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Abstract. Twitter messages are written in an informal style, which hin-
ders many information retrieval and natural language processing appli-
cations. Existing normalization systems have two major drawbacks. The
first is that these methods largely require large-scale annotated training
data. The second is that these systems assume that a nonstandard token
is recovered to one standard word. However, there are many nonstan-
dard tokens that should be recovered to two or more standard words,
so the problem remains to be highly challenging. To address the above
issues, we propose an unsupervised normalization system based on the
context similarity. The proposed system does not require any annotated
data. Meanwhile, a nonstandard token will be recovered to one or more
standard words. Results show that the proposed approach achieves state-
of-the-art performance.

Keywords: Twitter normalization - Forward search - Random walk -
Spell checker

1 Introduction

User-generated contents have drastically increased in the past few years, driven
by the development of microblogs. These user-generated contents, which contains
rich information, become a heated research topic in natural language processing
and text mining [1,25,26]. Twitter is one among these microblogging services
that count about one billion of active users and 500 million of daily messages’.
However, due to the nature of posts, twitter messages contain many nonstan-
dard tokens, which are created both intentionally and unintentionally by people.
For examples, substituting numbers for letters such as 2gether (together) and
2morrow (tomorrow), repeating letters for emphasizing the expression such as
coollllll (cool) and birthdayyyyyy (birthday), eliminating vowels such as ppl (peo-
ple), and substituting phonetically similar letters such as fon (phone). Besides,
there are another type of nonstandard tokens in reality, this type of nonstan-
dard tokens mainly contains the omission of the spaces, punctuation and letters
among successive multiple standard words, these nonstandard tokens also should
be converted into their standard forms. e.g. theres (there is), thatthe (that the),
untiltheend (until the end), and ndyou (and you). We randomly count 1000
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tweets, and find that there are 1326 nonstandard tokens in which 294 tokens
should be recovered to two or more standard words.

Twitter has become a very valuable information source for many natural
language processing (NLP) applications, such as information extraction [29],
summarization [17], sarcasm detection [34], sentiment analysis [27,28] and event
discovery [3]. However, the nonstandard tokens limit the performance of standard
NLP tools [10,29]. Previous work reported that the Stanford named entity recog-
nizer (NER) experienced a performance drop from 90.8% to 45.8 % on tweets
[19], and the part-of-speech (POS) tagger and dependency parser degraded
12.2% and 20.65 % on tweets, respectively. It is therefore of great importance to
normalize twitter message before applying standard NLP techniques.

In recent years, some attempts have been made to normalize nonstandard
tokens to their standard forms [10-12,15,18,33]. But these approaches all assume
is converted into hi. Note that theyre is converted into they and itmay is deployed
as it. It is obvious that previous systems limit the performance of this task.

In this paper, we focus on the task of the normalization of English Twitter
messages, which can be regarded as a pre-processing step for NLP applications.
This is a challenging task based on two reasons. First, for a nonstandard token, it
should be recovered to one or more standard words? Second, text normalization
as a preprocessing step should have high precision and recall to have a good
impact on various NLP applications.

In this paper, we propose an unsupervised normalization system to address
the above challenges. Firstly, according to the characteristics of nonstandard
tokens, a nonstandard token will be divided into the possible multiple words
(standard word or noisy word) using forward search and backward search. Then
the normalization candidates are generated for each noisy word by integrating
random walk and spell checker, the essence of these two step is transform 1-to-N
recovering into 1-to-1 recovering. Finally, the best normalization candidate is
selected based on a n-gram language model.

The main contributions of this paper are as follows:

— In our system, a nonstandard token can be recovered to one or more stan-
dard words. To our knowledge, 1-to-N recovering in twitter normalization is
proposed for the first time.

— Results show that our system achieves the best performance (a 10 % absolute
increment compared to state-of-the-art). The proposed approach can be
deployed as a preprocessing step for various NLP application to handle twitter
message.

