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Abstract. Given a topic-by-run score matrix from past data, topic
set size design methods can help test collection builders determine the
number of topics to create for a new test collection from a statistical
viewpoint. In this study, we apply a recently-proposed score standardis-
ation method called std-AB to score matrices before applying topic set
size design, and demonstrate its advantages. For topic set size design,
std-AB suppresses score variances and thereby enables test collection
builders to consider realistic choices of topic set sizes, and to handle
unnormalised measures in the same way as normalised measures. In addi-
tion, even discrete measures that clearly violate normality assumptions
look more continuous after applying std-AB, which may make them
more suitable for statistically motivated topic set size design. Our exper-
iments cover a variety of tasks and evaluation measures from NTCIR-12.

1 Introduction

Given a topic-by-run score matrix from past data, topic set size design meth-
ods can help test collection builders determine the number of topics for a new
test collection from a statistical viewpoint [8]. These methods enable test col-
lection builders such as the organisers of evaluation conferences such as TREC,
CLEF and NTCIR to improve the test collection design across multiple rounds
of the tracks/tasks, through accumulation of topic-by-run score matrices and
computation of better variance estimates.

In this study, we apply a recently-proposed score standardisation method
called std-AB [7] to score matrices before applying topic set size design, and
demonstrate its advantages. A standardised score for a particular topic means
how different the system is from an “average” system in standard deviation units,
and therefore enables cross-collection comparisons [14]. For topic set size design,
std-AB suppresses score variances and thereby enables test collection builders to
consider realistic choices of topic set sizes, and to handle unnormalised measures
in the same way as normalised measures. In addition, even discrete measures that
clearly violate normality assumptions look more continuous after applying std-
AB, which may make them more suitable for statistically motivated topic set
size design. Our experiments cover four different tasks from the recent NTCIR-12
conference1: MedNLP [1], MobileClick-2 [4], STC (Short Text Conversation) [11]
1 http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/index.html.
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and QALab-2 [12], and some of the official evaluation measure scores from these
tasks kindly provided by the task organisers.

2 Prior Art and Methods Applied

The present study demonstrates the advantages of our score standardisation
method called std-AB [7] in the context of topic set size design, which deter-
mines the number of topics to be created for a new test collection [8]. This section
situates these methods in the context of related work.

2.1 Power Analysis and Topic Set Size Design

Webber/Moffat/Zobel, CIKM 2008. Webber, Moffat and Zobel [15] pro-
posed procedures for building a test collection based on power analysis. They
recommend adding topics and conducting relevance assessments incrementally
while examining the achieved statistical power (i.e., the probability of detecting
a between-system difference that is real) and re-estimating the standard devi-
ation σt of the between-system differences. They considered the comparison of
two systems only and therefore adopted the t-test; they did not address the
problem of the family-wise error rate [2,3]. Their experiments focused on Aver-
age Precision (AP), a binary-relevance evaluation measure. In order to estimate
σt (or equivalently, the variance σ2

t ), they relied on empirical methods such as
95 %-percentile computation.

Sakai’s Topic Set Size Design. Unlike the incremental approach of Webber
et al. [15], Sakai’s topic set size design methods seek to provide a straightforward
answer to the following question: “I have a topic-by-run score matrix from past
data and I want to build a new and statistically reliable test collection. How many
topics should I create?” [8]. His methods cover not only the paired t-test but also
one-way ANOVA for comparing more than two systems at the same time, as well
as confidence interval widths. The present study focusses on the ANOVA-based
approach, as it has been shown that the topic set sizes based on the other two
methods can be deduced from ANOVA-based results. His ANOVA-based topic
set size design tool2 requires the following as input:

α, β: Probability of Type I error α and that of Type II error β.
m: Number of systems that will be compared (m ≥ 2).
minD: Minimum detectable range [8]. That is, whenever the performance differ-

ence between the best and the worst systems is minD or larger, we want to
ensure 100(1 − β)% power given the significance level α.

σ̂2: Estimated variance of a system’s performance, under the homoscedasticity
(i.e., equal variance) assumption [2,8]. That is, as per ANOVA, it is assumed
that the scores of the i-th system obey N(μi, σ

2) where σ2 is common to all
systems. This variance is heavily dependent on the evaluation measure.

