1

Lear

Abst

ning a Strategy for Choosing Widening
Thresholds from a Large Codebase

Sooyoung Cha, Sehun Jeong, and Hakjoo Oh®)

Korea University, Seoul, South Korea
sooyoungl1990,gifaranga,hakjoo_oh{@korea.ac.kr
young g g J

ract. In numerical static analysis, the technique of widening

thresholds is essential for improving the analysis precision, but blind
uses of the technique often significantly slow down the analysis. Ideally,

an an

alysis should apply the technique only when it benefits, by carefully

choosing thresholds that contribute to the final precision. However, find-
ing the proper widening thresholds is nontrivial and existing syntactic
heuristics often produce suboptimal results. In this paper, we present a
method that automatically learns a good strategy for choosing widen-
ing thresholds from a given codebase. A notable feature of our method
is that a good strategy can be learned with analyzing each program in
the codebase only once, which allows to use a large codebase as train-
ing data. We evaluated our technique with a static analyzer for full C
and 100 open-source benchmarks. The experimental results show that
the learned widening strategy is highly cost-effective; it achieves 84 %
of the full precision while increasing the baseline analysis cost only by

1.4x%.

Our learning algorithm is able to achieve this performance 26 times

faster than the previous Bayesian optimization approach.

Intro

duction

In static analysis for discovering numerical program properties, the technique
of widening with thresholds is essential for improving the analysis precision
[1-4,6-9]. Without the technique, the analysis often fails to establish even sim-
ple numerical invariants. For example, suppose we analyze the following code
snippet with the interval domain:

i=0;
while
i =

assert(i <= 4);

3

(i1=4) {

i+ 1;

Note that the interval analysis with the standard widening operator cannot

prove the safety of the assertion at line 4. The analysis concludes that the interval
value of i right after line 2 is [0,4o0c] (hence [1,+oc] at line 4) because of the
widening operation applied at the entry of the loop. A simple way of improving

© Springer International Publishing AG 2016
A. Igarashi (Ed.): APLAS 2016, LNCS 10017, pp. 25-41, 2016.
DOI: 10.1007/978-3-319-47958-3_2

26 S. Cha et al.

the result is to employ widening thresholds. For example, when an integer 4
is used as a threshold, the widening operation at the loop entry produces the
interval [0, 4], instead of [0, +oc], for the value of i. The loop condition i # 4
narrows down the value to [0, 3] and therefore we can prove that the assertion
holds at line 4.

However, it is a challenge to choose the right set of thresholds that improves
the analysis precision with a small extra cost. Simple-minded methods can hardly
be cost-effective. For example, simply choosing all integer constants in the pro-
gram would not scale to large programs. Existing syntactic and semantics heuris-
tics for choosing thresholds (e.g. [3,6,8,9]) are also not satisfactory. For exam-
ple, the syntactic heuristic used in [3], which is specially designed for the flight
control software, is not precision-effective in general [12]. A more sophisticated,
semantics-based heuristic sometimes incurs significant cost blow up [8]. No exist-
ing techniques are able to prescribe small yet effective set of thresholds for arbi-
trary programs.

In this paper, we present a technique that automatically learns a good strat-
egy for choosing widening thresholds from a given codebase. The learned strategy
is then used for analyzing new, unseen programs. Our technique includes a para-
meterized strategy for choosing widening thresholds, which decides whether to
use each integer constant in the given program as a threshold or not. Follow-
ing [13], the strategy is parameterized by a vector of real numbers and the effec-
tiveness of the strategy is completely determined by the choice of the parameter.
Therefore, in our approach, learning a good strategy corresponds to finding a
good parameter from a given codebase.

A salient feature of our method is that a good strategy can be learned by
analyzing the codebase only once, which enables us to use a large codebase
as a training dataset. In [13], learning a strategy is formulated as a blackbox
optimization problem and the Bayesian optimization approach was proposed to
efficiently solve the optimization problem. However, we found that this approach
is still too costly when the codebase is large, mainly because it requires multiple
runs of the static analyzer over the entire codebase. Motivated by this limitation,
we designed a new learning algorithm that does not require running the analyzer
over the codebase multiple times. The key idea is to use an oracle that quantifies
the relative importance of each integer constant in the program with respect to
improving the analysis precision. With this oracle, we transform the blackbox
optimization problem to a whitebox one that is much easier to solve than the
original problem. We show that the oracle can be effectively obtained from a
single run of the static analyzer over the codebase.

The experimental results show that our learning algorithm produces a highly
cost-effective strategy and is fast enough to be used with a large codebase. We
implemented our approach in a static analyzer for real-world C programs and
used 100 open-source benchmarks for the evaluation. The learned widening strat-
egy achieves 84 % of the full precision (i.e., the precision of the analysis using
all integer constants in the program as widening thresholds) while increasing
the cost of the baseline analysis without widening thresholds only by 1.4x. Our

Learning a Strategy for Choosing Widening Thresholds 27

learning algorithm is able to achieve this performance 26 times faster than the
existing Bayesian optimization approach.