2 Related Work

With the rapid development of social media, text normalization system has
drawn increasing attention in recent years. There are many systems proposed
for tackling text normalization. Previous methods are mainly divided into two
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directions: NC-based model (Noisy Channel) and SMT-based model (Statistical
Machine Translation).

Suppose the ill-formed text is T' and its corresponding standard form is
S. NC-based model [31] aims to find argmax P(S|T) by computing argmazx
P(T|S)P(S), in which P(S) is usually a language model and P(T'|S) is an error
model. Brill and Moore (2000) characterise the error model by computing the
product of operation probabilities on slice-by-slice string edits [4]. Toutanova and
Moore (2002) improve the model by incorporating the pronunciation information
[32]. Choudhury et al. (2007) model the word-level text generation process for
SMS messages [5], by considering graphemic/phonetic abbreviations and unin-
tentional typos. Cook and Stevenson (2009) expand the error model by intro-
ducing the inferences from different erroneous formation processes [7]. However,
these models make the strong assumption that a token ¢; € T" only depends on
s; € S, ignoring the context around a token, which could be utilized to help in
resolving ambiguity.

SMT-based model, which has been widely proposed as a means of context-
sensitive text normalization, treats the ill-formed text as the source language,
and the standard form as the target language. For example, Aw et al. (2006) pro-
pose a phrase-level SMT SMS normalization method with bootstrapped phrase
alignments [2]. However, SMT method tends to suffer from a critical lack of train-
ing data. It is labor intensive to construct an annotated corpus to sufficiently
cover ill-formed words and context-appropriate corrections.

Recent work focuses on normalizing the twitter message, which map a noisy
form to a normalized form. Han and Baldwin (2011) develop a classifier for
detecting the ill-formed words, and generate corrections based on the morpho-
phonemic similarity [10]. Gouws et al. (2011) use a normalization lexicon based
on string and distribution similarity to detect noisy words. Han et al. (2012)
introduce a similar approach by generating a normalization lexicon based on
distributional similarity and string similarity [11].

More recently, Hassan and Menezes (2013) first find the possible candidates
based on bipartite graph [12], then they construct a lattice from possible normal-
ization candidates, and determine the best normalization sequence according to
a n-gram language model. Wang and Ng (2013) propose a beam-search decoder
to effectively integrate various normalization operations [33], and apply their
normalization to machine translation tasks for both Chinese and English. Li
and Liu (2014) propose a re-ranking strategy to combine the results from dif-
ferent systems [15]. Besides, Li and Liu (2015) propose a joint Viterbi decoding
process to determine each token’s POS tag and non-standard token’s correct
form at the same time [16]. Cotelo et al. (2015) and Schulz et al. (2016) explore
the text normalization on Spanish and Dutch, respectively [8,30].

However, the above methods have two major problems. The first is these
methods largely require large-scale annotated training data, limiting their adapt-
ability to new domains and languages. The second is these method assume that
the relationship between nonstandard token and standard word is 1-to-1 recov-
ering. But there are large amounts of nonstandard tokens (e.g. howyou, havent),
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which these nonstandard tokens should be converted into two or more standard
words. Some key information may lost if we only use 1-to-1 recovering (e.g.
howyou will be converted into how, and havent will be converted into have). In
this paper, we propose an unsupervised normalization system, where a nonstan-
dard token is converted into its best possible candidate with 1-to-N recovering
so that the proposed system can satisfy various NLP applications in reality.

3 Text Normalization System

The main objective of this paper is convert the noisy tweet text as the source
input into the normalized tweet as the target output. The overall framework
of the proposed system is shown in Fig.1. For a tweet, a standard dictionary
first is used to determine whether it is need to be normalized. Then, a nonstan-
dard token is considered 1-to-1 or 1-to-N recovering based on the characteristics
of nonstandard tokens. For 1-to-N recovering, the nonstandard token will be
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Fig. 1. The overall framework of the proposed normalization system. The blue area
represents the input, and the red area represents the output. (Color figure online)
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divided into multiple possible words using forward search and backward search.
Then, noisy words among multiple possible words and the overall token (the
nonstandard token itself) are generated some normalization candidates by inte-
grating random walks and spell checker. Finally, we get the best normalized
tweet by taking all candidates into consideration of n-gram language model. In
the following section, we will introduce the proposed system in details.

