Chapter 2
The Stationary Deterministic Model
and the Basic Solution Procedure

We introduce as a prototype of deterministic dynamic optimization problems a
simple allocation problem, give firstly an intuitive and then a formal description
of the general problem, and derive the basic solution technique: value iteration and
optimality criterion. This allows us to derive structural properties of the solution of
the allocation problem.

2.1 A Motivating Example

Example 2.1.1 (Discrete allocation problem) Consider the process of allocating to
a single project some parts ay, a1, a; and as of a resource (such as units of material)
of total amount K := 10 sequentially at the times ¢t = 0, 1, 2, 3. (A simultaneous
single allocation to four different projects leads to the same mathematical problem.)
The allocation a; € A := Ny 1o at time ¢ is often called the consumption. Obviously
the allocations must obey the restrictions ag < K anda; < K — ZE;B aiforl <t <
3. We assume that a, yields a reward u(a,) for some function u on A. The resource
still available at time 1 < ¢t < 4is s, := 10 — ZE;B a;, and the resource s, — a,
not consumed at time t is often called the investment. (Therefore allocation models
often run under the heading consumption and investment.) We denote the sum of
allocations in the sequence y = (ao, a1, a2, as) by c¢(y) := Z?=0 a;. Then 10 — ¢(y)
is the terminal resource left over at time 4. We assume that the terminal resource
s4 at the end of the allocation process yields the terminal reward d - u(s4) for some
constant d € R4. Thus the case where the terminal resource is worthless can be
modeled by the choice d = 0.
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16 2 The Stationary Deterministic Model and the Basic Solution Procedure

How should the sequence y = (ay, a1, az, a3) of allocations be made in order to
maximize on the set A*(10) := {y € A*: ¢(y) < 10} the sum of rewards

3 3
Viy(10) := Y "u(ar) + d - u (10 - Za,) ?

t=0 t=0

We want to find V4(10) := supye s(19) Vay(10) and a maximum point y* = (a¥)}
of y = V4, (10). This problem is denoted by DP4(10), and the problem DP,(s) for
n>lands € {0,1,...,10} is defined analogously. ¢

If in the preceding allocation problem we allowed non-negative real actions ay,
some cases where u is concave and differentiable would be solvable by the classical
optimization method based on Fermat’s criterion in Appendix A.4.16. No counter-
part is available in the discrete case of Example 2.1.1, but Dynamic Optimization
will help, as shown in Example 2.4.1 below. Crucial for its applicability is the
following property: If we knew an optimal first input aj for DP,(10), then the vector
(af )? could be found as a maximum point of the problem DP;(10 — ay).

For arbitrary DPs the basic solution method (explained in detail in Sect.2.3),
runs as follows: If V,,(sg), | < n < N, denotes the maximum value of the objective
function y +— V,,,(s0), y € A"(so), one can obtain V,(sp) from the function V,_;
by maximizing certain functions a — W,(s,a), s € S, determined by V,_,, over
a certain set D(s). By iterating this step, we see that the problem DPy(sg) of
maximizing y = Vy,(so) with respect to the N variables ay, ai, . . ., ay— reduces to
a sequence of N maximization problems, each parametrized by s, with respect to a
single variable a. We call this approach for the moment the DP method, in contrast
to other standard static methods. The DP method has several favorable features, as
will become apparent later on in many examples:

(a) The sets D(s) and the functions a — W,(s,a), | < n < N, are much simpler
than AN (s9) and y > Vi, (so), respectively.

(b) The problems of the existence and of uniqueness of a maximum and of maxima
on the boundary of AN(sy) reduce to the corresponding problems for the
function a > W, (s, a) of one variable only.

(c) The approach is particularly suited to the many examples where the objective
function y — Vi, (so) is recursively defined and where the explicit representa-
tion, needed in general for static methods, is cumbersome; see Equation (2.4)
below.

(d) The approach provides a general method for studying the important dependence
of the maximal n-stage reward V,,(so) on the initial state so. As an example,
if S and all sets D(s) are convex, a direct checking of convexity of the value
functions s +— Vy(s) may be impossible, while the Dynamic Optimization
method may work; see Chap. 8 below.

(e) In many concrete applications the number N is not known exactly, but only
bounds 1 < Ny < N < N, < oo are known. Then it is desirable to know Vy for
all N within the bounds. In static methods this requires us in general to solve
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an N-stage problem for each of these N’s. On the other hand, as we shall see
below, the DP solution for N, automatically also contains also the solution for
all N < Nz.

(f) The DP method provides an exact numerical algorithm for many important
problems where S and all sets D(s) are finite.

2.2 The Model

We now give a detailed intuitive background and basic concepts for the general
problem DPy (s,); see Fig.2.1. The object of investigation is some system which
starts at time ¢t = 0 in an initial state s,, belonging to a set S, called the state space.
The system moves at times t = 0, 1, ..., N — 1 successively to states s,, i.e. s1, 2,
..., sy. This movement is controlled by actions a,, i.e. ay, a, . . ., ay—1, respectively,
taken by a decision maker at the times t = 0, 1, ..., N — 1, respectively, from a set
A, the action space. When discussing facts which concern states and actions at all
times ¢ we often write s and a rather than s, and a,, respectively, and we call s the
momentary state and a the momentary action.

In examples, often the state s, has one of the following meanings: (i) it is a
summary of the history of the process up to time 7 — 1, (ii) it represents information,
necessary for the choice of an optimal action a, (iii) it depicts the environment in
which the process is running at time .