2 http://www.f.waseda.jp/tetsuya/CIKM2014/samplesizeANOVA.xlsx.

http://www.f.waseda.jp/tetsuya/CIKM2014/samplesizeANOVA.xlsx
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Sakai recommends estimating within-system variances σ2 for topic set size
design using the sample residual variance VE which can easily be obtained as
a by-product of one-way ANOVA; it is known that VE is an unbiased estimate
of σ2. Let xij denote the performance score for the i-th system with topic j

(i = 1, . . . , m′ and j = 1, . . . , n′); let x̄i• = 1
n′

∑n′

j=1 xij (sample system mean)

and x̄ = 1
m′n′

∑m′

i=1

∑n′

j=1 xij (sample grand mean). Then:

σ̂2 = VE =

∑m′

i=1

∑n′

j=1(xij − x̄i•)2

m′(n′ − 1)
. (1)

If there are more than one topic-by-run matrices available from past data, a
pooled variance may be calculated to improve the accuracy of the variance esti-
mate [8]. However, this is beyond the scope of the present study, as we are
interested in obtaining a future topic set size based on a single matrix from
NTCIR-12 for each measure in each task.

The present study uses the above method with existing NTCIR test collec-
tions and propose topic set sizes for the next NTCIR rounds. Sakai and Shang [9]
considered the problem of topic set size design for a new task, where we can only
assume the availability of a small pilot topic-by-run matrix rather than a com-
plete test collection. Based on reduced versions of the NTCIR-12 STC official
Chinese subtask topic-by-run matrices, they conclude that accurate variance
estimates for topic set size design can be obtained if there are about n′ = 25
topics and runs from only a few different teams.

2.2 Score Standardisation

Webber/Moffat/Zobel, SIGIR 2008. Webber, Moffat and Zobel [14] pro-
posed score standardization for information retrieval evaluation with multiple
test collections. Given m′ runs and n′ topics, a topic-by-run raw score matrix
{rawij} (i = 1, . . . , m′, j = 1, . . . , n′) is computed for a given evaluation measure.
For each topic, let the sample mean be mean•j = 1

m′
∑

i raw ij , and the sample

standard deviation be sd•j =
√

1
m′−1

∑
i(raw ij − mean•j)2. The standardised

score is then given by

std ij =
raw ij − mean•j

sd•j
, (2)

which quantifies how different a system is from the “average” system in stan-
dard deviation units. Using standardised scores, researchers can compare systems
across different test collections without worrying about topic hardness (since, for
every j, the mean mean•j across runs is subtracted from the raw score) or nor-
malisation (since the standardised scores, which are in the [−∞,∞] range, are
later mapped to the [0, 1] range as described below). In practice, runs that par-
ticipated in the pooling process for relevance assessments (pooled systems) can
also serve as the runs for computing the standardisation factors (mean•j , sd•j)
for each topic (standardising systems) [14]. The same standardisation factors are
then used also for evaluating new runs.
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In order to map the standardised scores into the [0, 1] range, Webber et al.
chose to employ the cumulative density function (CDF) of the standard normal
distribution. The main reason appears to be that, after this transformation, a
score of 0.5 means exactly “average” and that outlier data points are suppressed.

Our Method: Std-AB. Recently, we proposed to replace the aforementioned
CDF transformation of Webber et al. [14] by a simple linear transformation [7]:

linij = A ∗ std ij + B = A ∗ raw ij − mean•j
sd•j

+ B, (3)

where A and B are constants. By construction, the sample mean and the
standard deviation of std ij over the known systems are 0 and 1, respectively
(j = 1, . . . , n′). It then follows that the sample mean and the standard deviation
of linij are B and A, respectively (j = 1, . . . , n′). Regardless of what distribution
raw ij follows, Chebyshev’s inequality guarantees that at least 89 % of the trans-
formed scores linij fall within [−3A, 3A]. In the present study, we let B = 0.5 as
we want to assign a score of 0.5 to “average” systems, and let A = 0.15 so that
the 89 % score range will be [0.05, 0.95]. Furthermore, in order to make sure that
even outliers fall into the [0, 1] range, we apply the following clipping step:

if linij > 1 then linij = 1
else if linij < 0 then linij = 0;