3.1 Pre-processing and Standard Dictionary Generation

The first step of the proposed system is determine whether a tweet is needed
to normalize. According to the nature of social media text, we need some pre-
processing before a tweet is considered to normalize. The following tokens are
excluded for normalization:

— The tokens begun with the symbol # or @, e.g. #kingJames, Qmichael;
— The tokens constructed completely by numbers, e.g. 2014;
— The emoticons or URLs;

In twitter, there are many named entities which should not be normalized.
Our standard dictionary must enough broad so that it can include these named
entities. To get a standard dictionary, we first calculate the frequency of all dif-
ferent tokens based on a large-scale clean corpus (LDC2011T07), and delete the
tokens that its predefined threshold is lower than 5. Then, we filter out some
tokens using the GUN Aspell dictionary (v0.60.6)%. The remaining tokens con-
struct our standard vocabulary, which includes nearly 68,000 words. Naturally,
a nonstandard token is defined as a token that does not exist in the standard
vocabulary.

3.2 Statistical Rules

In the above section, we discuss which token need to be normalized. Next, the key
challenge is that a nonstandard token should be normalized to one or more stan-
dard words. We conclude some characteristics by observing and analyzing large
amounts of nonstandard tokens. For 1-to-1 recovering, there are following rules:

— The nonstandard token that its length is lower than 4 usually should be recov-
ered to one standard word, e.g. u (you) and r (are);

— The nonstandard token that contains letters and numbers is usually should
be recovered to one standard word, e.g. b4 (before) and 2day (today);

In our system, the nonstandard tokens that meets the one of these two rules
are normalized one standard word. Conversely, the nonstandard token is con-
sidered to normalize one or more standard words. These rules can not capture
all situations, for example, ur may be converted into you are, but ur may be
converted into your or our, this type of nonstandard token is ambiguous, its best

2 http://aspell.net /.
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normalization depends on the specific context, but it belongs to 1-to-1 recovering
normalization in most situations.

We also analyze the nonstandard tokens that should be recovered to two or
more standard words. These tokens mainly include the following three classes:

— Type 1: The nonstandard tokens are constructed by two or more standard
word, the space among these words are omitted by people, intentionally and
unintentionally. e.g. rememberwith (remember with) and Iloveyousomuch (I
love you so much);

— Type 2: The nonstandard tokens are constructed by one or more standard
and a nonstandard word. e.g. wasnt (was not) and ndyou (and you);

— Type 3: The nonstandard tokens are constructed by the acronym of two or
more standard words. e.g. ur (you are) and sm (so much);

Type 3 is very limited, and this type of nonstandard tokens are much ambigu-
ity. In our system, for this type of nonstandard token, its possible normalization
candidates are added into the slang dictionary® created by the web users. Finally,
we find the best candidate according to its context by using language model.

3.3 Forward and Backward Search

For a nonstandard token, we must find the possible multiple words if this token
need to be normalized two or more standard words. According to statistical
nature of the nonstandard token. We propose to generate the possible multiple
words by using forward search and backward search. Forward search can solve
two types of nonstandard tokens, the first type is composed of one standard word
and the nonstandard word from front to back, e.g. theyre (they are) and wouldnt
(would not). The second type is composed of two or more standard word, e.g.
aboutthem (about them) and Iloveyou (I love you). Forward search algorithm is
shown as Algorithm 1:

In Algorithm 1, the trie is a tree that is constructed using the standard
vocabulary. Based on the trie, we can quickly find the standard word for a
nonstandard token.