The number N € N is called the horizon, and the time interval [t, ¢ + 1) is called
the ¢-th period; at stage n means at time t := N—n, 1 < n < N. Each time an action
is taken the momentary state of the system is assumed to be known to the decision
maker. In general, when the system is in state s, not all actions from the action space
A, but only those in a certain non-empty set D(s) C A will be admissible. We call
D(s) the set of admissible actions for state s and

D:={(s,a) e SxA:aeD(s)}

the constraint set. The influence of the decision maker on the transition of the
system is described by a mapping T:D — S, the so-called transition function:
If at time ¢ the system is in state s, and if action a, € D(s;) is taken, then the system
moves to the new state s, := T(s;, a;). At time 1, i.e. at the beginning of period t,

ap € D(so) ay € D(sy) ay—1 € D(sy—1)
S0 T(so,ap) = s SN—1 ,\l T(sy—1,an—1) = sy T
(S0, ao) r(s1,a1) r(SnN—1, an—1) Vo(sn)

Fig. 2.1 Development of states s,
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aone-stage reward r(s;, a;) € R, given by the so-called one-stage reward function
r is obtained. In addition, if the movement of the system ends at time N in state sy,
then a terminal reward V(sy) € R is obtained. The same monetary units, obtained
at different time points, will have different cash value due to interest. This fact is
taken into consideration by a so-called discount factor € R™; this means that the
reward r(s;, a,) obtained at time ¢ and the terminal reward Vj(sy) at time N enter the
account (2.3) below relative to time ¢ = 0 as B'r(s;, a;) and BN Vo (sy), respectively.
In most applications early gains are more profitable than later ones, which means
that 8 < 1.
Summing up we arrive at the following definition.

Definition 2.2.1 A (stationary) deterministic (dynamic) program (DP for short) is
atuple (S,A,D, T,r,Vy, B) of the following kind:

* §is the state space.

* A is the action space.

e D C S x A such that all s-sections D(s) := {a € A : (s,a) € D} # @,s € S.
D is called the constraint set and D(s) is called the set of admissible actions for
state s.

e T:D — S is the transition function.

* r:D — Ris the one-stage reward function.

* Vu:S — Ris the terminal reward function.

» B € RT is the discount factor.

General assumption Throughout this book we require that both S and A are non-
empty sets.

We also call the tuple (S,A,D, T, r, Vo, B) the data of the DP. The data for the
allocation problem from Example 2.1.1 with arbitrary K € N are as follows: S :=
A := Nyg, D(s) := Ny, forall s, T(s,a) = s —a, r(s,a) := u(a) for (s,a) € D;
Vo = d - u, and B is arbitrary. One also could model the problem by using for a,
the investment at time ¢. Then S, A, D, V and  would remain unchanged, while
T(s,a) = aand r(s,a) := u(s — a) for (s,a) € D.

Remark 2.2.2 In applications the states and/or actions are often integers or reals,
but sometimes they are elements of Z¢ or of R¢ for d > 2 or they are sets. <

Remark 2.2.3 Sometimes the one-stage reward r(s, a, s’) also depends on the next
state s = T'(s, a). That case is covered by simply replacing s’ by T(s, a).

In a few cases, r also depends on §; in particular, if r(s, a) consists of a reward
g(s,a) obtained at the end of the momentary period then r(s,a) = Bg(s,a). A
dependence of r on 8 requires changes only for those few results which deal with
the dependence of the solution on f. <

Remark 2.2.4 (The discount factor) One must not distinguish in the theory between
B < 1,8 =1and B > 1. On the other hand, for many models the pointwise limit
of the value functions V,, for n — oo, dealt with in Chap. 10, is not defined unless
B < 1. Also in economical applications B is usually smaller than one. If the N
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periods have nothing to do with time but mean that a certain activity is executed N
times, then only 8 = 1 is meaningful. <

Any concrete problem DPy(so) must be modeled by an appropriate choice of S,
A,D, T, r,Vyand B as done above for the allocation problem from Example 2.1.1.
Particularly important is the choice of the state space S. Sometimes several choices
are possible; then it is up to the decision maker’s skill to find a formulation that
easily admits theoretical analysis and computation. This skill can be acquired only
by experience. Dreyfus and Law (1977) speak in the title of their book of the Arz
of Dynamic Programming, i.e. the art of finding an appropriate model. The same
authors also suggest (loc. cit., p. 17) a useful mental device, called the consultant
question, for a skillful choice of the state s;. Essentially it reads as follows: The
momentary state should consist of the minimal information about the momentary
situation you would have to acquire from a firm in case you would be hired to take
over the problem and do things optimally from now on.

We call a set continuous [discrete] if it is an interval or a product of intervals [an
interval in Z or a product of such intervals]. We call a DP continuous [discrete] if
either S or D(s), s € S, are continuous [if both S and D(s), s € S, are discrete]. The
modeling procedure should also include a reflection about the question of whether
to use a discrete or a continuous DP. More information on this feature is given before
Example 2.4.3 below.

Now we define for a given model DP the maximization problem DPy(sy),
determined by an arbitrary horizon N and an arbitrary initial state sy € S. Firstly,
we say that a sequence y := (a,)) "' is a sequence of admissible actions for s, if y
obeys the restrictions

ap € D(S()),
ay € D(sy), where s; := T(so,a0),

ay € D(sy), where s, := T(s1,ay), 2.1

an—1 € D(SN_I), where SN—1 = T(SN_Q,aN_z).