Contributions. This paper makes the following contributions.

— We present a learning-based method for selectively applying the technique of
widening thresholds. From a given codebase, our method automatically learns
a strategy for choosing widening thresholds.

— We present a new, oracle-guided learning algorithm that is significantly faster
than the existing Bayesian optimization approach. Although we use this
algorithm for learning widening strategy, our learning algorithm is generally
applicable to adaptive static analyses in general provided a suitable oracle is
given for each analysis.

— We prove the effectiveness of our method in a realistic setting. Using a large
codebase of 100 open-source programs, we experimentally show that our learn-
ing strategy is highly cost-effective, achieving the 84 % of the full precision
while increasing the cost by 1.4 times.

Outline. We first present our learning algorithm in a general setting; Sect.2
defines a class of adaptive static analyses and Sect. 3 explains our oracle-guided
learning algorithm. Next, in Sect. 4, we describe how to apply the general app-
roach to the problem of learning a widening strategy. Section5 presents the
experimental results, Sect. 6 discusses related work, and Sect. 7 concludes.

2 Adaptive Static Analysis

We use the setting of adaptive static analysis in [13]. Let P € P be a program to
analyze. Let Jp be a set of indices that represent parts of P. Indices in Jp are
used as “switches” that determine whether to apply high precision or not. For
example, in the partially flow-sensitive analysis in [13], Jp is the set of program
variables and the analysis applies flow-sensitivity only to a selected subset of Jp.
In this paper, Jp denotes the set of constant integers in the program and our
aim is to choose a subset of Jp that will be used as widening thresholds. Once
Jp is chosen, the set Ap of program abstractions is defined as a set of indices as
follows:
acAp =p(lp).

In the rest of the paper, we omit the subscript P from Jp and Ap when there
is no confusion.

The program is given together with a set of queries (i.e. assertions) and the
goal of the static analysis is to prove as many queries as possible. We suppose
that an adaptive static analysis is given with the following type:

F:PxA—N.

Given a program P and its abstraction a, the analysis F(P,a) analyzes the
program P by applying high precision (e.g. widening thresholds) only to the

28 S. Cha et al.

program parts in the abstraction a. For example, F(P,0) and F(P,Jp) repre-
sent the least and most precise analyses, respectively. The result from F(P, a)
indicates the number of queries in P proved by the analysis. We assume that the
abstraction correlates the precision and cost of the analysis. That is, if a’ is a
more refined abstraction than a (i.e. a C a’), then F(P,a’) proves more queries
than F'(P,a) does but the former is more expensive to run than the latter. This
assumption usually holds in program analyses for C.

In this paper, we are interested in automatically finding an adaptation
strategy

S:P—-A

from a given codebase P = {P,..., Py, }. Once the strategy is learned, it is used
for analyzing unseen program P as follows:

F(P,S(P)).

Our goal is to learn a cost-effective strategy S* such that F'(P,S*(P)) has pre-
cision comparable to that of the most precise analysis F(P,Jp) while its cost
remains close to that of the least precise one F(P,().

3 Learning an Adaptation Strategy from a Codebase

In this section, we explain our method for learning a strategy S : P — A from
a codebase P = {Py,..., P,}. Our method follows the overall structure of the
learning approach in [13] but uses a new learning algorithm that is much more
efficient than the Bayesian optimization approach in [13].

In Sect. 3.1, we summarize the definition of the adaptation strategy in [13],
which is parameterized by a vector w of real numbers. In Sect. 3.2, the opti-
mization problem of learning is defined. Section 3.3 briefly presents the exist-
ing Bayesian optimization method for solving the optimization problem and
discusses its limitation in performance. Finally, Sect.3.4 presents our learning
algorithm that avoids the problem of the existing approach.

3.1 Parameterized Adaptation Strategy

In [13], the adaptation strategy is parameterized and the result of the strategy
is limited to a particular set of abstractions. That is, the parameterized strategy
is defined with the following type:

Sy : P — AF

where A¥ = {a € A | |a| = k} is the set of abstractions of size k. The strat-
egy is parameterized by w € R", a vector of real numbers. In this paper, we
assume that k is fixed, which is set to 30 in our experiments, and R denotes real
numbers between —1 and 1, i.e., R = [—1,1]. The effectiveness of the strategy
is solely determined by the parameter w. With a good parameter w, the analy-
sis F'(P,Sw(P)) has precision comparable to the most precise analysis F(P,Jp)

Learning a Strategy for Choosing Widening Thresholds 29

while its cost is not far different from the least precise one F(P,). Our goal is
to learn a good parameter w from a codebase P = {Py, P5,..., P, }.

The parameterized adaptation strategy Sy, is defined as follows. We assume
that a set of program features is given:

fP = {f}137f123a7f}2}
where a feature fF is a predicate over the switches Jp:
fk.Jp —B.