Similar to forward search, backward search can also solve two types of non-
standard tokens, the first type is composed of one standard word and the non-
standard word from back to front, e.g. anyou (and you) and looveyou (love you).
The second type is totally composed of two or more standard words. The specific
algorithm of backward search is similar to forward search, we only change the
search order for a nonstandard token.

After forward search and backward search, the nonstandard token is divided
into multiple words, which include standard word and noisy word, e.g., ndyou is
divided into a noisy word nd and a standard word you. Meanwhile, the nonstan-
dard token itself (ndyou) will be considered as a noisy word, we must find the
possible normalization candidates for all noisy words. In the following section,
we will discuss how to find the possible candidates for a noisy word.

3 http://www.noslang.com/dictionary.
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Algorithm 1. ForwardSearch(token)
Input: a nonstandard token; trie;
Output: SegmentTable;
length=token.length();
for(i=1; i < length;)
{word1=token.substring(0, i);
if (wordl € trie)
{Add word1l to SegmentTable; word2=token.substring(i+1, length);
if (word2 € trie || word2<4)
{Add word2 to SegmentTable; i++; continue; }
else
ForwardSearch(word2);
}
else
{ if (i==length)
Add token in SegmentTable;
else
i++;

3.4 Random Walk and Spell Checker

The noisy word includes many types, such as lengthening, letter substitution,
letter-number substitution and phonetic substitution. The natural idea is spell
checker to recover the noisy word. But spell checker mainly can recover the noisy
words that are created unintentionally by users. In order to recover the noisy
words created intentionally by user, we use random walk based on bipartite
graph to find the proper candidate. In this paper, a noisy word generates some
normalization candidates by integrating random walk and spell checker.

For a noisy word, to get its normalization candidates using random walk
based on bipartite graph, there are two hypothesis for tweets as follows:

— Hypothesis 1: The words share the same or similar contexts should be the
same word or semantically related words;

— Hypothesis 2: The users usually have different writing styles. For a twitter,
some users may use all standard words to express, and other user may use one
or more noisy words.

Hypothesis 1 tells us the normalization equivalence between a noisy word and
a standard word by sharing the same or similar contexts. Hypothesis 2 tells us
there are a large number of such contexts in twitter. Based on two hypothesis, we
can generate the candidates for a noisy word by using contextual similarity. For
instance, assume 5-gram sequences of words, two words may be the same word if
their contexts share the same two words on the left and the same two words on
the right, e.g. for the word be4 and before, they share the same contexts the day *
the day and dress yourself * contract me, so we think that these two words are the
same or semantically related, and before is considered to the best normalization
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for the noisy word be4 by using the string similarity and language model. To use
the random walk, we firstly introduce the bipartite graph representation.

Bipartite Graph Representation. Contextual similarity can be represented
as a bipartite graph where the first partite represents the words, and the second
partite represents the contexts that are shared by words. A word node can be
either noisy word or standard word. Figure2 shows a sample of the bipartite
graph G(W, C, E), where standard words are shown as blue nodes.

be4

context1 .

_context2 -,

context3
contextd -~
e o afterrr

!

Fig. 2. Bipartite graph representation. Left nodes represent the contexts, right nodes
with blue colour represent the standard words, and other nodes represent the noisy
words. The weight of the edge is the co-occurrence of a word and its context. (Color
figure online)

The bipartite graph, G(W, C, E), is composed of W which includes the nodes
representing noisy words and standard words, C' includes the nodes representing
shared context, and E represents the edges of the bipartite graph connecting
word nodes and context nodes. The weight of the edge is the number of occur-
rences of a given word in a context. The bipartite graph is constructed using
Algorithm 2.