(As an example, in the allocation problem from Example 2.1.1 with N = 4
and K = 8 the action sequence (4, 3,1,0) is admissible for sy if and only if
so > 8.) In the final state sy := T(sy—;,an—1) no action is taken. The set of
action sequences admissible for sy will be denoted by AM(sq); it is non-empty
because D(s) # @ for each s; we have AV(sg) = A" for all so if D(s) = A for
all s; AN(so) is finite if all sets D(s) are finite. Even for simple sets D(s) the sets
AN (s0) can be complicated as seen, for instance, from the allocation problem from
Example 2.1.1.
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An initial state sp and a sequence (sr)flv of states as introduced in (2.1) above
describes the evolution of the system under an admissible action sequence y €
AN(s9). We call (s;)Y the decision process generated by (so,y). Notice that s, =
s:(s0, (a,-)f)_l) is a function of sy and of y, since

s1 = T(s0,a0), s2 = T(s1,a1) = T(T(s0,a0),a1),
s3 = T(T(T(so,a0),a1),az), ... .

It follows from (2.1) that the sets A"(s), n > 1, s € S, have the following
sequential structure: A'(s) = D(s) and

A'(s) = {(a,x) eD(s) x A" 1 x € ATN(T (s, a))} ,n>2. 2.2)

For initial state sy € S, admissible action sequence y = (a,)§ ' € A¥(s¢) and for
(s¢)) generated by (s, y) the N-stage reward is the real number

N—1

Vivy(s0) := ) B'r(si ar) + B Vo(sn) = r(so, ao) 2.3)

t=0
N—1

+ Z,B’r(s,(so, (@)5™),an) + BN Vo(sn(so, (@)y ™).

=1

Thus y — Vpy(s0) is the objective function of the problem DPy(so). Notice that
Vay(so) means the total reward discounted back to time ¢ = 0; the total reward
accumulated at time N is Viy(s0)/B". The complicated explicit representation
(check it for N = 3)

Viny(s0) = 7(s0. o) + Br(T(so, ao), a1) + B2r(T(T(so, ao), a1), az)
+o 4 BIVO(T(T(..), an—1)) (2.4)

is rarely needed, but for some applications the explicit expression may be useful for
checking the correct choice of the data. Also keep in mind that y = Vy,(so) is a
function of the form Zf:ol g:i(s0, a0, ai, ..., a).

Now the N-stage maximization problem DPy(so) for N > 1 and 59 € S reads as
follows:

(i) Compute the maximal N-stage reward for initial state s

Vin(s0) := sup{Viy(so) : y € A¥(s0)}.

(i) Find, if possible, an sg-optimal action sequence, i.e. a maximum point of the
objective function y > Vi (so).
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The function Vy: S — (—o00, o0] is called the N-stage value function. The set of
problems DPy(so), so € S, is called the problem DPy. Notice that Vi (s¢) is finite if
there exists an so-optimal action sequence. The sequence (Vn)llv of value functions
plays a central role for solving DPy. From now on we shall mostly write Vy(s)
instead of Vi (sp). Only in rare cases will the value functions have an explicit form.
Of course, so-optimal action sequences need not exist, and if they exist they need
not be unique.

2.3 The Basic Solution Procedure

In the following generalization of Appendix A.4.5 the set M(b) is the b-section of
M (cf. Appendix A.3.8).

Lemma 2.3.1 (The joint supremum equals the iterated supremum) Let B and
C be non-empty sets and let v be a function on a set M C B x C for which M(b) # 0
forall b € B. Then

sup v(b,c) =sup sup v(b,c).
(b)eM bEB ceM(b)

Proof Put h(b) := sup{v(b,c) : ¢ € M(b)}. We have to show that supv = suph.
From

v(b,c) < h(b) <suph
we get supv < suph. On the other hand, from v(b,c) < supv we firstly obtain

h(b) < supv and then suph < supv. |

The first step towards the value iteration (2.7) is the next result. For a € D(s) and
x € A""!(T(s, a)) we denote by (a, x) the n-stage action sequence which first uses a
and then x.

Lemma 2.3.2 (The reward iteration, RI for short) The following holds

Via(8) = r(s,a) + BVo(T(s,a)), (s,a) € D,
Vaax (8) = r(s,a) + BVu1x(T (s, a)),
n>2, (s,a) €D, x € A" (T(s,a)). (2.5)

Proof The form of Vy, follows from (2.3) with N := 1 since a; = T(s,a). Now
assumen > 2. For0 <t <n—2puts, = s,4 and @, = a,4, and put s,_, :=
sy. Then s, = T(s|_,,a,_,) and x = (a,)i~>. It follows easily that x and (s])i "
satisfy (2.1) with N := n — 1 and with (s,)} and (a,)) ™" replaced by (s})7~" and
(a))2=2, respectively. This means that (a)i™2 € A""!(s) and that (s))}~" is the
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decision process generated by (s, x). Now (2.3) yields V,, 4.5 (s0) = r(s0.a0)+B-B
where

n—1 n—2
B:=Y " B"'r(sna) + B Vols) = Y B'r(s).a)) + B Vo(s)_)

=1 =0
= Vue1.4(55) = Vam1x(T(s0, a9)).

Inserting B into V,, (4.5 (S0) = 7(s0, ap) + B - B completes the proof. O

The RI expresses the following fact: The n-stage discounted reward for the initial
state s under the action sequence (a, x) equals the sum of the reward in the first
period and the discounted (n — 1)-stage reward for the initial state T'(s,a) under
the action sequence x. Thus the recursion (2.5) exhibits the sequential structure of
the objective functions y +— V,,,(s). Moreover, in case of finite S and A the Rl is a
convenient recursive algorithm for evaluating Vi, (s) on a computer.

