, cat-
egorical sequences, such as speech sequences in natural language processing, are
widely used in real-world applications. Clustering such sequences is a difficult
problem due to the fact that the chronological order of symbols (categories)
that compose the sequences is very important for clustering tasks; this remains
a major obstacle in applying the traditional clustering algorithms [3–5].
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A widely accepted solution to the problem is using a tuples-based represen-
tation for sequences, which effectively equates to project each sequence onto the
new pattern space spanned by a set of tuples [4,6]. Roughly speaking, the tuple
of sequences is one kind of short subsequences; thus, the locally chronological
order of symbols can be preserved to some extent. Such a representation model
is somewhat similar to the Vector Space Model (VSM) for representing docu-
ments in text mining [7], where each term in the documents is considered as a
dimension and each document is typically represented as a vector of the term
frequencies. With the tuples-based representation, sequences are viewed as “doc-
uments” with the tuples representing their “terms”, and can thus be clustered
like the common vector data.

Obviously, the ability of the representation model to capture the structural
features hidden within sequences depends on the tuples chosen for the model.
The common method is the n-tuples (alternatively known as n-grams) approach
[4,8,9], which is the set of all possible tuples (grams) with their length fixed
at n. As choosing an appropriate tuple length is currently a difficult problem,
generally, one tends to use a large n, because small n likely breaks long sequence
patterns into small segments [10]. However, a large n would result in a huge
number of tuples which is exponential in the length. More importantly, with a
fixed length, all tuples of length n are collected without distinguishing between
significant and non-significant tuples [5], which challenges the traditional clus-
tering algorithms by the existence of many noisy features (tuples) or redundant
features (tuples) that do not contribute to clustering.

The popular approach adapting the algorithms to the high-dimensional data
is to eliminate these features by combining feature selection techniques, for exam-
ple, by removing those tuples whose frequency are less than the user-defined
threshold [10]. Clearly, such a threshold is difficult to determine. Another app-
roach is to perform subspace clustering on the high-dimensional data: examples
include entropy-weighting K-means (EWKM) [11], model-based projective clus-
tering (MPC) [12], etc. Note that such feature-weighting-based algorithms are
designed on the assumption that each of the dimensions (here, the tuples) span-
ning the new pattern space is independent of the others, which hardly holds in
the n-tuples representation for sequences: tuples that share the same preceding
subsequence may be highly correlated with each other.

In this paper, a new method is proposed to produce the variable-length tuples,
with a large number of redundant tuples removed. We propose a pruning method
for the purpose, by organizing the original n-tuples into a suffix tree, on which
those leaves corresponding to the redundant tuples are iteratively deleted in
terms of the information gain provided to their parent (i.e., the preceding tuples).
The remaining tuples in the pruned tree are then collected to create a normalized
representation model, with which a partitioning algorithm is defined for the
clustering task. We conducted a series of experiments on real-world categorical
sequences. The results show that the proposed method significantly outperforms
other mainstream methods.
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The remainder of this paper is organized as follows. Section 2 presents some
preliminaries and related work. Section 3 describes the new representation model
and the clustering algorithm. Experimental results are presented in Sect. 4.
Finally, Sect. 5 gives our conclusion and discusses directions for future work.

2 Preliminaries and Related Work

A categorical sequence is a linear chain made up of symbols, containing some
structural features. Figure 1 gives an example, where two sequences denoted by
s1 and s2 are shown. Both s1 and s2 are made up of 3 symbols “A”, “B” and “C”,
but they have different lengths, saying, 14 and 12, respectively. Clustering such
sequences is a challenging problem due to the difficulties in defining a mean-
ingful distance measure for sequences [1,4]. The existing measures fall in two
groups: alignment-based and alignment-free measures [6,13]. In the first group,
the distance is computed by an alignment algorithm, such as the well-known
edit distance and its approximate algorithms [14]. Generally, they have a high
time complexity. The alignment-free measures in the second group calculate the
distance between sequences based on statistical models [3,10], information the-
ory [9] or subsequences [5], without identifying the similar regions of sequences;
thus, they are computationally efficient.

