
Chapter 2
Background

Abstract Android applications are developed on top of Android framework and
therefore bear particular features compared to traditional desktop software. In the
meantime, due to the unique design and implementation, Android apps are threat-
ened by emerging cyber attacks that target at mobile operating systems. As a result,
security researchers have made considerable efforts to discover, mitigate and defeat
these threats.

2.1 Android Application

Android is a popular operating system for mobile devices. It dominates in the battle
to be the top smartphone system in the world, and ranked as the top smartphone
platform with 52 % market share (71.1 million subscribers) in Q1 2013. The success
of Android is also reflected from the popularity of its applications. Tens of thousands
of Android apps become available in Google Play while popular apps (e.g., Adobe
Flash Player 11) have been downloaded and installed over 100 million times.

Android apps are developed using mostly Java programming language, with the
support of Android Software Development Kit (SDK). The source code is first
compiled into Java classes and further compiled into a Dalvik executable (i.e., DEX
file) via dx tool. Then, the DEX program and other resource files (e.g., XML layout
files, images) are assembled into the same package, called an APK file. The APK
package is later submitted to the Android app markets (e.g., Google Play Store)
with the developer’s descriptions in text and other formats. An app market serves
as the hub to distribute the application products, while consumers can browse the
market and purchase the APK files. Once a APK file is downloaded and installed
to a mobile device, the Dalvik executable will be running within a Dalvik virtual
machine (DVM).
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2.1.1 Android Framework API

While an APK file is running in DVM, the Android framework code is also loaded
and executed in the same domain. As a matter of fact, a Dalvik executable merely
acts as a plug-in to the framework code, and a large portion of program execution
happens within the Android framework.

A DEX file interacts with the Android framework via Application Programming
Interface (API). These APIs are provided to the developers through Android
SDK. From developers’ perspective, Android API is the only channel for them to
communicate with the underlying system and enable critical functionalities. Due
to the nature of mobile operating system, Android offers a broad spectrum of
APIs that are specific to smartphone capabilities. For instance, an Android app can
programmatically send SMS messages via sendTextMessage() API or retrieve
user’s geographic location through getLastKnownLocation().

2.1.2 Android Permission

Sensitive APIs are protected by Android permissions. Android exercises an install-
time permission system. To enable the critical functionalities in an app, a devel-
oper has to specify the needs for corresponding permissions in a manifest file
AndroidManifest.xml. Once an end user agrees to install the app, the required
permissions are granted. At runtime, permission checks are enforced at both
framework and system levels to ensure that an app has adequate privileges to make
critical API calls.

There exist two major limitations for this permission system. Firstly, once
certain permission is granted to an app at the install time, there is no easy way
to revoke it at runtime. Secondly and more importantly, the permission enforcement
is fundamentally a single-point check and thus lacking continuous protection. If an
application can pass a checkpoint and retrieve sensitive data via a critical API call,
it can use the data without any further restrictions.

2.1.3 Android Component

Android framework also provides a special set of APIs that are associated to
Android components. Components in Android are the basic building units for
apps. In particular, there exist four types of components in Android: Activity,
Service, Broadcast Receiver, and Content Provider. An Activity
class takes care of creating the graphical user interface (GUI) and directly interacts
with the end user. A Service, in contrast, performs non-interactive longer-running
operations in background while accepting service requests from other apps or app
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components. A Broadcast Receiver is component that listens to and processes
system-wide broadcast messages. A Content Provider encapsulates data content and
shares it with multiple components via a unified interface.

Components communicate with one another via Intents. An Intent with
certain ACTION code, target component and payload data indicates a specific
operation to be performed. For example, with different target parameter, an Intent
can be used to launch an Activity, request a Service or send a message to any
interested Broadcast Receiver. A developer can create custom permissions to protect
components from receiving Intents from an arbitrary sender. However, such a simple
mechanism cannot rule out malicious Intent communication because it does not
prevent a malicious app author from requesting the same custom permission at
install time.

2.1.4 Android App Description

Once an Android app has been developed, it is delivered to the app markets along
with the developer’s descriptions. Developers are usually interested in describing the
app’s functionalities, unique features, special offers, use of contact information, etc.
Nevertheless, they are not motivated to explain the security risks behind the sensitive
app functions. Prior studies [33, 36] have revealed significant inconsistencies
between what the app is claimed to do and what the app actually does. This indicates
that a majority of apps exercise undeclared sensitive functionalities beyond the
users’ expectation. Such a practice may not necessarily be malicious, but it does
provide a potential window for attacks to exploit.