In general, a feature is a function of type Jp — R but we assume that the result
is binary for simplicity. Note that the number of features equals to the dimension
of w. With the features, a switch j is represented by a feature vector as follows:

fp(j) = (fp (), f2(), - FB())-
The strategy Sy works in two steps:

1. Compute the scores of switches. The score of switch j is computed by a linear
combination of its feature vector and the parameter w:

score(j) = £p(j) - w. (1)
The score of an abstraction a is defined by the sum of the scores of elements
in a:
scorelp(a) = Z scorep(4).
j€a
2. Select the top-k switches. Our strategy selects top-k switches with highest
scores:

Sw(P) = argmax scorep (a).
ac Ak

3.2 The Optimization Problem

Learning a good parameter w from a codebase P = {P,..., P, } corresponds
to solving the following optimization problem:

Find w* € R™ that maximizes obj(w™) (2)

where the objective function is

obj(w) = > F(P;,Sw(P;)).

P,eP

That is, we aim to find a parameter w* that maximizes the number of queries
in the codebase that are proved by the static analysis with Sy«. Note that it
is only possible to solve the optimization problem approximately because the
search space is very large. Furthermore, evaluating the objective function is
typically very expensive since it involves running the static analysis over the
entire codebase.

30 S. Cha et al.

3.3 Existing Approach

In [13], a learning algorithm based on Bayesian optimization has been proposed.
To simply put, this algorithm performs a random sampling guided by a proba-
bilistic model:

1: repeat

2 sample w from R"™ using probabilistic model M

3 s« obj(w)

4: update the model M with (w,s)

5: until timeout

6: return best w found so far

The algorithm uses a probabilistic model M that approximates the objective
function by a probabilistic distribution on function spaces (using the Gaussian
Process [14]). The purpose of the probabilistic model is to pick a next parameter
to evaluate that is predicted to work best according the approximation of the
objective function (line 2). Next, the algorithm evaluates the objective function
with the chosen parameter w (line 3). The model M gets updated with the
current parameter and its evaluation result (line 4). The algorithm repeats this
process until the cost budget is exhausted and returns the best parameter found
so far.

Although this algorithm is significantly more efficient than the random sam-
pling [13], it still requires a number of iterations of the loop to learn a good
parameter. According to our experience, the algorithm with Bayesian optimiza-
tion typically requires more than 100 iterations to find good parameters (Sect. 5).
Note that even a single iteration of the loop can be very expensive in practice
because it involves running the static analyzer over the entire codebase. When
the codebase is massive and the static analyzer is costly, evaluating the objective
function multiple times is prohibitively expensive.

3.4 Our Oracle-Guided Approach

In this paper, we present a method for learning a good parameter without ana-
lyzing the codebase multiple times. By analyzing each program in the codebase
only once, our method is able to find a parameter that is as good as the para-
meter found by the Bayesian optimization method.

We achieve this by applying an oracle-guided approach to learning. Our
method assumes the presence of an oracle Op for each program P, which maps
program parts in Jp to real numbers in R = [—1, 1]:

Op:Jp — R

For each j € Jp, the oracle returns a real number that quantifies the relative
contribution of j in achieving the precision of F(P,Jp). That is, O(j1) < O(j2)
means that jo contributes more than j; to improving the precision during the
analysis of F'(P,Jp). We assume that the oracle is given together with the adap-
tive static analysis. In Sect. 4.3, we show that such an oracle easily results from
analyzing the program for interval analysis with widening thresholds.

Learning a Strategy for Choosing Widening Thresholds 31

In the presence of the oracle, we can establish an easy-to-solve optimization
problem which serves as a proxy of the original optimization problem in (2).
For simplicity, assume that the codebase consists of a single program: P = {P}.
Shortly, we extend the method to multiple training programs. Let O be the
oracle for program P. Then, the goal of our method is to learn w such that, for
every j € Jp, the scoring function in (1) instantiated with w produces a value
that is as close to O(j) as possible. We formalize this optimization problem as
follows:

Find w* that minimizes F(w")

where E(w) is defined to be the mean square error of w:

E(w)= 3 (score}(j) — O(j))?

Jjelp

= > (fp(j) - w—0()))?
jelp

= > O frl)wi - 03)
JjeIp i=1

Note that the body of the objective function E(w) is a differentiable, closed-
form expression, so we can use the standard gradient decent algorithm to find a
minimum of E. The algorithm is simply stated as follows:

1: sample w from R"™

2: repeat

3 w=w-—a- VE(w)
4: until convergence

5: return w

Starting from a random parameter w (line 1), the algorithm keeps going down
toward the minimum in the direction against the gradient VE(w). The single
step size is determined by the learning rate «. The gradient of E is defined as
follows:

0 9] 0

VE(w) = (a—WlE(W) E(w),---
where the partial derivatives are

9 pw)=2 3" (3 Filiwi — OGN FEG)

W
Owp j€lp i=1

76VV2

Because the optimization problem does not involve the static analyzer and code-
base, learning a parameter w is done quickly regardless of the cost of the analysis
and the size of the codebase, and in the next section, we show that a good-enough
oracle can be obtained by analyzing the codebase only once.