Candidates Generation Using Random Walk. Random walk based on
bipartite graph is defined [23] and then used in many NLP applications. For
example, Hughes and Ramage (2007) used random walk on Wordnet graph to
measure lexical semantic relatedness between words [13]. Das and Petrov (2011)
used graph-based label propagation for cross-lingual knowledge to induce POS
tags between two languages [9]. Minkov and Cohen (2012) introduced a path
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Algorithm 2. ConstructBipartiteGraph(text)
Input: Twitter corpus;

Output: G(W,C,E);

Extract all 5-gram sequences from twitter corpus;
Store all sequences into NgramTable;

for each sequence € NgramTable

W «— Add(CenterWord);
C — Add(Context);
E — Add(Context, Word, count);

}

constrained graph walk algorithm given a small number of labeled examples
to assess nodes relatedness in the graph [22]. Hassan and Menezes (2013) used
Markov random walk to consider normalization equivalences based on twitter
and LDC data [12]. In this paper, we use graph-based random walk to find the
normalization candidates for a noisy word by only using the twitter text.

For a noisy word, the random walk algorithm repeats independent random
walk for 4 steps where the walks traverse the graph randomly according to
roulette rule. Each walk starts from a noisy word node and ends at a standard
word node, or consumes the maximum number of steps (4 steps in our algorithm)
without hitting a standard word node. In our random walk, for a noisy word,
the process of random walk algorithm will be iterated 100 times.

Consider a random walk on the bipartite graph G(W, C, E) starting a noisy
word and ending at a standard word. For the bipartite graph in Fig. 2, assume
a random walk staring at the node representing the noisy word bej then moves
to the context node context2 then to the node representing the standard word
before. This random walk will associate be4 with before. Meanwhile, the noisy
word be/ can first find the noisy word b4 by sharing contextl, then noisy word
b4 can find the standard word after by sharing context3, this random walk will
associate be4 with after. For noisy word be4, which word is better candidate for
normalization?

For a noisy word, we rank its all candidates based on the confidence
Conf(N,S) as the result of random walk, N represents the noisy word and
S represents the standard word. Conf(N,S) is calculated as:

Conf(N,S) = aF(S) + BSim(N,S) (1)

Where, o and 3 are weights, we use uniform interpolation, both a = g = 1.
F(S) is calculated as follows:

F(S) = S_frequency/total_frequency (2)

S_frequency is the times of standard word S in all random walks, and
total_frequency is total numbers of all standard words in 100 iteration.
Sim(N, S) is a similarity function based on Longest Common Subsequence Ratio
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(LCSR) [6,20]. This function is defined as the ratio of LCSR and Edit distance

between two string as follows:

LCS(N, S)/MaxLength(N, S) 3
ED(N,S) 3)

LCS(N, S) represents the length of Longest Common Subsequence between word

N and S. Edit distance calculation ED(N, S) is modified to be more adequate

for social media text according to previous work [12];

For a noisy word N, we can construct a lexicon that includes all normaliza-
tion candidates by using random walk. We can prune the lexicon to take top-5
according to ConValue(N,S). The advantage of random walk is that it can
find the proper candidates for a nonstandard word. But random walk can not
find candidates for all noisy words due to the limitation of our twitter data.
So we must use another method to generate the normalization candidates for a
noisy word. In the paper, we use spell checker to generate some candidates as a
supplement for random walk.

Sim(N, S) =

Spell Checker. Spell checker is a simple and effective method in normalizing
misspellings. In this paper, we use the Jazzy spell checker [14] that integrates the
DoubleMetaphone phonetic matching algorithm and the Levenshtein distance
using the near-miss strategy, which enables the interchange of two adjacent let-
ters, and the replacing/deleting/adding of letters. In this paper, the edit distance
is set to 2 for generating candidates.