Fig. 1. An example of categorial sequences made up of 3 symbols “A”, “B” and “C”.

To define an alignment-free distance measure for sequences, the tuple-based
representation has been widely used due to its simplicity [4,6]. Using the model,
each sequence can be transformed into a vector of tuple frequencies. Table 1
illustrates the 3-tuples representation for the sequences of Fig. 1, where each col-
umn corresponds to an unique tuple comprising 3 symbols and the digit in each
cell indicates the number of the tuple appearing in the sequence. Based on the
table, distance between sequences can be easily computed using Euclidean dis-
tance [9], Mahalanobis distance [15], etc. The common clustering methods can
also be easily applied to categorical sequences, such as the hierarchical cluster-
ing algorithms [9,10] aimed at organizing sequences into a tree of clusters and
the partitioning methods including the well-known K-means and its numerous
variants [1,11,12]. Since the aim is to generate flat clusters in this paper, we will
focus on the latter, that is, grouping sequences according to the occurrences of
the tuples given the number of clusters K.

As discussed previously, the number of tuples (i.e., the data dimensionality)
would be huge in practice, when the n-tuples representation is employed with
the length fixed at a large n. For example, the number of symbols composing a
speech sequence typically reaches 20 (see Sect. 4.1); therefore, there is a set of 20n
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Table 1. 3-tuples representation for the sequences shown in Fig. 1.

AAB ABA ABB ACA ACB BAA BAB BAC BBA CAC CBA

s1 1 1 1 1 2 1 0 2 1 1 1

s2 1 1 1 0 2 1 1 1 1 0 1

possible tuples. To cluster such high-dimensional data, one has to resort to the
unsupervised feature-selection techniques, implemented by the filter methods or
the built-in methods [1,12]. Subspace clustering, aimed at grouping data objects
into clusters projected in some subspaces, is one of the popular methods using
the built-in mechanism for feature selection. Examples include PROCLUS and
its variants [16], the entropy-weighting algorithm EWKM [11], etc. The goal of
a filter method is to choose an appropriate subset of the original features in the
preprocessing step before clustering, where some heuristic criteria are defined to
evaluate the significance of features [17]. Due to the huge number of admissible
subsets which is exponential in the data dimensionality, usually, both methods
choose the subset based on the assumption that the attributes are independent
of each other. In the conditional probability model (CPD) for sequences [10],
for instance, only the frequent subsequences (corresponding to the tuples) are
chosen, given a threshold defining the minimal frequency of the resulting tuples.

In the variable-length representation for the tuples proposed in this paper,
however, we focus on the identification of possibly redundant tuples. With the
redundant tuples removed, the correlations between features (tuples) are thus
reduced. Our efficient method for producing the new representation model is
based on the pruning strategy, while surmounting the independent assumption,
as described in the next section.

3 Sequences Clustering with Variable-Length Tuples

In this section, we propose a variable-length tuples representation for categor-
ical sequences, followed by a new K-means-type algorithm for clustering the
sequences. We begin by introducing the notation used throughout the paper.

3.1 Basic Notation

In what follows, the sequence set is denoted by S = {si|i = 1, 2, . . . , N} from
which K(1 < K < N) clusters are searched for. Here, si stands for the ith
sequence and N the number of sequences to be clustered. Let s be a categorical
sequence of length L, where each of the L symbols is one of the categories
∀x ∈ X, with X being the set of symbols and |X| the number of symbols.
Moreover, the K clusters are denoted by c1, . . . , ck, . . . , cK , each consisting of a
disjoint subset of S; therefore, S = ∪K

k=1ck. The set of K clusters is denoted by
C = {ck|k = 1, 2, . . . ,K}.
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A n-length subsequence, also called n-tuples, of sequence s ∈ S is a segment
of n consecutive symbols in s. Note that the length n is also referred to as
memory length in the case of Markov chain model for sequences [10]. Letting
t be a n-length tuple and #S(t) the number of t appearing in S, we denote
the set of n-tuples by T = {t|#S(t) > 0}; in other words, each of the tuples
should appear in at least one of the sequences in S. Based on the definitions, the
cardinality of T , i.e., |T |, is precisely the dimensionality of the data using the
tuples-based representation model. We denote D = |T | and td the dth n-tuples
of S, where d = 1, 2, . . . , D.