It is easy to extend the method to multiple programs. Let P = {Py,..., P, }
be the codebase. We assume the presence of oracles Op,,...,Op, for each pro-
gram P; € P. We establish the error function Ep over the entire codebase as
follows:

32 S. Cha et al.

Ee(w)= 3 32 (3 fh)wi — Op())

PP jelp i=1

and now the gradient VEp(w) is defined with the partial derivatives:

D ppw) =23 3 (3 FhG)ws — OGN TEG):

ow
k PEP jelp i=1

Again, we use the gradient decent algorithm to find w that minimizes Ep(w).

4 Learning a Strategy for Widening Thresholds

In this section, we explain how to employ the oracle-guided method to learn a
widening threshold strategy from a codebase. In Sect. 4.1, we define an interval
analysis that uses widening with thresholds. Sections4.2 and 4.3 present the
features and oracle that we used for the interval analysis, respectively.

4.1 Interval Analysis with Widening Thresholds

We assume that a program P € P is represented by a control flow graph P =
(C,—), where C is the set of nodes (i.e. program points) and (—) C C x C is
a binary relation denoting control-flows of the program; ¢’ — ¢ means that c is
the program point next to ¢’

The abstract domain of the analysis maps programs points to abstract states:

D=C—S
where S is a map from program variables to the interval domain:
S=Var — 1.

The abstract semantic function of the analysis is defined as follows:

F(X) = e fol || X()

c'—c

where we assume that transfer function f.:S — S is defined for each command
c. The goal of the analysis is to compute an upper bound of the least fixed point
of F:
IfpF = | | F/(L) = FO(L)UF (L) UF(L)u---
i>0

This fixed point iteration may not terminate because the interval domain I is of
infinite height. Therefore, the analysis should use a widening operator for I. A
simple widening operator for the interval domain can be defined as follows: (For
simplicity, we omit the cases when intervals are bottom).

[l1,u1]V[la, ug] = [(l2 < 11?7 — 00 : I1), (u1 < up? + 00 : uq))] (3)

Learning a Strategy for Choosing Widening Thresholds 33

Note that this widening operator is very hasty and immediately replaces unstable
bounds by oo.

The technique of widening with thresholds aims to improve the precision
by bounding the extrapolation by widening. Suppose we have a set T' C Z of
thresholds. These thresholds are successively used as a candidate of a fixed point.
Formally, the widening operator vV, with thresholds is defined as follows:

(1, u1]Vrlla,ug] = [(Ia < 1 7g9b(T,12) < 1), (u1 < ua?lub(T,ug) : u1)] (4)

where glb(T, i) and lub(T, i) are respectively the greatest lower bound and least
upper bound of ¢ in thresholds T"

glb(T,i) =max{n €T |n <i}
lub(T,i) = min{n € T | n > i}

The widening operators for S and D are defined pointwise.

The precision improvement by widening with thresholds crucially depends
on the choice of the set T of thresholds, and our goal is to automatically learn a
good strategy for choosing T from a given codebase. In our implementation, the
set Jp in Sect. 5.1 corresponds to the set of all integer constants in program P,
and the strategy Sy chooses top-k integers from P based on the parameter w.

4.2 Features

To use the learning algorithm, we need to design a set of features for integer con-
stants in the program. We have designed 17 syntactic, semantic, and numerical
features (Table1). A feature is a predicate over integers. For example, the first
feature in Table 1 indicates whether the number is used as the size of a statically
allocated array in the program.

The features have been designed with simplicity and generality in mind.
They do not depend on the interval analysis and therefore can be easily reused
for other types of numerical analyses. Features 1-12 describe simple syntactic
and semantic features for usages of integers in typical C programs. We used
a flow-insensitive pre-analysis to extract the semantic features (e.g. feature 7).
Features 13-17 describe numerical properties that are commonly found in C
programs. We were curious whether these common numerical properties have
impacts on the analysis precision when they are used for widening thresholds.
Once these features are manually designed, it is the learning algorithm’s job to
decide how much they are relevant in the given analysis task.

4.3 Oracle

To use our new learning algorithm, we need the oracle:

OPIZPHR

34 S. Cha et al.

Table 1. Features for integer constants in C programs. Each feature represents a
predicate over integers.

3k

Description

Used as The size of a static array

The Size of a static array — 1

Returned By a function (e.g. return 1)

Three successive numbers appear in the Program (e.g. n,n + 1,n + 2)

Most frequently appeared numbers in The program (i.e. top 10 %)

Least frequently appeared numbers in The program (i.e. bottom 10 %)

Passed as the size arguments of memory Copy functions (e.g. memcpy)

Used as the size of the destination arrays in memoryCopy functions (e.g. memcpy)

O©|00 | | O | Uk |W| |~

The null position of a string buffer Involved in some loop condition

—_
[e=]

The null position of a static array of primitive types (e.g., Arrays of int and char)

—_
—_

The null position of a static Array of structure fields

Ju—
]

Constants involved in conditional Expressions (e.g. if (x == 1))
Integers Of the form 2" (e.g. 2, 4, 8, 16)

Integers Of the form 2" — 1 (e.g., 1, 3, 7, 15)

Integers In the range 0 < n < 50

Integers In the range 50 < n < 100

—
w

—
'S

=
ot

—_
=]

—
-

Integers In the range n > 1000

where Zp is the set of integer constants that appear in the program P. That is,
Op maps integer constants in the program into their relative importance when
they are used for widening thresholds.