To mitigate this problem, Android markets also explains to users, in natural
language, what permissions are required by an app. The goal is to help users
understand the program behaviors so as to avoid security risks. However, such a
simple explanation is still too technical for average users to comprehend. Besides,
a permission list does not illustrate how permissions are used by an app. As an
example, if an application first retrieves user’s phone number and then sends it
to a remote server, it in fact uses two permissions, READ_PHONE_STATE and
INTERNET in a collaborative manner. Unfortunately, the permission list can merely
inform that two independent permissions have been used.

2.2 Android Malware Detection

The number of new Android malware instances has grown exponentially in recent
years. McAfee reports [28] that 2.47 million new mobile malware samples were
collected in 2013, which represents a 197 % increase over 2012. Greater and greater
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amounts of manual effort are required to analyze the increasing number of new
malware instances. This has led to a strong interest in developing methods to
automate the malware analysis process.

Existing automated Android malware detection and classification methods fall
into two general categories: (1) signature-based and (2) machine learning-based.
Signature-based approaches [17, 54] look for specific patterns in the bytecode and
API calls, but they are easily evaded by bytecode-level transformation attacks [37].
Machine learning-based approaches [1, 2, 34] extract features from an application’s
behavior (such as permission requests and critical API calls) and apply standard
machine learning algorithms to perform binary classification. Because the extracted
features are associated with application syntax, rather than program semantics, these
detectors are also susceptible to evasion.

2.2.1 Signature Detection and Malware Analysis

Previous studies were focused on large-scale and light-weight detection of malicious
or dangerous Android apps. DroidRanger [54] proposed permission-based footprint-
ing and heuristics-based schemes to detect new samples of known malware families
and identify certain behaviors of unknown malicious families, respectively. Risk-
Ranker [17] developed an automated system to uncover dangerous app behaviors,
such as root exploits, and assess potential security risks. Kirin [11] proposed a
security service to certify apps based upon predefined security specifications. WHY-
PER [33] leveraged Natural Language Processing and automated risk assessment of
mobile apps by revealing discrepancies between application descriptions and their
true functionalities. Efforts were also made to pursue in-depth analysis of malware
and application behaviors. TaintDroid [12], DroidScope [47] and VetDroid [51]
conducted dynamic taint analysis to detect suspicious behaviors during runtime.
Ded [13], CHEX [25], PEG [6], and FlowDroid [3] exercised static dataflow analysis
to identify dangerous code in Android apps. The effectiveness of these approaches
depends upon the quality of human crafted detection patterns specific to certain
dangerous or vulnerable behaviors.

2.2.2 Android Malware Classification

Many efforts have also been made to automatically classify Android malware
via machine learning. Peng et al. [34] proposed a permission-based classification
approach and introduced probabilistic generative models for ranking risks for
Android apps. Juxtapp [18] performed feature hashing on the opcode sequence
to detect malicious code reuse. DroidAPIMiner [1] extracted Android malware
features at the API level and provided light-weight classifiers to defend against
malware installations. DREBIN [2] took a hybrid approach and considered both
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Android permissions and sensitive APIs as malware features. To this end, it
performed broad static analysis to extract feature sets from both manifest files
and bytecode programs. It further embedded all feature sets into a joint vector
space. As a result, the features contributing to malware detection can be analyzed
geometrically and used to explain the detection results. Despite the effectiveness
and computational efficiency, these machine learning based approaches extract
features from solely external symptoms and do not seek an accurate and complete
interpretation of app behaviors.

2.3 Android Application Vulnerabilities

Although the permission-based sandboxing mechanism enforced in Android can
effectively confine each app’s behaviors by only allowing the ones granted with
corresponding permissions, a vulnerable app with certain critical permissions
can perform security-sensitive behaviors on behalf of a malicious app. It is so
called confused deputy attack. This kind of security vulnerabilities can present in
numerous forms, such as privilege escalation [8], capability leaks [16], permission
re-delegation [14], content leaks and pollution [53], component hijacking [25], etc.

Prior work primarily focused on automatic discovery of these vulnerabilities.
Once a vulnerability is discovered, it can be reported to the developer and a patch is
expected. Some patches can be as simple as placing a permission validation at the
entry point of an exposed interface (to defeat privilege escalation [8] and permission
re-delegation [14] attacks), or withholding the public access to the internal data
repositories (to defend against content leaks and pollution [53]), the fixes to the
other problems may not be so straightforward.