Each n-length tuple with n > 1 can be viewed as a combination of the
preceding (n − 1)-length subsequence and the ending symbol. According to this
view, the tuple t can be rewritten as t = δx, where δ denotes the preceding
subsequence of the ending symbol x. We denote the conditional probability of
x given its preceding subsequence by p(X = x|Y = δ), where X and Y are the
random variables associated with the symbols and the preceding subsequences.
To simplify the representation, we will use p(x|δ) to denote p(X = x|Y = δ) in
the following pages.

3.2 Variable-Length Tuples Representation

Given a large memory-length n, for example, n = 10, the resulting n-tuples
representation for sequences is generally in high dimensionality (recall that D ≈
|X|n). In this subsection, we aim at reducing the dimensionality by removing
the redundant tuples from T . For the purpose, we first organize the n-tuples
into a suffix tree, where each path (from the root to one of the leaf nodes of the
tree) corresponds to a tuple of length n. Here, the root of the tree is a virtual
symbol indicating the beginning of each tuple; thus, the height of the tree is
n+1, and the number of children for each node except the leaves is at most |X|.
Figure 2(b) shows a subtree created for the 3-tuples of the sequences s1, s2 in
Fig. 1; the tuples used have the same preceding symbol “A”, as Fig. 2(a) shows.

During the creation of the tree, each node (except the root) is attached
a value indicating its conditional probability with regard to its preceding

Fig. 2. Illustration of the pruning method for generating the variable-length tuples
(preceded “A”) from the sequences shown in Fig. 1
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subsequence. The conditional probability is estimated by the frequency esti-
mator. For example, according to Fig. 2(a), the number of the subsequence
“AC” appearing in the sequence set {s1, s2} is 1 + 4 = 5 and the total number
of tuples preceded “A” is 11; then, we estimate the conditional probability by
p(C|A) = 5/11, as the value attached to the node labeled “C” shows in Fig. 2(b).
Likewise, the conditional probabilities for the tuples “ACA” and “ACB” can be
estimated, i.e., p(A|AC) = 1/5 and p(B|AC) = 4/5, respectively.

The variable-length tuples representation for sequences can be derived based
on the n-tuples tree. This is achieved by pruning the tree using a post-pruning
method similar to that applied to decision-tree induction [1]. As Figs. 2(b) and
(c) show, with some leaves removed, the tree changes to accommodate both
2-tuples and 3-tuples. Since we aim at eliminating the redundant tuples, a crite-
rion should be defined to measure the redundancy of a subtree, and subsequently
to determine whether the subtree need to prune or not. Taking for example the
tree shown in Fig. 2(b) again, obviously, the leaf labeled “B” for the 3-length
tuple “AAB” can be deleted, because there is no information loss if it is replaced
with the shorter tuple “AA”. However, it is not the case for “AB”: lengthening
“AB” to “ABA” and “ABB” is able to obtain considerable information gain.
This observation suggests an entropy-based judgement for the redundancy eval-
uation. Formally, we first compute the entropy for the tuples having the same
preceding subsequence δ by

H(δ) = −
∑

x∈X
p(x|δ) × log2 p(x|δ) (1)

with

p(x|δ) =
#S(δx)
#S(δ)

.

Then, the redundant tuples are identified based on the following Definition 1.

Definition 1 (Redundant tuples). The tuples δx for ∀x ∈ X are redundant if
H(δ) < τ , where τ ≥ 0 is a threshold defining the minimal information gain.