We use a simple heuristic to build the oracle. The idea is to analyze the code-
base with full precision and estimate the importance by measuring how many
times each integer constant contributes to stabilizing the fixed point compu-
tation. The term full precision means that the heuristic uses a thresholds set,
which includes constant integers of the program’s variables, the sizes of static
arrays, and the lengths of constant strings. Through relatively cheap analysis
(e.g., flow insensitive), we get an abstract memory state which holds the candi-
date thresholds information we mentioned above.

Let P be a program in the codebase. We analyze the program by using all
its integer constants as thresholds. During the fixed point computation of the
analysis, we observe each widening operation and maintain a map C : Zp — N
that counts the integer constants involved in a local fixed point. That is, C(n) is
initially O for all n, and whenever we perform the widening operation on intervals:

[ll, U1]V[l2, UQ] = [l3, U3]

we check if the result reaches a local fixed point (i.e. [I3,us] C [I1,u1]). If so, we
increase the counter values for I3 and ug: C(l3) := C(I3)+1 and C(u3) := C(ug)+1.
We keep updating the counter C until a global fixd point is reached. Finally, we

Learning a Strategy for Choosing Widening Thresholds 35

normalize the values in C to obtain the oracle Op. We repeat this process over
the entire codebase and generate a set of oracles.

5 Experiments

In this section, we evaluate our approach with an interval analyzer for C and
open-source benchmarks. We organized the experiments to answer the following
research questions:

1. Effectiveness: How much is the analyzer with the learned strategy better
than the baseline analyzers? (Section 5.2)

2. Comparison: How much is our learning algorithm better than the existing
Bayesian optimization approach? (Section 5.3)

3. Important Features: What are the most important features identified by
the learning algorithm? (Section 5.4)

5.1 Setting

We implemented our approach in Sparrow, a static buffer-overflow analyzer
for real-world C programs [18]. The analysis is based on the interval abstract
domain and performs a flow-sensitive and selectively context-sensitive analy-
sis [11]. Along the interval analysis, it also simultaneously performs a flow-
sensitive pointer analysis to handle indirect assignments and function pointers
in C. The analyzer takes as arguments a set of integers to use for widening
thresholds. Our technique automatically generates this input to the analyzer, by
choosing a subset of integer constants that appear in the program.

To evaluate our approach, we collected 100 open-source C programs from
GNU and Linux packages. The list of programs we used is available in Table 5.
We randomly divided the 100 benchmark programs into 70 training programs
and 30 testing programs. A strategy for choosing widening threshold is learned
from the 70 training programs, and tested on the remaining 30 programs. We
iterated this process for five times. Tables2 and 3 show the result of each trial.
In our approach, based on our observation that the number of effective widening
thresholds in each program is very small, we set k to 30, which means that
the strategy chooses the top 30 integer constants from the program to use for
widening thresholds.

In the experiments, we compared the performance of three analyzers.

— NOTHLD is the baseline Sparrow without widening thresholds. That is, it
performs the interval analysis with the basic widening operator in (3).

— FULLTHLD is a variant of Sparrow that uses all the integer constants in the
program as widening thresholds. The thresholds set includes constant integers
in the program, the sizes of static arrays, and the lengths of constant strings.

— OURS is our analyzer whose threshold strategy is learned from the codebase.
That is, the threshold argument of the analyzer is given by the strategy learned
from the 70 programs via our oracle-guided learning algorithm.

36 S. Cha et al.

5.2 Effectiveness

Tables2 and 3 show the effectiveness of the learned strategy in the training
and testing phases, respectively. Table 2 shows the training performance with 70
programs. For the five trials, NOTHLD proved 68,556 buffer-overrun queries. On
the other hand, FULLTHLD proved 76,608 queries. For the training programs,
our learning algorithm was able to find a strategy that can prove 81.0 % of the
FuLLTHLD-only provable queries.

Table 3 shows the results on the 30 testing programs. In total, NOTHLD
proved the 23,344 queries, while FULLTHLD proved 26,347 queries. Our analysis
with the learned strategy (OURS) proved 25,877 queries, achieving 84.3% of
the precision of FULLTHLD. In doing so, OURS increases the analysis time of
NOTHLD only 1.4x, while FULLTHLD increases the cost by 4.8x.

5.3 Comparison

We have implemented the previous learning algorithm based on Bayesian opti-
mization [13] and compared its performance with that of our learning algorithm.

Table 2. Performance on the training programs.

Trial | Training

NOTHLD | FULLTHLD | OURS

prove prove prove | quality
1 13,297 14,806 14,518 | 80.9 %
2 14,251 15,912 15,602 | 81.3%
3 14,509 16,285 15,988 | 83.2%
4 11,931 13,313 13,020 | 78.8 %
5 14,568 16,292 15,948 | 80.0 %
Total | 68,556 | 76,608 75,076 | 81.0 %

Table 3. Performance on the testing programs.