We often use the functions W,: D — (—o0, 0o], defined by

W, (s,a) := r(s,a) + BV,—1(T(s,a)), n > 1. (2.6)

A mapping f from S into A is called a decision rule if f(s) € D(s) for all 5. Denote
the set of all decision rules by F. A decision rule f, at stage n such that f,(s)
is a maximum point of a — W, (s,a) for all s is called a maximizer at stage n.
Intuitively, f,(s) is an optimal action at state s when n periods are still ahead. A
sequence (f,)\ = (fv.fv—1,---.f1) € FV of decision rules f, at stage n is called an
N-stage policy and it is called an N-stage maximizing policy if f, is a maximizer at
stagen for 1 <n <N.

Of course, a maximizing policy need not exist, and if it exists, it need not
be unique. Sometimes we need the following generalization of the concept of a
maximizer at stage n: If w is a function on D, we call a decision rule f a maximizer
of wif f(s) is a maximum point of a — w(s, a) for all s.

Theorem 2.3.3 (Basic Theorem for stationary DPs)
(a) The value functions V, satisfy the following recursion, called value iteration
(VI for short):
Vu(s) = sup{r(s,a) + BV,—1(T(s,a)) : a € D(s)},
sup{W,(s,a) :a € D(s)}, n>1,s€S. 2.7

(b) Let N > 1, let sy be an arbitrary initial state, let the action sequence y* =
(a;")f)v_l be admissible for sy and let (s,)llv be the decision process generated
by so and y*. Then y* is so-optimal if and only if a¥ is a maximum point of
ar> Wy_(s,a),0 <t<N-—1

(c) The Optimality Criterion (OC for short): Let N > 1, let sy be an arbitrary
initial state. If there exists a maximizing policy (fn)]lv then:
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. . *
(c1) An so-optimal action sequence (a;

procedure

)f)v_l is given by the following forward

a;‘k ::fN—T(s[)v St+1 = T(sl‘va;k)s 0 E tf N-—-1. (28)

If the maximizing sequence (f,)y is unique, then (a;")gl_l is the unique so-
optimal action sequence.
(c2) V,, n>1, is determined by f, and W,, since

Vu(s) = Wy(s, fu(s)), s € S.

Proof

(a) Fix s. Equation (2.7) follows for n = 1 immediately from (2.5). For n > 2 we
use Lemma 2.3.1 for b := a, B := D(s), ¢ := x, C 1= A" !, M := A"(s) and
v(a,x) := V, (ax (s). From the recursive property (2.2) of A”(s) we see that the
a-section M(a) of M equals A"~ (T(s,a)). Using the RI (2.5) and noting that
B > 0, we obtain

Vn(s) Sup{Vn,(a,x)(s) : (a,x) € M}

sup sup  [r(s,a) + BV,—1.:(T(s, a))]
a€D(s) xeA" (T (s,a))

sup[r(s,a) + Bsup V,—1.(T(s, a))]

= sup[r(s,a) + BVi—1(T(s, a))].
(b) From the VI we infer for 0 < ¢ < N — 1, since 5,41 = T(s;, a)), that
Vn—i(s) = r(se.a)) + BVn—i—1(si41),
with equality if and only if a} is a maximum point of Wy_,(s;, -). Thus

VN(S()) > r(S(),Cl;) + ,BVN_l(Sl)

> r(so,ay) + Br(si,a}) + f*Vy—a(s2)
N—1

. > Z,B’r(s,,a;k) + B¥Vo(sy) = Vi (50),
0

%

and equality holds throughout if and only if for 0 < ¢ < N — I the action a is
a maximum point of Wy_(s;, ).
(c) (cl) follows from (b) since (a;")’(}’ ~! satisfies the condition in (b); the assertion

about uniqueness is obviously true. (c2) is obvious from (2.6). O
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Remark 2.3.4 The VI says that the maximal reward for n periods and initial state
s equals the maximum—over the initially admissible actions a—of the sum of the
reward earned in the first period and the discounted maximal reward for the last n—1
periods and the next state 7'(s, a) as initial state. This fact is intuitively plausible to
such an extent that part of the literature refrains from a proof. <&

Remark 2.3.5 The computation of Vy(sg) for some N > 2 by the VI also yields
Vau(s), 1 <n < N—1,s € S. Yet the solution of DP,(s) requires in addition the
computation of an s-optimal y € A"(s) by means of (2.8). <&

Remark 2.3.6 The OC yields an sp-optimal action sequence y* for each so. If only
an sp-optimal action sequence for a single sy is required, it follows from (2.8) that
it suffices to compute a maximum point fy(so) of Wy(so,-) instead of a whole
maximizer fy at stage N.

The sp-optimal action sequence obtained by (2.8) is called the action sequence
generated by s and the maximizing policy (), &

Remark 2.3.7 We call Theorem 2.3.3 the Basic Theorem as it will play a dominant
role throughout Part I and in modified form in the other chapters. Other names used
in the literature include DP algorithm, method of backward induction and above
all, Bellman’s principle of optimality. We reserve the latter name for another result,
see Supplement 3.6.1. <

Remark 2.3.8 While the Basic Theorem 2.3.3 reduces the global N-stage problem
to a sequence of N interconnected parametric one-stage optimization problems it
does not tell us anything about how to solve the latter problems. For these one
depends on methods of non-dynamic optimization. <&

Remark 2.3.9 The VI holds whether or not there exist sy-optimal action sequences.
Since r is finite, the right-hand side of (2.7) is also defined in the case
Vu—1(T (s, a)) = oo by our convention x + 0o := oo for real x. <&

The essence of the proof of the VI may be phrased in the simple equation

(su[;[g(a) + Bh(a,x)] = sup[g(a) + B sup h(a,x)].

Unfortunately this simple method is not applicable for stochastic DPs.

