
Chapter 2
The Stationary Deterministic Model
and the Basic Solution Procedure

We introduce as a prototype of deterministic dynamic optimization problems a
simple allocation problem, give firstly an intuitive and then a formal description
of the general problem, and derive the basic solution technique: value iteration and
optimality criterion. This allows us to derive structural properties of the solution of
the allocation problem.

2.1 A Motivating Example

Example 2.1.1 (Discrete allocation problem) Consider the process of allocating to
a single project some parts a0, a1, a2 and a3 of a resource (such as units of material)
of total amount K WD 10 sequentially at the times t D 0, 1, 2, 3. (A simultaneous
single allocation to four different projects leads to the same mathematical problem.)
The allocation at 2 A WD N0;10 at time t is often called the consumption. Obviously
the allocations must obey the restrictions a0 	 K and at 	 K �Pt�1

iD0 ai for 1 	 t 	
3. We assume that at yields a reward u.at/ for some function u on A. The resource
still available at time 1 	 t 	 4 is st WD 10 � Pt�1

iD0 ai, and the resource st � at

not consumed at time t is often called the investment. (Therefore allocation models
often run under the heading consumption and investment.) We denote the sum of
allocations in the sequence y D .a0; a1; a2; a3/ by c.y/ WD P3

tD0 at. Then 10 � c.y/
is the terminal resource left over at time 4. We assume that the terminal resource
s4 at the end of the allocation process yields the terminal reward d � u.s4/ for some
constant d 2 RC. Thus the case where the terminal resource is worthless can be
modeled by the choice d D 0.
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16 2 The Stationary Deterministic Model and the Basic Solution Procedure

How should the sequence y D .a0; a1; a2; a3/ of allocations be made in order to
maximize on the set A4.10/ WD fy 2 A4 W c.y/ 	 10g the sum of rewards

V4y.10/ WD
3X

tD0
u.at/C d � u

 

10�
3X

tD0
at

!

‹

We want to find V4.10/ WD supy2A4.10/ V4y.10/ and a maximum point y� D .a�
t /
3
0

of y 7! V4y.10/. This problem is denoted by DP4.10/, and the problem DPn.s/ for
n � 1 and s 2 f0; 1; : : : ; 10g is defined analogously. �

If in the preceding allocation problem we allowed non-negative real actions at,
some cases where u is concave and differentiable would be solvable by the classical
optimization method based on Fermat’s criterion in Appendix A.4.16. No counter-
part is available in the discrete case of Example 2.1.1, but Dynamic Optimization
will help, as shown in Example 2.4.1 below. Crucial for its applicability is the
following property: If we knew an optimal first input a�

0 for DP4.10/, then the vector
.a�

t /
3
1 could be found as a maximum point of the problem DP3.10 � a�

0 /.
For arbitrary DPs the basic solution method (explained in detail in Sect. 2.3),

runs as follows: If Vn.s0/, 1 	 n 	 N, denotes the maximum value of the objective
function y 7! Vny.s0/, y 2 An.s0/, one can obtain Vn.s0/ from the function Vn�1
by maximizing certain functions a 7! Wn.s; a/, s 2 S, determined by Vn�1, over
a certain set D.s/. By iterating this step, we see that the problem DPN.s0/ of
maximizing y 7! VNy.s0/ with respect to the N variables a0, a1, : : :, aN�1 reduces to
a sequence of N maximization problems, each parametrized by s, with respect to a
single variable a. We call this approach for the moment the DP method, in contrast
to other standard static methods. The DP method has several favorable features, as
will become apparent later on in many examples:

(a) The sets D.s/ and the functions a 7! Wn.s; a/, 1 	 n 	 N, are much simpler
than AN.s0/ and y 7! VNy.s0/, respectively.

(b) The problems of the existence and of uniqueness of a maximum and of maxima
on the boundary of AN.s0/ reduce to the corresponding problems for the
function a 7! Wn.s; a/ of one variable only.

(c) The approach is particularly suited to the many examples where the objective
function y 7! VNy.s0/ is recursively defined and where the explicit representa-
tion, needed in general for static methods, is cumbersome; see Equation (2.4)
below.

(d) The approach provides a general method for studying the important dependence
of the maximal n-stage reward Vn.s0/ on the initial state s0. As an example,
if S and all sets D.s/ are convex, a direct checking of convexity of the value
functions s 7! VN.s/ may be impossible, while the Dynamic Optimization
method may work; see Chap. 8 below.

(e) In many concrete applications the number N is not known exactly, but only
bounds 1 	 N1 	 N 	 N2 	 1 are known. Then it is desirable to know VN for
all N within the bounds. In static methods this requires us in general to solve
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an N-stage problem for each of these N’s. On the other hand, as we shall see
below, the DP solution for N2 automatically also contains also the solution for
all N < N2.

(f) The DP method provides an exact numerical algorithm for many important
problems where S and all sets D.s/ are finite.