This means that extremely good (bad) systems relative to others are all given
a score of 1 (0). Note that if A is too small, the achieved range of std-AB
scores would be narrower than the desired [0, 1]; if it is too large, the above
clipping would be applied to too many systems and we would not be able to
distinguish among them. The above approach of using A and B with standardis-
ation is quite common for comparing students’ scores in educational research: for
example, SAT (Scholastic Assessment Test) and GRE (Graduate Record Exam-
inations) have used A = 100, B = 500 [5]; the Japanese hensachi (“standard
score”) uses A = 10, B = 50.

In our previous work [7], we demonstrated the advantages std-AB over the
CDF-based method of Webber et al.: std-AB ensures pairwise system compar-
isons that are more consistent across different data sets, and is arguably more
convenient for designing a new test collection from a statistical viewpoint. More
specifically, using a small value of A ensures that the variance estimates σ̂2

will be small, which facilitates test collection design, as we shall demonstrate
later. Moreover, as score normalisation becomes redundant if we apply stan-
dardisation [14], we can handle unnormalised measures (i.e., those that do not
lie between 0 and 1). Furthermore, even discrete measures (i.e., those that only
have a few possible values), which clearly violate the normality assumptions,
look more continuous after applying std-AB. While our previous work was lim-
ited to the discussion of TREC robust track data and normalised ad hoc IR
evaluation measures, the present study extends the work substantially by exper-
imenting with four different NTCIR tasks with a variety of evaluation measures,
including unnormalised and discrete ones for the first time.
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3 NTCIR-12 Tasks Considered in the Present Study

The core subtask of the MedNLPDoc task is phenotyping: given a medical record,
systems are expected to identify possible disease names by means of ICD (Inter-
national Classification of Diseases) codes [1]. Systems are evaluated based on
recall and precision of ICDs. MedNLPDoc provided us with a precision matrix
with n′ = 78 topics (i.e., medical records) and m′ = 14 runs, as well as a recall
matrix with n′ = 76 topics and m′ = 14 runs.

The MobileClick-2 task evaluates search engines for smartphones. Systems are
expected to output a two-layered textual summary in response to a query [4]. The
basic evaluation unit is called iUnit, which is an atomic piece of factual informa-
tion that is relevant to a given query. In the iUnit ranking subtask, systems are
required to rank given iUnits by importance, and are evaluated by nDCG (nor-
malised discounted cumulative gain) and Q-measure. In the iUnit summarisation
subtask, systems are required to construct a two-layered summary from a given
set of iUnits. The systems are expected to minimise the reading effort of users
with different search intents; for this purpose the subtask employs a variant of
the intent-aware U-measure [6], called M-measure [4], which is an unnormalised
measure. MobileClick-2 provided us with 12 topic-by-run matrices in total: six
from the English results and six from the Japanese results. While the variances
of the unnormalised M-measure are too large for the topic set size design tool to
handle, we demonstrate that the problem can be solved by applying std-AB.

The STC (Short Text Conversation) task requires systems to return a human-
like response given a tweet (a Chinese Weibo post or a Japanese twitter post) [11].
Rather than requiring systems to generate natural language responses, however,
STC makes them search a repository of past responses (posted in response to
some other tweet in the past) and rank them. The STC Chinese subtask provided
us with three matrices, representing the official results in nG@1 (normalised
gain at 1), P+ (a variant of Q-measure), and nERR@10 (normalised expected
reciprocal rank at 10), all of which are navigational intent measures [10].