For s € S and n > 1 we call the (possibly empty) set D} (s) of maximum
points of a — W,(s,a) the set of optimal actions for stage n and at state s.
Thus ( fn)}v is maximizing if and only if f,(s) € D}(s) for 1 < n < N and
all s. The sequence (D,)) determines for each sy all solutions of DPy(so) since
by Theorem 2.3.3(b) (a)))~" is sp-optimal if and only if af € D¥_,(s;) for
0<t<N-1.

Only in rare cases will the value functions and so-optimal action sequences
have an explicit form. Therefore, the computer-aided numerical solution, possibly
after suitable discretization of the state and action space, is important. Assume
for simplicity that both S and A are finite. We call the method provided by
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the Basic Theorem for solving problem DPy(so) the VI algorithm. It runs as
follows.

One computes, starting with Vj, recursively by means of the backward procedure
(2.7) (i.e. backward in stages) the value functions Vi, Vs, ..., Vy—; by maximizing
the (possibly infinite) functions a — W,(s,a) foralls € Sand1 <n < N —1.
After having computed V,, the function V,_; can be deleted from the memory. In
the final step one computes Vy(so) by maximizing a — Wy(so, a). In practice one
often computes Vi (so) for all so € S.

The computation of an so-optimal action sequence (a; )3’ ~! for given initial state
5o according to Theorem 2.3.3(b) cannot be done simultaneously with the recursive
computation of the value functions, as one does not know in advance which
sequence of states sy, 2, ... is generated by so and the optimal action sequence to
be constructed. However, while maximizing W, (s, ), s € S,for1 <n <N —1 and
W (S0, ) one can compute and store a maximum point f;,(s) and fy(so), respectively.
Then one obtains an sy-optimal action sequence by the forward procedure in the
OC.

2.4 First Examples

Example 2.4.1 (Solution of Example 2.1.1) We treat this problem for arbitrary K €
N and N rather than only K = 10 and N = 4.

(a) After the definition of a DP we have seen that S = A = Nk, D(s) = Ny,
T(s,a) = s—a, r(s,a) = u(a) and Vy = d-u for some d € R4 and an arbitrary
function u on No . Note that AV (sg) = {(a)) ™" € AN : Y0 7" a, < 50} since
Zf)v_l a, < so implies a; < s9 — Z;;B a; = s, for0 <t < N — 1. Because
of T(s,a) < s, (s,a) € D, the solution of DPy(so) is the same for each DP
with § = A = Ny x whenever K > s5p; even S = A = Ny could be used. As a
consequence, it suffices to solve DPy(K) with the choice S = A = Nyk.

From now on assume that « is increasing and that #(0) = 0 < u(K). (The
case u(K) = 0, i.e. u = 0, is trivial.) By Theorem 2.3.3(a) the VI has the form

Va(s) = max{u(a) + fVo—1(s —a) :a € Nos}, n>1,5 € Nyg. 2.9)

This implies by induction on n > 0 that V,(0) = 0. Due to the discreteness
of § and A, even for simple utility functions u one can expect only in
very rare cases an explicit solution. However, for arbitrary u we can find a
numerical solution by means of (2.9). As we show below, for u with sufficient
structure we also can find structural properties of the solution, i.e. of V,,, of
the smallest maximizer f;, at stage n and of those sy-optimal action sequences
y* = yV(s0) € A¥(s0) which are generated by so and (f,)}.-
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Table 2.1 V,(s),s < K := 8, foru(a) = \/a,d =15, =10.8

s
0 1 2 3 4 5 6 7 8

0.000 1.200 2200  2.697 3.111 3.493 3.814  4.132 4415
0.000 1.000 1.960  2.7760  3.174  3.572  3.903 4.221 4.526
0.000 1.000 1.800  2.568 3.208 3.622  3.954 4272  4.590
0.000 1.000 1.800  2.440  3.054 3.566  3.981 4312 4.630
0.000 1.000 1.800  2.440  2.952 3.444  3.858 4267  4.599
0.000 1.000 1.800  2.440  2.952 3366 3.776 4169  4.500
0.000 1.000 1.800  2.440 2952 3366 3.776 4107  4.435
0.000 1.000 1.800  2.440 2952 3366 3.776 4107  4.435
0.000 1.000 1.800  2.440 2952 3366 3.776 4107  4.435

NeoRie BN e Y I R R

Table 2.2 f,(s), s < K := 12, for u(a) = /a,d = 1.5, = 0.8

s
n 0 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 1 1 2 2 2 3 3 4 4 5 5
2 0 1 1 1 2 2 2 3 3 4 4 4 5
3 0 1 1 1 1 2 2 2 3 4 4 4 4
4 0 1 1 1 1 1 2 2 3 4 4 4 4
5 0 1 1 1 1 1 2 2 2 3 4 4 4
6 0 1 1 1 1 2 2 2 2 2 3 4 4
7 0 1 1 1 1 2 2 2 2 3 3 4 4
8 0 1 1 1 1 2 2 2 2 3 4 4 4
9 0 1 1 1 1 2 2 2 2 3 4 4 4

(b) The Tables 2.1 and 2.2 and Fig. 2.2 show the result of computations for u(a) =
Ja,d = 1.5and 8 = 0.8. We denote by f, the smallest maximizer at stage n.
One quickly obtains by the forward procedure (2.8) the subsequent K-optimal
action sequences y*; the resulting terminal state sy can be used as control,
since the sum of the actions and of sy equals K.

N=4,K=8, y*=(3,2,1,1), se =1, Va(8) = 4.630
N=6,K=8, y*=(2,2111,0), s6 = 1, V(8) = 4.500
N=9,K=12,y" = (4,2,2,1,1,1,1,0,0), so = 0, Vo(12) = 5.548.