2.2 The Model

We now give a detailed intuitive background and basic concepts for the general
problem DPN .s0/; see Fig. 2.1. The object of investigation is some system which
starts at time t D 0 in an initial state s0, belonging to a set S, called the state space.
The system moves at times t D 0, 1, : : :, N � 1 successively to states st, i.e. s1, s2,
: : :, sN . This movement is controlled by actions at, i.e. a0, a1, : : :, aN�1, respectively,
taken by a decision maker at the times t D 0, 1, : : :, N � 1, respectively, from a set
A, the action space. When discussing facts which concern states and actions at all
times t we often write s and a rather than st and at, respectively, and we call s the
momentary state and a the momentary action.

In examples, often the state st has one of the following meanings: (i) it is a
summary of the history of the process up to time t � 1, (ii) it represents information,
necessary for the choice of an optimal action at, (iii) it depicts the environment in
which the process is running at time t.

The number N 2 N is called the horizon, and the time interval Œt; t C 1/ is called
the t-th period; at stage n means at time t WD N �n, 1 	 n 	 N. Each time an action
is taken the momentary state of the system is assumed to be known to the decision
maker. In general, when the system is in state s, not all actions from the action space
A, but only those in a certain non-empty set D.s/ � A will be admissible. We call
D.s/ the set of admissible actions for state s and

D WD f.s; a/ 2 S � A W a 2 D.s/g

the constraint set. The influence of the decision maker on the transition of the
system is described by a mapping TW D ! S, the so-called transition function:
If at time t the system is in state st and if action at 2 D.st/ is taken, then the system
moves to the new state stC1 WD T.st; at/. At time t, i.e. at the beginning of period t,

Fig. 2.1 Development of states st
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a one-stage reward r.st; at/ 2 R, given by the so-called one-stage reward function
r is obtained. In addition, if the movement of the system ends at time N in state sN ,
then a terminal reward V0.sN/ 2 R is obtained. The same monetary units, obtained
at different time points, will have different cash value due to interest. This fact is
taken into consideration by a so-called discount factor ˇ 2 R

C; this means that the
reward r.st; at/ obtained at time t and the terminal reward V0.sN/ at time N enter the
account (2.3) below relative to time t D 0 as ˇtr.st; at/ and ˇNV0.sN/, respectively.
In most applications early gains are more profitable than later ones, which means
that ˇ < 1.

Summing up we arrive at the following definition.

Definition 2.2.1 A (stationary) deterministic (dynamic) program (DP for short) is
a tuple .S;A;D;T; r;V0; ˇ/ of the following kind:

• S is the state space.
• A is the action space.
• D � S � A such that all s-sections D.s/ WD fa 2 A W .s; a/ 2 Dg ¤ ;, s 2 S.

D is called the constraint set and D.s/ is called the set of admissible actions for
state s.

• TW D ! S is the transition function.
• rW D ! R is the one-stage reward function.
• V0W S ! R is the terminal reward function.
• ˇ 2 R

C is the discount factor.

General assumption Throughout this book we require that both S and A are non-
empty sets.

We also call the tuple .S;A;D;T; r;V0; ˇ/ the data of the DP. The data for the
allocation problem from Example 2.1.1 with arbitrary K 2 N are as follows: S WD
A WD N0;K , D.s/ WD N0;s for all s, T.s; a/ D s � a, r.s; a/ WD u.a/ for .s; a/ 2 D;
V0 D d � u, and ˇ is arbitrary. One also could model the problem by using for at

the investment at time t. Then S, A, D, V0 and ˇ would remain unchanged, while
T.s; a/ D a and r.s; a/ WD u.s � a/ for .s; a/ 2 D.

Remark 2.2.2 In applications the states and/or actions are often integers or reals,
but sometimes they are elements of Zd or of Rd for d � 2 or they are sets. Þ
Remark 2.2.3 Sometimes the one-stage reward r.s; a; s0/ also depends on the next
state s0 D T.s; a/. That case is covered by simply replacing s0 by T.s; a/.

In a few cases, r also depends on ˇ; in particular, if r.s; a/ consists of a reward
g.s; a/ obtained at the end of the momentary period then r.s; a/ D ˇg.s; a/. A
dependence of r on ˇ requires changes only for those few results which deal with
the dependence of the solution on ˇ. Þ

Remark 2.2.4 (The discount factor) One must not distinguish in the theory between
ˇ < 1, ˇ D 1 and ˇ > 1. On the other hand, for many models the pointwise limit
of the value functions Vn for n ! 1, dealt with in Chap. 10, is not defined unless
ˇ < 1. Also in economical applications ˇ is usually smaller than one. If the N
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periods have nothing to do with time but mean that a certain activity is executed N
times, then only ˇ D 1 is meaningful. Þ

Any concrete problem DPN.s0/ must be modeled by an appropriate choice of S,
A, D, T, r, V0 and ˇ as done above for the allocation problem from Example 2.1.1.
Particularly important is the choice of the state space S. Sometimes several choices
are possible; then it is up to the decision maker’s skill to find a formulation that
easily admits theoretical analysis and computation. This skill can be acquired only
by experience. Dreyfus and Law (1977) speak in the title of their book of the Art
of Dynamic Programming, i.e. the art of finding an appropriate model. The same
authors also suggest (loc. cit., p. 17) a useful mental device, called the consultant
question, for a skillful choice of the state st. Essentially it reads as follows: The
momentary state should consist of the minimal information about the momentary
situation you would have to acquire from a firm in case you would be hired to take
over the problem and do things optimally from now on.