Generating Top-N Candidates. For a nonstandard token, some candidates
are generated by using random walk and spell checker. We need to rank for these
candidates. In addition to considering the string similarity, we use the semantic
similarity. The final score between a nonstandard token IV and standard word S is:

S(N,S) = Sim(N, S) + C(vec(N),vec(S)) (4)

Sim(N,S) is defined in the above section, where the function C(vec(N), vec(S))
represents the cosine similarity between vec(N) and vec(S). In order to compute
the semantic similarity of words, we use the tool word2vec* to implement it based
on 8 million twitter message by using feed-forward neutral network language
model [21], the vector dimension is set to 200. According to the value of S(N, S),
we select the top-n candidates for a nonstandard token N (n=1, 3 and 5).

3.5 Normalizing Twitter Using Language Model

After generate top-n candidates for a nonstandard token, we need determine the
best candidate to convert a noisy tweet into a normalized tweet. We must take
consideration of the context information. Based on large amount of text data,
we score the best Viterbi path with 3-gram and 4-gram language model. We use
three different types of texts, which include twitter text, clean text (newspaper
data) and mixed text (twitter text and newspaper data).

4 http://code.google.com/p/word2vec/.
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4 Experiments

4.1 Experimental Setup

The following datasets are used in our experiments. Dataset (1) and (2) are used
for word-level evaluation, and dataset (3) is used for both word- and message-
level evaluation. Note that dataset (1) and (2) only contain 1-to-1 recovering.

— Dataset 1: 3,802 nonstandard tokens along with their human-annotated nor-
malized word forms. The nonstandard tokens are collected from a corpus with
about 6,150 tweets between 2009 and 2010 [18].

— Dataset 2: 2,333 unique pairs of nonstandard tokens and standard words,
collected from 2,577 Twitter messages [15,24].

— Dataset 3: 1,000 tweets are annotated by three native human. This dataset
includes 850 noisy tweets and 150 clean tweets. The dataset contains 1,345
nonstandard tokens in which 297 tokens need to recovered to two or more
standard words.

— Dataset 4: 8M tweets, which are collected from October to December 2014
using the Twitter Streaming APIs®, these tweets are constructed to bipartite
graph for random walk.

— Dataset 5: clean data from English LDC Gigaword corpus®. This dataset is
used to construct a standard vocabulary.

The goal of word-level normalization is to convert the nonstandard tokens
into standard words. For each nonstandard token, the system is considered cor-
rect if any of the corresponding standard words among the top-n candidates
from the system. We adopt this word-level top-n accuracy to make our results
comparable to the state-of-the-art systems. On the message-level, we evaluate
the top-1, top-3 and top-5 system output using precision, recall, and F-score,
calculated respectively to the nonstandard tokens based on language model.

4.2 Word-Level Results

The word-level results are presented in Table 1, evaluated on dataset (1) and
(2) respectively. We present the top-n accuracy (n=1, 3, 5) of the proposed
approach.

The spell checker gives only 40 % to 60 % accuracy on dataset (1) and (2),
indicating that the vast amount of intentionally created nonstandard tokens can
hardly be tackled by a system relies solely on lexical similarity. The random walk
performs surprisingly well, and shows robust performance across two datasets,
random walk achieves 65 % to 80 % accuracy on all datasets. Compared to spell
checker, random walk is effective for normalizing intentionally created tokens.
Finally, the mixed system of spell checker and random walk achieves 90 % to
94 % accuracy in top-5 on dataset (1) and (2), showing the effectiveness of our
proposed system.

5 http://dev.twitter.com/docs/streaming-apis.
5 http://www.ldc.upenn.edu/Catalog/LDC2011T07.


http://dev.twitter.com/docs/streaming-apis
http://www.ldc.upenn.edu/Catalog/LDC2011T07

30 Y. Ren et al.

Table 1. Word-level results.