From the Tables 2.1 and 2.2 below one will conjecture that V,, = V7 and that
Jfa = f7 for n > 8. This rare property can be confirmed by Proposition 4.1.4.
(c) Inlater sections we systematically study structural properties of the solution of
general DPs and apply these to our allocation problem. Here we give several
results (c1)—(c7) which were suggested either by intuition or by numerical
computations. Some of these results can be proved already here, and some
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Fig. 2.2 Functions V, forn = 1,n = 3 and n = oo (limit function V) for K = 8, u(a) = /a,
d=15and f =0.8

(cl)

(c2)

(c3)

use an ad hoc method rather than the Basic Theorem. Discrete concavity and
discrete convexity are defined in Appendix (D.4).
V,.(s) is increasing in s. This is plausible since we expect from a larger initial
resource a larger maximal reward. A proof can be given by Theorem 6.3.5, by
Example 6.4.1(cl) or directly as in Problem 2.5.1.
The number s := max{0 < x < K : u(x) = 0} can be interpreted as follows: If
one allocates energy to a technical system, then s+ 1 is the minimal allocation
which causes the system to work with profit. For 0 < s < s and n > 0 we have
V,(s) = 0 = f,+1(s). Moreover, each y € AV (s) is s-optimal. These statements
are simple consequences of Problem 2.5.1(d) and of the VI (2.7).
V,.(s) is increasing in n for small d [decreasing in n for large d], e.g. if d < 1
[if 8 <1,d > 1/(1—p)]. (As seen from Table 2.1, V,,(3) is in general neither
increasing nor decreasing in n.)

For the proof one easily derives from the VI (2.7) by inductionon n > 0
that V,,(s) is increasing [decreasing]in nif V|, > Vo = d-u [V < Vo = d-ul.

(i) Ifd < 1 then the VIyields for s € Ny :

Vi(s) = [max [u(a) + Bdu(s — a)] = u(s) > du(s) = Vy(s).

<a

(i1) Recall that u is increasing on Ny g (cf. Definition 6.2.1(vii)). Then if 8 <
1,d > 1/(1 — B) we have:

Vi(s) < Orilagu(a) + ,Bdolilai( u(s —a) = u(s) - (1 + Bd) < du(s).
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(c4)

(c5)

(c6)

()
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Let u be discretely concave (cf. Appendix (D.1)). Then all value functions V,
are discretely concave, f;, is increasing and its upward jumps have size one; see
also Table 2.2. Moreover, if g, denotes the largest maximizer at stage n > 1,
then a mapping f: No ¢ — Ny g is a maximizer at stage n if and only if f;, <
f =< gu. All results follow from Theorem 7.1.2 below by using as actions the
investments.

Let u be discretely convex. In Theorem 7.3.3 below we compute the value
functions explicitly and show that either (0,0,...,0) or (so,0,...,0) are
sp-optimal. These two action sequences are extreme in the sense that they
prescribe to consume nothing at all times 0 < 1 < N — 1 or to consume
everything at time ¢ = 0, respectively. Moreover, Example 7.3.5 below shows
incase B < 1 and s > sp that V, = u for all n > m and some m € N, and

that for each sy the action sequence (so,0,...,0) € AV(so) is so-optimal for
all N > m. In particular, if 8 < 1, then for some m € N we have V,, = u for
n > m, and (so, 0, ...,0) € AN(sy) is sp-optimal for N > m.

The value functions V,,, n > 1, are Lipschitz continuous in d and also in f,
both uniformly in s. In fact, for each s and for d, d € R4 we get, using
Appendix A.4.4

[Vau(s,d) — V,(s,d)| = | max Vay(s, d) — max Vay(s,d")|

IA

max |V, (s, d) — Viy(s.d')| = B"|d —d'| - maxu.
y

Moreover, for each s and for 8, 8’ € (0, 1] we get

[Va(s, B) = V(s B)| < m;lx [Vay(s, B) — Vi (s, Bl

n—1
= (Z |B' = B"| +d|B" —ﬁ’"l) max u
0
<n(n—1+2d) -maxu-|B—B'|/2.

Here we used that |8 — B"| = | — p/| - it BB~ < t|B— B/l 1 > 1.

If u is discretely concave and if § = d = 1 one expects that it is optimal to
allocate the resources among the N stages as evenly as possible in the sense
that there exists an so-optimal action sequence y* € AM(sy) whose actions
differ from each other by not more than one unit. This is true as one can show,
using b := |so/(N + 1)], that y* is so-optimal if (N + 1)(b + 1) — s of the
components of y* equal b, and if the remaining ones equal b + 1. ¢

We conclude our investigation of the allocation problem from Example 2.4.1 by
studying the asymptotic behavior of the solution for n — oo. Such problems are
studied in detail for general DPs in Chap. 10; here we can solve it by an ad hoc
approach.
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Proposition 2.4.2 (Asymptotic properties of Example 2.4.1) Assume that § < 1
and V(0) := 0 and define V(s), 1 < s < K, by induction on s according to

V(s) = max {u(@) + BV(s—a)}, 1=<s=<K. (2.10)

<a

Then:

(a) V,(s) converges for n — oo to V(s), s € Nog.

(b) V isincreasing and, if u is discretely concave, also discretely concave.

(c) Let f(s) be a maximum point of a — u(a) + pV(s —a),0 <s < K. Forn > 1
and 1 <5 < K put V,p(s) := Vyy(s), where y € A"(s) is generated by s and the
policy ( f)’(;_l. Then the decision rule f is asymptotically optimal in the sense
that for1 <s <K

[V (s) — Vi (s)| = 0 for n — oo. (2.11)

Proof

(al) Firstly, assertion (a) holds for s = 0 since V,,(0) = 0 — 0 = V(0) forn — oo.
Next, V is real-valued on the finite set S = Ny x, hence bounded. The same
holds for the value functions since 0 < V,, < [1/(1— ) +d]-max u. In fact, the
lower bound holds trivially since ¥ > 0 and V,,(0) = 0, and the upper bound
follows from (2.10).