The QALab-2 task tackles the problem of making machines solve university
entrance exam questions. From the task organisers, we received two matrices
based on National Center Test multiple choice questions, one for Phase-1 (where
question types are provided to the system) and one for Phase-3 (where ques-
tion types are not provided). As each topic is a multiple choice question, the
evaluation measure is “Boolean” (either 0 or 1).

nG@1 for STC takes only three values: 0, 1/3 or 1 [10], and Boolean for
QAlab-2 takes only two values: 0 or 1. These clearly violate the normality
assumptions behind ANOVA: xij ∼ N(μi, σ

2) for each system i. Thus, it should
be noted that, when we apply topic set size design using the variances of these
raw measures, what we get are topic set sizes for some normally distributed mea-
sure M that happens to have the same variance as that discrete measure, rather
than topic set sizes for that measure per se. Whereas, if we apply std-AB, these
measures behave more like continuous measures, as we shall demonstrate later.
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Table 1. Columns (e) and (f) show within-system variance estimates σ̂2 based on the
NTCIR-12 topic-by-run matrices and their std-AB versions. The values in bold are
those plugged into the topic set design tool in this study. Column (g) compares the
system rankings before and after applying std-AB in terms of Kendall’s τ , with 95 %
confidence intervals.

(a) Task/subtask (b) Measure (c) m′ (d) n′ (e) σ̂2 (raw scores) (f) σ̂2 (std-AB) (g) τ [95%CI]

MedNLPDoc precision 14 78 .0597 .0139 .978 [.585, 1.371]

recall 14 76 .0601 .0127 .956 [.563, 1.349]

MobileClick Q-measure 25 100 .0023 .0211 .867 [.587, 1.147]

iUnit ranking nDCG@3 25 100 .0259 .0215 .720 [.440, 1.000]

(English) nDCG@5 25 100 .0198 .0214 .713 [.433, .993]

nDCG@10 25 100 .0141 .0212 .773 [.493, 1.053]

nDCG@20 25 100 .0077 .0211 .853 [.573, 1.133]

(Japanese) Q-measure 12 100 .0189 .0155 .970 [.537, 1.403]

nDCG@3 12 100 .0570 .0176 .970 [.537, 1.403]

nDCG@5 12 100 .0466 .0173 .909 [.476, 1.342]

nDCG@10 12 100 .0355 .0163 .970 [.537, 1.403]

nDCG@20 12 100 .0276 .0159 1 [.567,1.433]

MobileClick

iUnit summarisation

(English) M-measure 16 100 44.3783 .0072 .983 [.620, 1.346]

(Japanese) M-measure 13 100 93.5109 .0077 .949 [.537, 1.361]

STC (Chinese) nG@1 44 100 .1144 .0193 .884 [.679, 1.089]

P+ 44 100 .0943 .0186 .962 [.757, 1.167]

nERR@10 44 100 .0867 .0182 .947 [.742, 1.152]

QALab Phase-1 Boolean 27 41 .2124 .0191 .892 [.624, 1.160]

Phase-3 Boolean 34 36 .2130 .0204 .964 [.728, 1.200]

4 Results and Discussions

4.1 Results Overview

Table 1 Columns (e) and (f) show the variance estimates obtained by applying
Eq. 1 to the aforementioned topic-by-run matrices, before and after performing
std-AB as defined by Eq. 3. It can be observed that the variances are sub-
stantially smaller after applying std-AB. This means that the required topic
set sizes will be smaller, provided that the tasks take up the habit of using
std-AB measures. For each subtask (and language), we selected the largest raw
score variance, shown in bold in Column (e), and plugged into the topic set size
design tool (except for the unnormalised M-measure, whose variances were too
large for the tool to handle); that is, we focus on the least stable measures to
obtain topic set sizes that are reliable enough for all evaluation measures. We
then used the variances of the corresponding std-AB measures, shown in bold
in Column (f).

Currently, there is no task at NTCIR that employs score standardisation.
Now, how would std-AB actually affect the official results? Table 1 Column (g)
compares the run rankings before and after applying std-AB in terms of
Kendall’s τ for each evaluation measure in each subtask. The 95 % confidence
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intervals show that the two rankings are statistically equivalent for all cases,
except for nDCG@5 in MobileClick English iUnit ranking whose 95 % CI is [.433,
.993]. These results suggest that, by and large, std-AB enables cross-collection
comparisons without affecting within-collection comparisons.

Table 2. Recommended topic set sizes for four NTCIR-12 Tasks (α = 0.05, β = 0.80).