Trial | Testing

NoOTHLD FuLLTHLD OURS

prove sec prove sec cost | prove sec quality | cost
5,083 222 | 5,785 | 1,789 |8.0x 5,637 361 | 78.9% |1.6x
4,129 605 | 4,679 | 2,645 |4.4x 4,623 748 189.8% |1.2x
3,871 397 | 4,306 | 1,068 |2.7x 4,237 543 |84.1% |1.4x
6,449 792 | 7,278 | 4,606 |5.8% 7,133 | 1228 [82.5% |1.6x%
3,812 281 | 4,299 | 1,014 |3.6x 4,247 389 [89.3% |1.4x

Total | 23,344 | 2,297 | 26,347 | 11,122 |4.8x | 25,877 | 3,269 |84.3 % 1.4X

Uk W ||~

Learning a Strategy for Choosing Widening Thresholds 37

Table 4. Performance comparison with the Bayesian optimization approach. For
Bayesian optimization, we set the maximum number of iterations to 100.

Trial | Learning cost
OURS Bayesian optimization | speedup
quality | sec quality | sec

1 80.9% | 6,682 | 74.3% | 185,825 27.8%

2 81.3% | 5,971 |80.1% | 155,438 26.0x

3 83.2% | 7,192 | 77.1% |170,311 23.7x

4 788% | 3,976 | 73.7% | 113,738 28.6x

5 80.0% | 6,947 | 74.7% | 185,375 26.7x

Total | 81.0% | 30,768 | 76.0% | 810,687 26.3%

Fig. 1. Relative importance among features

Table 4 shows the results. For the five trials, our approach took on average 6,154
seconds to find a strategy of the average quality 81.0 %. On the other hand, the
Bayesian optimization approach was able to find a strategy that resulted 76.0 %
quality on training sets after it exhausted its iteration budget, which took on
average 162,137 seconds. The results show that our learning algorithm is able to
find a better strategy 26 times faster than the existing algorithm.

The Bayesian optimization approach did not work well with a limited time
budget. When we allowed the Bayesian optimization approach to use the same
time budget as ours, the existing approach ended up with a strategy of the
average quality 57 %. Note that our algorithm achieves the quality 81 % in the
same amount of time.

5.4 Important Features

In our approach, the learned parameter w indicates the relative importance of the
features in Table 1. To identify the important features for widening thresholds,
we performed the training phase ten times and averaged the parameters obtained
from each run.

38 S. Cha et al.

Figure 1 shows the relative feature importance identified by the learning algo-
rithm. During the ten trials, the feature 5 (most frequently appeared numbers
in the program) was always the highest ranked feature. Features 13 (numbers of
the form 2") and 14 (numbers of the form 2™ — 1) were also consistently listed
in the top 5.

These results were not expected from the beginning. At the initial stage of
this work, we manually identified important features for widening thresholds and
conjectured that the features 9, 10, and 11, which are related to null positions,
are the most important ones. Consider the following code:

char *text="abcd";

i=0;

while (text[i] !'= NULL) {
i++;

assert(i <= 4);

3

When we convert the loop condition into an equivalent one ¢ # 4 and use the
null position 4 as a widening threshold, we can prove the safety of the assertion
with the interval domain. We observed the above code pattern multiple times
in the target programs being investigated and thought that using null position
as thresholds would be one of the most important. However, the learning algo-
rithm let us realize that unexpected features such as 5, 13, and 14 are the most
important over the entire codebase, which is an insight hardly obtained manually
because it is infeasible for humans to investigate the large codebase.

6 Related Work

Widening with Thresholds. The technique of widening with thresholds has been
widely used in numerical program analyses [1-4,6-9]. For example, its effec-
tiveness has been shown with polyhedra [6], octagons [1,3,4], and intervals [7].
However, existing techniques use a fixed strategy for choosing the threshold set.
For example, in [1,3,4,7], all the integer constants that appear in conditional
statements are used for the candidate of thresholds. In [6], a simple pre-analysis
is used to infer a set of thresholds. The main limitation of these approaches is
that the strategies are fixed and overfitted to some particular class of programs.
For example, the syntactic and semantic heuristics were shown to be not always
cost-effective [6,7]. On the other hand, the goal of this paper is not to fix a par-
ticular strategy beforehand but to automatically learn a strategy from a given
codebase, so that it can be adaptively used in practice.