(a2) Fix 1 < s < K. Since B < 1 and V > 0 we see, using W(s,a) := u(a) +
BV(s—a)for0 < a <s, that

V(s) = maigW(s, a) < [max W(s,a) = max{V(s), V(s)} = V(s),

1<a

hence V(s) = maxo<s<s W(s,a). Let || - || be the maximum-norm on S. Now
we get, using Appendix A.1.3(b)

Vo) = V(s)| = | max[u(@) + BV,1 (5 — @)] — max{u(a) + BV (s - )]

< Bmax|Voei 5= @) = Vs = )] = Bl Vot — VI

Here a runs over Ny ;. Now induction on n > 0 implies || V,,—V|| < B"*||Vo—V],
which proves (a).

(b) This follows from (a) and properties (c1) and (c4) from Example 2.4.1 above
since isotonicity and discrete concavity of V,, are easily seen to be preserved
when 7 tends to oo.

(c) Firstly, from the definition of f we know that V(s) = u(f(s)) + BV (s —f(s)).
The RI (2.5) shows that V¢ (s) = u(f(s)) + BVu—14(s — f(s5)), n > 1, where
Vor := Vo. Now one easily obtains, using inductiononn > 0, that |[V—V,| <
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BV — V|| Finally the assertion follows, using (a2), from
IVa=Virll = IVa=V+HV=Vip) | = [Va=VI+IIV=Viyll = 28"[V=Voll. O

Relation (2.11) means that for each s the performance of the stationary policy
consisting of n copies of the decision rule f becomes arbitrarily close to the
performance of each s-optimal action sequence in A" (s) when n tends to co.

Now we turn to continuous DPs. There are problems such as the freighter
problem from Example 4.1.1 below where only a discrete model makes sense. On
the other hand, for many problems both a discrete and a continuous version may be
formulated; see the allocation problems Example 2.4.1 and Example 2.4.3 below or
the linear-quadratic problems in Example 3.1.2 and Example 4.1.7 below.

Here are a few comments on the appropriateness of discrete or continuous
versions and on their solutions.

(i) From a rigorous point of view continuous DPs cannot be completely realistic
models for applications since they assume infinite divisibility of states and/or
of actions. This does not hold in reality; e.g. in the allocation problem arbitrary
small investments do not make sense.

(i) Continuous versions are often considered as good approximate descriptions of
a discrete model in the sense that the solution of the continuous version is a
good approximation to the solution of the latter model. In fact this seems to be
true in many cases where the actions are measured in small units, e.g. in micro
seconds when the resource means time. However, the discrete version often
describes the problem equally well or even better than the continuous version.

(iii)) We mention some difficulties when using continuous versions according to (ii)
as approximations:

(a) The solution of the continuous version requires, except for a few cases
where an explicit solution exists, a discretization of the state and/or action
space. Examples of this approach in the literature often include an analysis
of the discretization error.

(b) However, in the literature one rarely cares about the continuation error
made when approximating the discrete version by the continuous version.
Moreover, the continuation error and the discretization error should be
added.

(c) In continuous versions one must care about the existence of so-optimal
action sequences or maximizers, a question often connected with the
question of continuity of the value functions.

In view of the preceding comments we emphasize discrete DPs, and keep the
treatment of the continuous versions brief. We now treat a continuous counterpart
of the discrete Example 2.4.1. The only essential difference in the assumptions is
the inclusion of a deterioration/expansion factor z € R*.
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Example 2.4.3 (Continuous allocation with utility function u)

()

(b)

Consider the following DP: (i) the momentary resource s, consumption a and
investment s — a are non-negative reals; D(s) = [0, s]; (ii) the resource at time
t + 1 equals T(s;. a;) := z- (s; — a;) for some z € RT. Denote by s, the initial
resource. We distinguish case 1: z < 1 and case 2: z > 1. As an example,
if the resource consists of a perishable good, z < 1 may be a factor for the
deterioration of the investment s; — a;. On the other hand, z > 1 occurs as
interest factor for the investment when the resource is a capital. The maximal
resource after N stages equals 5o in case 1 and z"sp in case 2. Therefore in case
1weuseS =A = [0,K] where K > 59, and S = A = R in case 2.

Again r(s,a) := u(a) with increasing and non-negative utility function u
and Vo = d - u for some d € R.. By Theorem 2.3.3 the VI holds and it reads

Va(s) = sup{u(a) + BVu—i1(z- (s—a)) :a € [0,s]},s € S. (2.12)

Again f, denotes the smallest maximizer at stage n, provided it exists.
Sometimes another choice of actions &’ (not applicable for the discrete version)
is useful: If s > 0, then @’ := the proportion a/s of the momentarily available
amount s of resource, which is consumed; if s = 0, then a’ may be chosen
arbitrarily in [0, K]. The resulting DP’ differs from the original DP in the
following data: A’ = [0, 1] = D'(s), T'(s,d’) = s - (1 — '), ¥/ (s,d’) = u(sa’).
Then DP’ has the value functions, starting with V{, := du,

s> Vy(s) = sup {u(sa’) + fV,—i(zs- (1 —d')) :d' € [0, 1]}, n > 1,
(2.13)

which intuitively equals V,,. A formal proof uses induction on n > 0, and for
fixed s > 0 the bijective substitution a’ := a/s in W (s, d’).