(I) MedNLPDoc (a) raw recall (b) std-AB recall
(σ̂2 = .0601) (σ̂2 = .0127)

m ↓ minD → 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20
2 2301 369 93 24 487 79 20 6

10 4680 750 188 48 990 159 40 11
20 6159 986 247 62 1302 209 53 14
30 7262 1163 291 73 1535 246 62 16
50 8986 1438 360 91 1899 305 77 20

iUnit Ranking iUnit Summarisation
(II) MobileClick (a) raw nDCG@3 (b) std-AB nDCG@3 (c) std-AB M-measure

English (σ̂2 = .0259) (σ̂2 = .0215) (σ̂2 = .0072)
m ↓ minD → 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20

2 992 159 41 11 824 133 34 9 276 45 12 4
10 2017 323 82 21 1675 269 68 18 561 91 23 6
20 2655 425 107 27 2204 353 89 23 739 119 30 8
30 3130 501 126 32 2598 416 105 27 871 140 36 9
50 3873 620 156 39 3215 515 129 33 1077 173 44 12

(III) MobileClick (a) raw nDCG@3 (b) std-AB nDCG@3 (c) std-AB M-measure
Japanese (σ̂2 = .0570) (σ̂2 = .0176) (σ̂2 = .0077)

m ↓ minD → 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20
2 2182 350 88 23 674 109 28 8 296 48 13 4

10 4439 711 178 45 1371 220 56 15 600 97 25 7
20 5842 935 234 59 1804 289 73 19 790 127 32 9
30 6887 1103 276 70 2127 341 86 22 931 150 38 10
50 8522 1364 342 86 2632 422 106 27 1152 185 47 12

(IV) STC (a) raw nG@1 (b) std-AB nG@1
(σ̂2 = .1144) (σ̂2 = .0193)

m ↓ minD → 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20
2 4379 701 176 45 739 119 30 8

10 8908 1426 357 90 1504 241 61 16
20 11724 1876 470 118 1979 317 80 21
30 13822 2212 554 139 2333 374 94 24
50 17104 2737 685 172 2886 462 116 30

(V) QALab (a) raw Boolean (b) std-AB Boolean
(σ̂2 = .2130) (σ̂2 = .0204)

m ↓ minD → 0.02 0.05 0.10 0.20 0.02 0.05 0.10 0.20
2 8152 1305 327 82 782 126 32 9

10 16585 2654 664 167 1589 255 64 17
20 21828 3493 874 219 2091 335 84 22
40 28992 4639 1160 291 2777 445 112 29
50 31845 5096 1275 319 3051 489 123 31

Table 2 shows the recommended topic set sizes with α = 0.05, β = 0.20
(Cohen’s five-eighty convention [3]), for several values of m (i.e., number of
systems to be compared) and minD (i.e., minimum detectable range), based
on the variances shown in bold in Table 1. It should be noted first, that the
values of minD are not comparable across Parts (a) and (b). For example, a
minD of 0.02 with raw scores and a minD of 0.02 with std-AB scores are
not equivalent, because std-AB applies score standardisation (Eq. 2) followed
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by a linear transformation (Eq. 3). Nevertheless, it can be observed that, after
applying std-AB, the choices of topic set sizes look more realistic. For example,
let us consider the m = 2 row in Table 2(I). If we want to guarantee 80 % power
whenever the difference between the two systems is minD = 0.05 (i.e., 5 % of the
score range) or larger in raw recall, we would require 369 topics. Whereas, if we
want to guarantee 80 % power whenever the difference between the two systems
is minD = 0.05 (i.e., 5 % of the score range) or larger in std-AB recall, we would
require only 79 topics. Although the above two settings of minD mean different
things, the latter is much more practical. In other words, while ensuring 80 %
power for a minD of 0.05 in raw recall is not realistic, ensuring the same power
for a minD of 0.05 in std-AB is.

Figure 1 visualises the per-topic scores before and after applying std-AB for
some of our data. Below, we discuss the effect of std-AB on recommended topic
set sizes for each task in turn.