2.3.1 Component Hijacking Vulnerabilities

In particular, component hijacking may fall into the latter category. When receiving
a manipulated input from a malicious Android app, an app with a component
hijacking vulnerability may exfiltrate sensitive information or tamper with the
sensitive data in a critical data repository on behalf of the malicious app. In other
words, a dangerous information flow may happen in either an outbound or inbound
direction depending on certain external conditions and/or the internal program state.

A prior effort has been made to perform static analysis to discover potential
component hijacking vulnerabilities [25]. Static analysis is known to be conservative
in nature and may raise false positives. For instance, static analysis may find a
viable execution path for information flow, which may never be reached in actual
program execution; static analysis may find that interesting information is stored in
some elements in a database, and thus has to conservatively treat the entire database



12 2 Background

as sensitive. As a result, upon receiving a discovered vulnerability, the developer has
to manually confirm if the reported vulnerability is real. However, it is nontrivial for
average developers to properly fix the vulnerability and release a patch.

2.3.2 Automatic Patch and Signature Generation

While an automated patching method is still lacking for vulnerable Android apps,
a series of studies have been made to automatically generate patch for conventional
client-server programs. AutoPaG [23] analyzes the program source code and
identifies the root cause for out-of-bound exploit, and thus creates a fine-grained
source code patch to temporarily fix it without any human intervention. IntPatch [50]
utilizes classic type theory and dataflow analysis framework to identify potential
integer-overflow-to-buffer-overflow vulnerabilities, and then instruments programs
with runtime checks. Sidiroglou and Keromytis [39] rely on source code transfor-
mations to quickly apply automatically created patches to vulnerable segments of
the targeted applications, that are subject to zero-day worms. Newsome et al. [31]
propose an execution-based filter which filters out attacks on a specific vulnerability
based on the vulnerable program’s execution trace. ShieldGen [7] generates a data
patch or a vulnerability signature for an unknown vulnerability, given a zero-day
attack instance. Razmov and Simon [38] automate the filter generation process
based on a simple formal description of a broad class of assumptions about the
inputs to an application.

2.3.3 Bytecode Rewriting

In principle, these aforementioned patching techniques can be leveraged to address
the vulnerabilities in Android apps. Nevertheless, to fix an Android app, a specific
bytecode rewriting technique is needed to insert patch code into the vulnerable pro-
grams. Previous studies have utilized this technique to address varieties of problems.
The Privacy Blocker application [35] performs static analysis of application binaries
to identify and selectively replace requests for sensitive data with hard-coded
shadow data. I-ARM-Droid [9] rewrites Dalvik bytecode to interpose on all the API
invocations and enforce the desired security policies. Aurasium [46] repackages
Android apps to sandbox important native APIs so as to monitor security and
privacy violations. Livshits and Jung [24] implement a graph-theoretic algorithm to
place mediation prompts into bytecode program and thus protect resource access.
However, due the simplicity of the target problems, prior work did not attempt
to rewrite the bytecode program in an extensive fashion. In contrast, to address
sophisticated vulnerabilities, such as component hijacking, a new machinery has
to be developed, so that inserted patch code can effectively monitor and control
sensitive information flow in apps.
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2.3.4 Instrumentation Code Optimization

The size of a rewritten program usually increases significantly. Thus, an optimiza-
tion phase is needed. Several prior studies attempted to reduce code instrumentation
overhead by performing various static analysis and optimizations. To find error
patterns in Java source code, Martin et al. optimized dynamic instrumentation
by performing static pointer alias analysis [27]. To detect numerous software
attacks, Xu et al. inserted runtime checks to enforce various security policies in
C source code, and remove redundant checks via compiler optimizations [45]. As
a comparison, due to the limited resources on mobile devices, there exists an even
more strict restriction for app size. Therefore, a novel method is necessary to address
this new challenge.

2.4 Privacy Leakage in Android Apps

While powerful Android APIs facilitate versatile functionalities, they also arouse
privacy concerns. Previous studies [12, 13, 19, 44, 52, 54] have exposed that both
benign and malicious apps are stealthily leaking users’ private information to remote
servers. Efforts have also been made to detect and analyze privacy leakage either
statically or dynamically [12, 13, 15, 22, 25, 26, 48]. Nevertheless, a good solution
to defeat privacy leakage at runtime is still lacking.