Method Accuracy (%)

Dataset (1) Dataset (2)

top-1 | top-3 | top-5 | top-1 | top-3 | top-5
Spell checker 47.2 156.9 |58.3 [39.9 |46.5 |47.1
Random walk 672 |73.7 |79.6 |64.7 (714 |76.4
Mixed system 76.8 | 87.3 |94.1 |75.2 | 85.1 [90.3
Hassan and Menezes, 2013 | 74.4 |85.3 |92.8 |74.1 |83.0 |88.2

Compared with previous work [12], our approach achieves better performance
in accuracy. The main reason is that the normalization candidates by integrating
random walk and spell checker have better coverage for nonstandard tokens
created both unintentionally and intentionally.

4.3 Message-Level Results

The goal of message-level normalization is to replace a nonstandard token with
the candidate that best fits the context. Our system is evaluated on dataset (3),
and the results are shown in Table 2.

In Table2, the “w/o Context” results are generated by replacing each non-
standard token using top-1 word-level candidate. Although the replacement
process is static, it results in 84.3 % F-score due to the high performance of the
word-level system. We explore three different data as language models (LM) for
the Viterbi decoding process. For the twitter data as language model, it is clear
that increasing the amount of candidate gives better precision and recall. When
n is fixed to 5, we can get 86.4 % in F-score. As Table 2 shows, Mixed LM and

Table 2. Message-level results.

Dataset (3) Language model | Message-level
Precision | Recall | F-score
Word-level (top-1) w/o Context 78.2 91.3 |84.3
w/Context (top-3) Twitter LM 79.8 93.1 86.0
LDC LM 77.6 90.6 |83.6
Mixed LM 79.6 92.9 |85.7
w/Context (top-5) Twitter LM 80.2 93.6 |86.4
LDC LM 77.2 90.1 |83.1
Mixed LM 79.7 93.0 |85.8
Hassan and Menezes, 2013 | Twitter LM 74.4 71.3 | 72.8
Li and Liu, 2014 Twitter LM 76.9 72.5 |74.6
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Twitter LM achieve better performance than the previous best results, demon-
strating the effectiveness of language model. Results show that our proposed
system have better performance in F-score to serve as a reliable preprocessing
step for standard NLP applications.

For the LDC data as language model, the proposed system experiences a
performance drop with the increasing of the amount of candidates. The main
reason is twitter text is informal, there are some grammatical errors even if the
nonstandard tokens are converted into the standard words. It is not difficult to
explain the reason that twitter text is better than mixed text as language model
for twitter normalization.

Compared with previous systems [12,15], our model outperforms the current
systems, which reach a 10 % absolute increment. The main reason is our proposed
method exploits 1-to-N recovering, but previous work limits 1-to-1 recovering in
this task. The proposed system can be well applied in reality.

4.4 Output Analysis

Table 3 lists three examples from dataset (3) and their normalizations using pre-
vious methods and our proposed system. At the first example, the nonstandard
tokens can both be recovered to their standard words. For example 2 and 3,
previous methods can not get the proper normalization because they only use
1-to-1 recovering in which some information may be lost. Our proposed 1-to-N
recovering can get the best normalization. Our proposed system is desirable as
a preprocessing step for various NLP applications.

Table 3. Twitter normalization examples, S represents the source tweet, B represents
the current approach (Li and Liu, 2014) and O is our proposed method.

S: u just follow the wrong ppl but that is ok !

B: you just follow the wrong people but that is ok !

O: you just follow the wrong people but that is ok !

S: hiii! 1 hope youre doing welland having a nice day

B: hi! T hope you doing well having a nice day

O: hi! I hope you are doing well and having a nice day

S: youre such anamazing human beingwho deserves so muchlove

B: you such amazing human being deserves so much

O: you are such an amazing human being who deserves so much love

5 Conclusion

In this paper, we proposed an unsupervised normalization system in which a
noisy tweet can be converted into a normalized tweet. For a nonstandard token,
our proposed system uses 1-to-N recovering to get its standard form, which con-
tains one or more standard words. Experimental results show that the proposed
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system significantly outperforms the state-of-the-art systems in F-score on the
dataset. The proposed approach can be deployed as a preprocessing step for
various NLP applications to handle the tweet text.
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