4.2 Recommendations for MedNLPDoc

The effect of std-AB on the recall scores from MedNLPDoc can be observed by
comparing Fig. 1(a) and (a’). Note that while many of the raw recall values are
0’s, all values are positive after applying std-AB. Moreover, there are fewer 1’s
after applying std-AB.

From Table 2(I), a few recommendations for a future MedNLPDoc test col-
lection would be as follows. If the task is continuing to use raw recall, then:

– Create 100 topics: this guarantees 80 % power for comparing any m = 2 sys-
tems with a minD of 0.10 (93 topics are sufficient), and for comparing any
m = 50 systems with a minD of 0.20 (91 topics are sufficient);

– Create 50 topics: this guarantees 80 % power for comparing m = 10 systems
with a minD of 0.20 (48 topics are sufficient).

Whereas, if the task adopts std-AB recall, then:

– Create 80 topics: this guarantees 80 % power for comparing m = 2 systems
with a minD of 0.05 (79 topics are sufficient), and for comparing m = 50
systems with a minD of 0.10 (77 topics are sufficient).

Note that MedNLPDoc actually had 76–78 topics (Table 1(d)), and therefore
that the above recommendation is quite practical.

4.3 Recommendations for MobileClick-2

The effect of std-AB on the nDCG@3 scores from MobileClick-2 iUnit ranking
(English) can be observed by comparing Fig. 1(b) and (b’). It can be observed
that, after applying std-AB, the scores are more evenly distributed within the
[0, 1] range. Similarly, the effect of std-AB on the unnormalised M-measure
from MobileClick-2 iUnit summarisation (English) can be observed by comparing
Fig. 1(c) and (c’). Note that the scale of the y-axis for Fig. 1(c) is very different
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Fig. 1. Per-topic raw and std-AB scores for selected NTCIR-12 tasks. The horizontal
axes represent topics. Different colours represent different runs (best viewed in colour).

from others. Despite this, Fig. 1(c’) shows that std-AB transforms the scores
into the [0, 1] range without any problems. In this way, std-AB can handle any
unnormalised measure. Put another way, if we take up the habit of using std-AB
scores, normalisation becomes no longer necessary.

Since MobileClick-2 is a multilingual task, let us discuss topic set sizes that
work for both English and Japanese. Moreover, since the topic set is shared across
the iUnit ranking and summarisation subtasks, we want topic set sizes that work
across these two subtasks. From Table 2(II) and (III), a few recommendations for
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future MobileClick test collections would be as follows. If the task is continuing
to use raw nDCG@3, then:

– Create 90 topics: this guarantees 80 % power for comparing any m = 10 Eng-
lish iUnit ranking systems with a minD of 0.10 (82 topics are sufficient), and
for comparing any m = 2 Japanese iUnit ranking systems with a minD of 0.10
(88 topics are sufficient).

However, the above setting cannot guarantee anything for the iUnit summari-
sation task, due to the use of the unnormalised M-measure. In contrast, if the
tasks adopts std-AB nDCG@3 and std-AB M-measure, then:

– Create 100 topics: this guarantees 80 % power for comparing any m = 20
English iUnit ranking systems with a minD of 0.10 (89 topics are sufficient),
and for comparing any m = 30 Japanese iUnit ranking systems with a minD
of 0.10 (86 topics are sufficient), and for comparing any m = 10 English iUnit
summarisation systems with a minD of 0.05 (91 topics are sufficient), and for
comparing any m = 10 Japanese iUnit summarisation systems with a minD
of 0.05 (97 topics are sufficient).

Thus being able to handle unnormalised measures just like normalised measures
seems highly convenient. Also, recall that MobileClick-2 actually had 100 topics.

4.4 Recommendations for STC

The effect of std-AB on the nG@1 scores from STC (Chinese) can be observed
by comparing Fig. 1(d) and (d’). It can be verified from Fig. 1(d) that nG@1
indeed take only three values: 0, 1/3 and 1. Whereas, Fig. 1(d’) shows that std-
AB nG@1 is more continuous, and that there are fewer 1’s, and no 0’s.