Given the n-tuples tree, the pruning process begins by examining the leaf
nodes according to Definition 1; here, the symbols corresponding to the leaf and
its siblings are considered as ∀x ∈ X in the senses of Eq. (1). Once they are
identified being redundant, the leaves are deleted and their parent node changes
to the new leaf. The new leaves are then re-scanned to search for the redundant
subsequences of shorter length. With such an iterative pruning method, the 3-
tuples for the sequences in Fig. 1 can be reduced into a set of variable-length
tuples as shown in Table 2, by setting τ = 1.

Based on the D resulting tuples t1, t2, . . . , tD, we represent each sequence
with a D-dimensional vector according to the following Definition 2. Note that
each vector V s for the sequence s is normalized such that ||V s|| = 1, where || · ||
denotes the Euclidean norm of a vector. By the normalization, the frequencies
are smoothed to counteract the effect induced by the varying lengths of the
sequences as well as the tuples.
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Table 2. Variable-length tuples representation for the sequences shown in Fig. 1.

AA ABA ABB AC BAA BAB BAC BB CA CB

s1 0.224 0.224 0.224 0.670 0.224 0.000 0.447 0.224 0.224 0.224

s2 0.289 0.289 0.289 0.577 0.289 0.289 0.289 0.289 0.000 0.289

Definition 2 (Variable-length tuples representation). The variable-length
tuples representation for each sequence s ∈ S is the vector V s, given by

V s =< fs(t1), fs(t2), . . . , fs(td), . . . , fs(tD) > (2)

where fs(td) = #s(td) × (
∑D

d′=1[#s(td′)]2)− 1
2 with #s(td) being the number of

td appearing in s.
Now, the only pending factor of the representation model is the setting for

τ . Intuitively, the desired value of τ connects to both the number of symbols
composing the sequences (|X|) and the number of clusters K. In particular, τ
should be enlarged with a large |X| and a small K; thus, an obvious setting for
τ could be

τ = max{log2
|X|
K , 0}. (3)

According to Eq. (3), τ > 0 when |X| > K, which is often the case in practice.
In the case where |X| ≤ K, τ = 0 which means that it is not necessary to prune
the tuples tree. In this case, the variable-length representation degenerates to
the traditional n-tuples representation.

3.3 Clustering Algorithm

In this subsection, a partitioning algorithm is presented for clustering categori-
cal sequences based on the variable-length tuples representation discussed in the
previous subsection. The algorithm named KM-NVLT (for K-Means with Nor-
malized Variable-Length Tuples), as outlined in Algorithm 1, starts clustering
from transforming the sequences in S into vectors using the new representa-
tion (steps (1) ∼ (3)). Then, the algorithm groups the sequences in an iterative
process like the K-means clustering (Step (5)).

The aim of Step (4) in KM-NVLT is to build a robust condition for the
coming iterative process, by choosing a set of well-scattered sequences as the
initial cluster centers. The first two centers I1 and I2 are chosen according to
the following rule:

(I1, I2) = argmax(s,s′)∈S×S ||V s − V s′ ||2. (4)

Then, the remaining K−2 centers are selected based on the maximum-minimum
principle [9], i.e.,

Ik+1 = argmaxs∈S\{Ii|i=1,...,k}mini=1,...,k||M s − M Ii ||2 (5)

where k ∈ [2,K − 1].



22 L. Yuan et al.

Input: the sequence set S, the number of clusters K and the memory-length n
Output: the set of resulting clusters C = {ck|k = 1, 2, . . . , K}
begin

(1) Generate n-tuples from the sequences in S, and create the n-tuples tree
using the method described in Sect. 3.2;
(2) Determine τ according to Eq. (3) and prune the n-tuples tree based on
Definition 1;
(3) Collect the variable-length tuples from the pruned tree, and represent
each sequence s ∈ S by the vector V s according to Eq. (2) and Definition 2;
(4) Choose K vectors for the initial cluster centers using Eqs. (4) and (5);
(5) repeat

(5.1) Generate c1, c2, . . . , cK by assigning each sequence s ∈ S to its
closest cluster center, in terms of the Euclidean distance between V s

and each cluster center;
(5.2) Recompute the center for each cluster ck by averaging the vectors
belonging to ck, where k = 1, 2, . . . , K.

until C is not changed.;

end

Algorithm 1. Outline of the KM-NVLT algorithm.