As seen from (2.12) and (2.13), a function A4, from S into [0,1] is a
maximizer at stage n in DP’ if and only if s - h,(s) is a maximizer at stage
n in DP.

We often use the following abbreviation: for x € R and n € Ny put

n—1
N =)/ —x) ifx AL

on(x) := ;x = %n x 1. (2.14)
in particular, oy(x) = 0 and 0} (x) = 0,(0) = 1 forn > 1.
Explicit solutions exist rarely, e.g. if u(a) = /a (cf. Example 4.1.6(a)) or
if Bz = 1 (cf. Problem 4.3.1). However, as we now indicate, for relatively
general utility u the subsequent structural properties (b1)—(b7) of the solution
are valid.
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(bl) V,(s), n > 1, is increasing in s, non-negative and finite. Moreover,

Va(s) < Z,B”u(z”s) + B"du(7"s), s € S, incase 1 and 2,
v=0

Vo < [0.(B) + B"dluin case 1,
Vo <[1/(1 =B) + B"dluincase 1 andif § < 1.

(b2) Incase 1,if0 < s < s := max{0 < x < K : u(x) = 0} and n > 0, then
V,(s) = 0. Moreover, each y € AV(s) is s-optimal. These statements may be
proved as in Example 2.4.1(c2), observing that u(s) = 0 by continuity of u.

(b3) V,(s) is increasing in n [decreasing in n] if d < 1[if B < 1,d > 1/(1 — B)].
This may be proved as in Example 2.4.1(c3).

(b4) Let u be concave. Then all value functions V,, are concave, the smallest
maximizers f,, n > 1, exist and are increasing and f;,(s") — fu(s) < &' — s
for s < s'. This follows from Example 8.2.14 below with n; = u; = 0,
N2 (x) = zx, and u; = u.

(b5) Let u be convex and B < 1. Then for some m € N we have V,, = u for
all n > m, and for each s( the action sequence (s9,0,...,0) € AN(s0) is so-
optimal for all N > m. This is shown in Example 7.3.5.

(b6) The value functions V,, n > 1, are Lipschitz continuous in d and also in f,
both uniformly in s. This may be proved as Example 2.4.1(c6).

(b7) As in the discrete version (see Proposition 2.4.2), in case § < 1 the sequence
of value functions converges for n — oo uniformly to some function V.
However, the proof given in Theorem 10.1.10 differs from the proof of
Proposition 2.4.2, and V cannot be defined recursively. ¢

2.5 Problems

Problem 2.5.1 Consider a DP where S = A = Ny for some K € N, D(s) = Ny,
T(s,a) = s—a, r(s,a) = u(a) for some function u on A, Vy(s) = dp - u(s) for some
dyeRy,B€0,1]. Thenforn > land s € S:

(@) y = (a)' € A" belongs to A"(s) if and only if Zg_l a; <s.

(b) if s < 5" then A"(s) < A"(s).

(c) if s < 5" and if u is increasing then V,,(s) < Vi, (s').

(d) if u is increasing, then s — V,(s) is increasing.

Problem 2.5.2 Consider a DP where S = R4, A = [0, 1], D(s) = [0, min{1, s}]
and T(s,a) = s —a. Thenforn > 1l and s € S:

(@ y = (a)i' € A" belongs to A"(s) if and only if Zg_l a; < min{l +
S, s0);

(b) the properties (b)—(d) from Problem 2.5.1 remain true.
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Problem 2.5.3 (Existence of an optimal action sequence without existence of
maximizer) Consider the DP with § = A = [0, 1]; D(s) := [0, s]; r(s,a) = 0 for
s=a=1land = a/2else; T(s,a) = (1 —a)-s; Vo = 0and B = 1. Show that
(s, (1 —s) - s) is the (unique) s-optimal action sequence for DP,(s), s € S, and there
exists no maximizer at stage 1.

2.6 Supplements

Supplement 2.6.1 (The discount factor) In economical applications § is usually
smaller than one. In particular, if the length [ of each period equals the k-th part of a
year, if the annual interest rate equals i percent and if compound interest per period
is assumed, then, since discounted rewards correspond to cash values at time zero,
wehave 14+i = 1/85 = 1/B" hence g = (Hl_i), < 1. Thus the larger / and/or i, the
smaller 8, and B approaches 1 when [ tends to zero. If e.g. i = 8 % then § = 0.981
if [ is a quarter of a year and B = 0.9936 if / is one month. Moreover, if e.g. [ :=
one hour and if N is not too large, let’s say N = 40, then 8 can be practically taken
equal to one.

If the N periods have nothing to do with time but mean that a certain activity is
executed N times, then only 8 = 1 is meaningful.

The case § > 1 models the situation where the genuine discount factor equals
some Y < | and where the one-stage reward increases from period to period (and
similarly for the terminal reward) by the factor 8/y.

Supplement 2.6.2 (Changing the definition of an action) By another definition
of the action in the continuous allocation problem from Example 2.4.3 one obtains
three other formulations as follows, where S, V) and B remain unchanged.

(a) If a denotes the amount of the resource not allocated momentarily then A =
Ry, D(s) = [0,s] forall s, T(s,a) = z-aand r(s,a) := u(s —a) for (s,a) € D.

(b) If a denotes the momentarily allocated proportion of the resource then A =
[0,1] = D(s) forall s, T(s,a) = zs(1 —a), r(s,a) := u(s(1 —a)) for (s,a) € D.

(c) A further formulation is obtained if @ denotes the momentarily not allocated
proportion of the resource.

For some investigations the above formulations (a)—(c) have slight advantages over
the formulation in Example 2.4.3.
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