From Table 2(IV), a few recommendations for a future STC test collection
would be as follows. If the task is continuing to use raw nG@1, then:

– Create 120 topics: this guarantees 80 % power for comparing any m = 20
systems with a minD of 0.20 (118 topics are sufficient);

– Create 90 topics: this guarantees 80 % power for comparing any m = 10 sys-
tems with a minD of 0.20 (exactly 90 topics are needed).

But note that, strictly speaking, the above recommendations are for normally
distributed measures that have a variance similar to that of nG@1, since nG@1
takes only three values. Whereas, if the tasks adopts std-AB nG@1, then:

– Create 100 topics: this guarantees 80 % power for comparing any m = 30
systems with a minD of 0.10 (94 topics are sufficient).

The STC task actually had 100 topics; this was actually a decision based on
topic set size design with raw evaluation measures and pilot data [10].
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4.5 Recommendations for QALab

The effect of std-AB on the Boolean scores from QALab Phase-3 can be
observed by comparing Fig. 1(e) and (e’). It can be observed that std-AB trans-
forms the raw Boolean scores (0’s and 1’s) into something a little more continu-
ous, but that the resultant scores still fall into two distinct score ranges; hence
our topic set size design results for QALab should be taken with a large grain
of salt even after applying std-AB as the scores are clearly not normally dis-
tributed. The reason why the std-AB scores are monotonically increasing from
left to right is just that the QALab organisers sorted the topics by the number
of systems that correctly answered them before providing the matrices to the
present author. This is equivalent to sorting the topics by mean•j (in decreasing
order, i.e., easy topics first).

From Table 2(V), a few recommendations for a future STC test collection
would be as follows. If the task is continuing to use raw Boolean, then:

– Create 90 topics: this guarantees 80 % power for comparing any m = 2 systems
with a minD of 0.20 (82 topics are sufficient).

Whereas, if the tasks adopts std-AB Boolean, then:

– Create 40 topics: this guarantees 80 % power for comparing any m = 2 systems
with a minD of 0.10 (32 topics are sufficient), or any m = 50 systems with a
minD of 0.20 (31 topics are sufficient).

But recall that the above recommendations are for normally distributed measures
whose variances happen to be similar to those of the Boolean measures.

QALab-2 Phase-3 actually had 36 topics only. Note that n = 36 is not sat-
isfactory in any of the settings shown in Table 2(V)(a); n = 36 does not even
satisfy the suggested setting shown above for (a normally distributed equivalent
of) std-AB Boolean. These results suggest that the QALab task should have
more topics to ensure high statistical power.

5 Conclusions and Future Work

Using topic-by-run score matrices from the recent NTCIR-12 MedNLPDoc,
MobileClick-2, STC and QALab tasks, we conducted topic set design experi-
ments with and without score standardisation and demonstrated the advantages
of employing std-AB in this context. It is clear from our results that std-AB
suppresses score variances and thereby enables test collection builders to consider
realistic choices of topic set sizes, and that it can easily handle even unnormalised
measures such as M-measure. Other unnormalised measures such as Time-Biased
Gain [13], U-measure [6] and those designed for diversified search may be han-
dled similarly. Furthermore, we have demonstrated that discrete measures such
as nG@1, which clearly violate the normality assumptions, can be “smoothed”
to some extent by applying std-AB. Recall that topic set size design assumes
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that the scores are indepent and identically distributed: that the scores for sys-
tem i obey N(μi, σ

2). While this is clearly a crude assumption especially for
unnormalised and discrete measures, std-AB makes it a little more believable
at least, as shown in the right half of Fig. 1.

In our previous work [7], we performed a preliminary investigation into the
robustness of standardisation factors mean•j , sd•j for handling unknown runs
(i.e., those that contributed to neither pooling nor the computation of standard-
ising factors). However, our experiments were limited to handling unknown runs
from the same round of TREC. Hence, to examine the longevity of standardisa-
tion factors over technological advances, we have launched a new web search task
at NTCIR, which we plan to run for several years3. The standardisation factors
obtained from the first round of this task will be compared to those obtained
from the last round: will the initial standardisation factors hold up against the
latest, more advanced systems?
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