2.4.1 Privacy Leakage Detection

Egele et al. [10] studied the privacy threats in iOS applications. They pro-
posed PiOS, a static analysis tool to detect privacy leaks in Mach-O binaries.
TaintDroid is a dynamic analysis tool for detecting and analyzing privacy leaks
in Android applications [12]. It modifies Dalvik virtual machine and dynamically
instruments Dalvik bytecode instructions to perform dynamic taint analysis. Enck
et al. [13] proposed a static analysis approach to study privacy leakage as well.
They convert a Dalvik executable to Java source code and leverage a commercial
Java source code analysis tool Fortify360 [20] to detect surreptitious data flows.
CHEX [25] is designed to vet Android apps for component hijacking vulnerabil-
ities and is essentially capable of detecting privacy leakage. It converted Dalvik
bytecode to WALA [43] SSA IR, and conducted static dataflow analysis with
WALA framework. AndroidLeaks [15] is a static analysis framework, which also
leverages WALA, and identifies potential leaks of personal information in Android
applications on a large scale. Mann et al. [26] analyzed the Android API for possible
sources and sinks of private data and thus identified exemplary privacy policies. All
the existing detection methods fundamental cause significant false alarms because
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they cannot differentiate legitimate use of sensitive data from authentic privacy
leakage. Though effective in terms of privacy protection, these approaches did not
attempt to preserve the system usability.

2.4.2 Privacy Leak Mitigation

Based on TaintDroid, Hornyack et al. [19] proposed AppFence to further mitigate
privacy leaks. When TaintDroid discovers the data dependency between source
and sink, AppFence enforces privacy policies, either at source or sink, to protect
sensitive information. At source, it may provide the app with fake information
instead of the real one; at sink, it can block sending APIs. To take usability into
consideration, the authors proposed multiple access control rules and conducted
empirical studies to find the optimal policies in practice.

The major limitation of AppFence is the lack of efficiency. AppFence requires
modifications in the Dalvik virtual machine to track information flow and incurs
considerable performance overhead (14 % on average according to TaintDroid [12]).
Besides, the deployment is also challenging. For one thing, end users have to
re-install the operating system on their mobile device to enable AppFence. For
another, once the Android OS upgrades to a new version, AppFence needs to be
re-engineered to work with the novel mechanisms.

2.4.3 Information Flow Control

Though AppFence is limited by its efficiency and deployment, it demonstrates that
it is feasible to leverage Information-Flow Control (IFC) technique to address the
privacy leakage problem in Android apps. In fact, IFC has been studied on different
contexts. Chandra and Franz [5] implement an information flow framework for Java
virtual machine which combines static analysis to capture implicit flows. JFlow [30]
extends the Java language and adds statically-checked information flow annotations.
Jia et al. [21] proposes a component-level runtime enforcement system for Android
apps. duPro [32] is an efficient user-space information flow control framework,
which adopts software-based fault isolation to isolate protection domains within
the same process. Zeng et al. [49] introduces an IRM-implementation framework at
a compiler intermediate-representation (IR) level.

2.5 Text Analytics for Android Security

Recently, efforts have been made to study the security implications of textual
descriptions for Android apps. WHYPER [33] used natural language processing
technique to identify the descriptive sentences that are associated to permissions
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requests. It implemented a semantic engine to connect textual elements to Android
permissions. AutoCog [36] further applied machine learning technique to automati-
cally correlate the descriptive scripts to permissions, and therefore was able to assess
description-to-permission fidelity of applications. These studies demonstrates the
urgent need to bridge the gap between the textual description and security-related
program semantics.

2.5.1 Automated Generation of Software Description

There exists a series of studies on software description generation for traditional
Java programs. Sridhara et al. [40] automatically summarized method syntax
and function logic using natural language. Later, they [41] improved the method
summaries by also describing the specific roles of method parameters and integrat-
ing parameter descriptions. They presented heuristics to generate comments and
describe the specific roles of different method parameters. Further, they [42] auto-
matically identified high-level abstractions of actions in code and described them
in natural language and attempted to automatically identify code fragments that
implement high level abstractions of actions and express them as a natural language
description. In the meantime, Buse [4] leveraged symbolic execution and code
summarization technique to document program differences, and thus synthesize
succinct human-readable documentation for arbitrary program differences. Moreno
et al. [29] proposed a summarization tool which determines class and method
stereotypes and uses them, in conjunction with heuristics, to select the information
to be included in the class summaries. The goal of these studies is to improve the
program comprehension for developers. As a result, they focus on documenting
intra-procedural program logic and low-level code structures. On the contrary, they
did not aim at depicting high-level program semantics and therefore cannot help end
users to understand the risk of Android apps.
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