Learning-Based Program Analysis. Recently, machine learning techniques are
increasingly used in the field of program analysis [5,10,13,15-17]. Among them,
our work lies in the direction of designing an adaptive static analysis via learn-
ing [5,13]. In particular, our work is motivated by [13]’s result, which used

Learning a Strategy for Choosing Widening Thresholds

Table 5. Benchmark programs

Programs LOC Programs LOC

wwl-1.34db.c 474 | e2ps-4.34.c 6,222
gosmore-0.0.0.20100711.c 497 | apng2gif-1.5.c 6,522
ircmarkers-0.14.c 619 | isdnutils-3.254dfsgl.c 6, 609
rovclock-0.6e.c 1,177 | bwm-ng-0.6.c 6,833
xcircuit-3.7.55.dfsg.c 1,222 | diffstat-1.58.c 7,077
iputils-20121221.c 1,311 |lgrind-3.67.c 7,363
confget-1.02.c 1,393 | lacheck-1.26.c 7,385
codegroup-19981025.c 1,518 | lakai-0.1.c 7,487
time-1.7.c 1,759 | libdebug-0.4.4.c 7,645
rexima-1.4.c 1,843 | cmigemo-1.24gh0.20140306.c 7,729
xinit-1.3.2.c 1,893 | barcode-0.96.c 7,901
nlkain-1.3.c 1,927 | apngopt-1.2.c 8,315
xchain-1.0.1.c 1,955 | makedepf90-2.8.8.c 8,415
display-dhammapada-1.0.c 2,007 | mpage-2.5.6.c 8,538
authbind-2.1.1.c 2,041 | stripce-0.2.0.c 8,914
unhtml-2.3.9.c 2,057 | photopc-3.05.c 9,266
elfrc-0.7.c 2,142 | psmisc-22.20.c 9,624
jbofihe-0.38.c 2,182 | ircd-ircu-2.10.12.10.dfsgl.c 10, 206
delta-2006.08.03.c 2,273 | auto-apt-0.3.23ubuntu0.14.04.1.c | 11,110
petris-1.0.1.c 2,411 | glhack-1.2.c 11,237
libixp-0.6 20121202+hg148.c 2,428 | sac-1.9b5.c 11,999
whichman-2.4.c 2,493 | dict-gcide-0.48.1.c 12,318
acpi-1.7.c 2,597 | gzip-spec2000.c 12,980
zmakebas-1.2.c 2,606 | cutils-1.6.c 14,122
forkstat-0.01.04.c 2,710 | mtr-0.85.c 14,127
setbfree-0.7.5.c 2,929 | rhash-1.3.1.c 14, 352
haskell98-tutorial-200006-2.c 3,161 | gnuspool-1.7ubuntul.c 16, 665
kee-2.3.¢ 3,429 | smp-utils-0.97.c 17,520
ipip-1.1.9.c 3,605 | ccache-3.1.9.c 17,536
gif2apng-1.7.c 3,816 | gzip-1.2.4a.c 18, 364
desproxy-0.1.0 pre3.c 3,841 | netkit-ftp-0.17.c 19, 254
magicfilter-1.2.c 3,856 | libchewing-0.3.5.c 19, 262
pgpgpg-0.13.c 3,908 | archimedes.c 19, 559
rsrce-0.2.2.c 3,956 | tes-1.c 19,967
rinetd-0.62.c 4,123 | gnuplot-4.6.4.c 20, 306
unsort-1.1.2.c 4,290 | phalanx-22+d051004.c 24,099
hexdiff-0.0.53.c 4,334 | gnuchess-5.05.c 28,853
acorn-fdisk-3.0.6.c 4,450 | combine-0.3.3.c 29,508
pmccabe-2.6.c 4,920 | rtai-3.9.1.c 30,739
dvbtune-0.5.ds.c 5,068 | gnushogi-1.4.1.c 31,796
bmf-0.9.4.c 5,451 | tmndec-3.2.0.c 31, 890
libbind-6.0.c 5,497 | fondu-0.0.20060102.c 32,298
mixal-1.08.c 5,570 | libart-lgpl-2.3.21.c 38,815
cmdpack-1.03.c 5,575 | flex-2.5.39.c 39,977
picocom-1.7.c 5,613 | fwlogwatch-1.2.c 46, 601
xdms-1.3.2.c 5,614 | chrony-1.29.c 49,119
cifs-utils-6.0.c 5,815 | uudeview-0.5.20.c 54,853
dtaus-0.9.c 6,018 |sn-0.3.8.c 56,227
device-tree-compiler-1.4.04dfsg.c | 6,033 | shadow-4.1.5.1.c 85,201
buildtorrent-0.8.c 6,170 | skyeye-1.2.5.c 85,905

39

40 S. Cha et al.

Bayesian optimization to guide the learning process to more promising direc-
tions. We followed the general idea of the previous work, but we proposed a more
efficient learning algorithm than the Bayesian optimization method. Because Oh
et al.’s work uses the number of proven queries to measure quality of the learned
strategy, the learning algorithm has to perform full-scale analysis on all training
programs repeatedly until the learnt strategy meets a target quality. As we men-
tioned in Sect. 5.3, its takes too much time to get an acceptably good strategy
over the large codebase. By contrast, our method reduces the learning cost by
exploiting of the existence of the oracle for a given training program. Since the
process of obtaining the oracle requires performing single full-scale analysis per
training program, our learning algorithm radically reduced time cost than the
existing method.

7 Conclusion

In this paper, we proposed a method that automatically learns a good strategy
for choosing widening thresholds from a large codebase. We showed that the
learned strategy is highly cost-effective; we can achieve 84 % of the full precision
with the 1.4x increase in analysis time.