The time complexity for generating the variable-length tuples is O(n×|X|×
L), where L is the total lengths of the sequences in S. The time complexities
of the K-means-type clustering and the centers selection method are O(KND)
and O(N2D), respectively. Generally, |X| > K and n × L > ND; thus, for KM-
NVLT, the time complexity can be finally given as O(max{n × |X| × L, N2D}).

4 Experimental Evaluation

In this section, we evaluate the performance of KM-NVLT on real-world cat-
egorical sequences, and also experimentally compare the variable-length tuples
representation with a few other methods.

4.1 Sequence Sets and Experimental Setup

Six sequence sets for speech recognition are used. We obtained the sequence
sets from [18], namely locmelovoy, locmrlovoy, locmslovoy, locfjlavoy, locflauvoy
and locffpevoy, abbreviated to S1∼S6, respectively. Each sequence in the sets is
generated from the pronunciation of one of the five French vowels (“a”, “e”, “i”,
“o” and “u”) by binning the sound wave. So, the true number of clusters for the
sequence sets are known, i.e., K = 5. Details of the data sets are summarized
in Table 3. The average length of sequences in these sets varies from 560 to
approximately 1900, in order to evaluate the capability of different representation
models and clustering methods.

We used the K-means algorithm on the common n-tuples representation as
the baseline in the experiments. The algorithm is abbreviated KM-NT (for K-
Means with Normalized Tuples), which was implemented as a special case of our
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Table 3. Details of the real-world sequence sets

Dataset #clusters(K) #symbols(|X|) #sequences(N) Length(L) Average length

S1 5 20 50 [203, 1035] 560

S2 5 18 50 [226, 1253] 737

S3 5 20 50 [506, 1564] 924

S4 5 19 50 [405, 1986] 1088

S5 5 19 50 [581, 2382] 1570

S6 5 18 50 [701, 3753] 1899

KM-NVLT by fixing τ at 0. Based on the normalized n-tuples representation, we
also chose EWKM [11], a feature-weighting-based subspace clustering algorithm,
as the competing method. Its weighting parameter γ was set to the author-
recommended value 0.5.

Frequency-based feature selection method was also used to provide a refer-
ence point for comparison. For the purpose, the frequent n-tuples were collected
to create a reduced tuples set for each sequence set. Since it is difficult to deter-
mine the threshold for the frequencies, we selected those tuples whose frequency
is larger than 1 for the resulting representation. The vectors were finally normal-
ized using the same method to that of Definition 2. We will denote the K-means
algorithm applied to such a representation by KM-NFT (for K-Means with Nor-
malized Frequent Tuples).

Bisection K-means [9] was also chosen for comparison. For this algorithm,
we created a TF-IDF representation model for each sequence set, where IDF is
the abbreviation for the inverse document frequency popularly used in the text
mining community [7]. After assigning the n-tuples with the IDF weights, the
vectors were normalized. The bisection K-means with the TF-IDF representation
will be denoted as BKM-NIDF. The initial cluster centers for all the competing
algorithms were selected using the same approach as that of KM-NVLT (see
Step (4) of Algorithm 1).

4.2 Experimental Results

The performance of the algorithms is evaluated in terms of clustering accu-
racy (CA), which is computed as CA = 1

N

∑K
k=1 ak, where ak is the number

of sequences in the majority group corresponding to ck. Clearly, this measure
requires that the ground truth of the datasets be known, which is the case in
our experiments. Table 4 shows the clustering accuracy obtained by the five
algorithms on the six sequence sets, with the memory-length n set to 10 (the
performance with regard to different n will be examined in Fig. 3). The best
results are marked in bold typeface.