The success of the method is largely attributed to our new learning algorithm
that is significantly faster than the previous Bayesian optimization algorithm.
In the presence of a large codebase, the Bayesian optimization approach failed
to learn a good strategy in a reasonable amount of time. By contrast, our new
learning algorithm is at least 26 times faster and is able to find a better parameter
than the previous method.

Our approach is general enough to be used for other types of adaptive static
analyses. As future work, we plan to apply our technique to other instances such
as selective flow-sensitivity and context-sensitivity.

Acknowledgement. This work was supported by the Institute for Information &
communications Technology Promotion (IITP) grant funded by the Korea government
(MSIP) (No. R0190-15-2011, Development of Vulnerability Discovery Technologies for
IoT Software Security); the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2016R1C1B2014062); and the MSIP (Ministry of Science, ICT and
Future Planning), Korea, under the ITRC (Information Technology Research Center)
support program (II'TP-2016-H85011610120001002) supervised by the IITP (Institute
for Information & communications Technology Promotion).

References

1. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: Design and implementation of a special-purpose static program ana-
lyzer for safety-critical real-time embedded software. In: Mogensen, T./A&., Schmidt,
D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp.
85-108. Springer, Heidelberg (2002). doi:10.1007/3-540-36377-7_5

http://dx.doi.org/10.1007/3-540-36377-7_5

10.

11.

12.

13.

14.

15.

16.

17.

18.

Learning a Strategy for Choosing Widening Thresholds 41

Bouissou, O., Seladji, Y., Chapoutot, A.: Acceleration of the abstract fixpoint
computation in numerical program analysis. J. Symb. Comput. 47(12), 1479-1511
(2012). International Workshop on Invariant Generation

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Antoine, M., Rival, X.: Why does
astrée scale up? Formal Methods Syst. Des. 35(3), 229-264 (2009)

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: Combination of abstractions in the ASTREE static analyzer. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 272-300. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-77505-8_23

Grigore, R., Yang, H.: Abstraction refinement guided by a learnt probabilistic
model. In: POPL (2016)

Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. In: Formal Methods in System Design, pp. 157-185 (1997)
Kim, S., Heo, K., Hakjoo, O., Yi, K.: Widening with thresholds via binary search.
Pract. Exp. Softw. 46, 1317-1328 (2015)

Lakhdar-Chaouch, L., Jeannet, B., Girault, A.: Widening with thresholds for pro-
grams with complex control graphs. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA
2011. LNCS, vol. 6996, pp. 492-502. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24372-1_38

Mihaila, B., Sepp, A., Simon, A.: Widening as abstract domain. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 170-184. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38088-4_12

Naik, M., Yang, H., Castelnuovo, G., Sagiv, M.: Abstractions from tests. In: POPL
(2012)

Hakjoo, O., Lee, W., Heo, K., Yang, H., Yi, K.: Selective context-sensitivity guided
by impact pre-analysis. In: PLDI (2014)

Hakjoo, O., Lee, W., Heo, K., Yang, H., Yi, K.: Selective X-sensitive analysis guided
by impact pre-analysis. ACM Trans. Program. Lang. Syst. 38(2), 6:1-6:45 (2015)
Hakjoo, O., Yang, H., Yi, K.: Learning a strategy for adapting a program analysis
via Bayesian optimisation. In: OOPSLA (2015)

Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, Cambridge
(2005)

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574-592. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-37036-6_31

Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Nori, A.V.: Verification as learn-
ing geometric concepts. In: Logozzo, F., Fahndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 388-411. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9_21
Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71-87. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31424-7_11

Sparrow. http://ropas.snu.ac.kr/sparrow

http://dx.doi.org/10.1007/978-3-540-77505-8_23
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/978-3-642-24372-1_38
http://dx.doi.org/10.1007/978-3-642-38088-4_12
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-37036-6_31
http://dx.doi.org/10.1007/978-3-642-38856-9_21
http://dx.doi.org/10.1007/978-3-642-31424-7_11
http://ropas.snu.ac.kr/sparrow

2 Springer
http://www.springer.com/978-3-319-47957-6

Programming Languages and Systems

14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,
Movember 21 - 23, 2016, Proceedings

lgarashi, A (Ed.)

2016, XV, 465 p. 100 illus., Softcover

ISBEM: 978-3-319-47957-6

	Learning a Strategy for Choosing Widening Thresholds from a Large Codebase
	1 Introduction
	2 Adaptive Static Analysis
	3 Learning an Adaptation Strategy from a Codebase
	3.1 Parameterized Adaptation Strategy
	3.2 The Optimization Problem
	3.3 Existing Approach
	3.4 Our Oracle-Guided Approach

	4 Learning a Strategy for Widening Thresholds
	4.1 Interval Analysis with Widening Thresholds
	4.2 Features
	4.3 Oracle

	5 Experiments
	5.1 Setting
	5.2 Effectiveness
	5.3 Comparison
	5.4 Important Features

	6 Related Work
	7 Conclusion
	References