From Table 4, we can see that our KM-NVLT is able to achieve high-quality
overall results, outperforming the competing algorithms on all the six sequence
sets. In fact, only KM-NFT obtains comparable results on S1, S3 and S6, whereas
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Table 4. Comparisons of clustering accuracy (CA) obtained by different algorithms
(n = 10)

Dataset KM-NVLT KM-NFT EWKM-NT BKM-NIDF KM-NT

S1 1.000 0.980 0.620 0.720 0.620

S2 0.980 0.600 0.600 0.700 0.600

S3 1.000 1.000 0.660 0.640 0.660

S4 0.860 0.640 0.680 0.720 0.680

S5 1.000 0.780 0.620 0.680 0.620

S6 0.980 0.900 0.680 0.660 0.700

EWKM-NT and KM-NT perform poorly (note that both are based on the n-
tuples representation). We also observe that the clustering accuracies of EWKM-
NT and KM-NT are close, indicating that the built-in feature-selection scheme
used in the soft subspace clustering methods fails in distinguishing between
significant and non-significant tuples. BKM-NIDF, which makes use of the TF-
IDF representation, yields higher accuracy than EWKM-NT on most of the data
sets. This indicates that the IDF weighting method is able to identify significant
tuples to some extent.

Comparisons of the clustering accuracy with varying memory-length of tuples
are given in Fig. 3. It can be seen from the figures that our KM-NVLT achieves
robust performance accompanied by high clustering accuracy, along with the
increment of the memory-length n. Except the cases of KM-NFT on S1 and S3,
the competing algorithms yield instable results that are sensitive to the setting
of n. The good performance of KM-NVLT owes to the use of the pruning method
in producing the variable-length tuples with redundant tuples deleted, which, in
effect, improve the performance of the remaining features (tuples). Another gain
of the pruning method is to reduce the number of features for the clustering
algorithms, as Fig. 4 shows.

Figure 4 illustrates the number of resulting tuples in the traditional n-tuples
representation (used by EWKM-NT and KM-NT), the frequent n-tuples repre-
sentation used by KM-NFT and our variable-length representation. One can see
that the number of tuples are significantly reduced by using our pruning method.
The number can also be reduced using the frequency-based selection method;
however, the results are clearly dependent on the user-defined threshold, which
is difficult to estimate. The figures also show that, when the memory-length n
goes from 6 to 14, the numbers of resulting variable-length tuples remain approx-
imately unchanged on the six sequence sets. This result suggests that the optimal
length of tuples for the speech sequences is about 6. As the memory length sub-
stantially connects to the order of Markov chain model [10], our pruning method
might be helpful in estimating the order for such models.
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Fig. 3. Clustering accuracy of the algorithms with various memory-lengths of tuples.

Fig. 4. Comparisons of the number of tuples using different representation models.

5 Conclusion and Perspectives

In this paper, we proposed a variable-length tuples representation for categorical
sequence clustering, unlike the existing methods, which are generally based on
the fixed-length tuples (n-tuples) representation. We proposed to organize the
original n-tuples into a tree, in order to derive a pruning method to obtain
the variable-length tuples from the pruned tree. We defined an entropy-based
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measure to evaluate the redundance of tuples and to provide the basis for the
removal of redundant tuples. Using the resulting variable-length tuples, we also
proposed a K-means-type algorithm, call KM-NVLT, for categorical sequences
clustering. The experiments were conducted on six speech sequence sets, the
results show the effectiveness of the new representation for sequences and the
new algorithm for clustering.

There are many directions that are clearly of interest for future exploration.
One avenue of further study is to test KM-NVLT on more extensive sequence
sets, and to compare with other mainstream methods. Another efforts will be
directed towards extending the method to variable-order Markov chain model
for model-based categorical sequence clustering.
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