We call a set continuous [discrete] if it is an interval or a product of intervals [an
interval in Z or a product of such intervals]. We call a DP continuous [discrete] if
either S or D.s/, s 2 S, are continuous [if both S and D.s/, s 2 S, are discrete]. The
modeling procedure should also include a reflection about the question of whether
to use a discrete or a continuous DP. More information on this feature is given before
Example 2.4.3 below.

Now we define for a given model DP the maximization problem DPN.s0/,
determined by an arbitrary horizon N and an arbitrary initial state s0 2 S. Firstly,
we say that a sequence y WD .at/

N�1
0 is a sequence of admissible actions for s0, if y

obeys the restrictions

a0 2 D.s0/;

a1 2 D.s1/; where s1 WD T.s0; a0/;

a2 2 D.s2/; where s2 WD T.s1; a1/; (2.1)

:::

aN�1 2 D.sN�1/; where sN�1 WD T.sN�2; aN�2/:

(As an example, in the allocation problem from Example 2.1.1 with N D 4

and K D 8 the action sequence .4; 3; 1; 0/ is admissible for s0 if and only if
s0 � 8.) In the final state sN WD T.sN�1; aN�1/ no action is taken. The set of
action sequences admissible for s0 will be denoted by AN.s0/; it is non-empty
because D.s/ ¤ ; for each s; we have AN.s0/ D AN for all s0 if D.s/ D A for
all s; AN.s0/ is finite if all sets D.s/ are finite. Even for simple sets D.s/ the sets
AN.s0/ can be complicated as seen, for instance, from the allocation problem from
Example 2.1.1.
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An initial state s0 and a sequence .st/
N
1 of states as introduced in (2.1) above

describes the evolution of the system under an admissible action sequence y 2
AN.s0/. We call .st/

N
1 the decision process generated by .s0; y/. Notice that st D

st.s0; .ai/
t�1
0 / is a function of s0 and of y, since

s1 D T.s0; a0/; s2 D T.s1; a1/ D T.T.s0; a0/; a1/;

s3 D T.T.T.s0; a0/; a1/; a2/; : : : :

It follows from (2.1) that the sets An.s/, n � 1, s 2 S, have the following
sequential structure: A1.s/ D D.s/ and

An.s/ D ˚
.a; x/ 2 D.s/ � An�1 W x 2 An�1.T.s; a//

�
; n � 2: (2.2)

For initial state s0 2 S, admissible action sequence y D .at/
N�1
0 2 AN.s0/ and for

.st/
N
1 generated by .s0; y/ the N-stage reward is the real number

VNy.s0/ WD
N�1X

tD0
ˇtr.st; at/C ˇNV0.sN/ D r.s0; a0/ (2.3)

C
N�1X

tD1
ˇtr.st.s0; .ai/

t�1
0 /; at/C ˇNV0.sN.s0; .ai/

N�1
0 //:

Thus y 7! VNy.s0/ is the objective function of the problem DPN.s0/. Notice that
VNy.s0/ means the total reward discounted back to time t D 0; the total reward
accumulated at time N is VNy.s0/=ˇN . The complicated explicit representation
(check it for N D 3)

VNy.s0/ D r.s0; a0/C ˇr.T.s0; a0/; a1/C ˇ2r.T.T.s0; a0/; a1/; a2/

C � � � C ˇNV0.T.T.: : :/; aN�1// (2.4)

is rarely needed, but for some applications the explicit expression may be useful for
checking the correct choice of the data. Also keep in mind that y 7! VNy.s0/ is a
function of the form

PN�1
tD0 gt.s0; a0; a1; : : : ; at/.

Now the N-stage maximization problem DPN.s0/ for N � 1 and s0 2 S reads as
follows:

(i) Compute the maximal N-stage reward for initial state s0

VN.s0/ WD supfVNy.s0/ W y 2 AN.s0/g:

(ii) Find, if possible, an s0-optimal action sequence, i.e. a maximum point of the
objective function y 7! VNy.s0/.
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The function VN W S ! .�1;1� is called the N-stage value function. The set of
problems DPN.s0/, s0 2 S, is called the problem DPN. Notice that VN.s0/ is finite if
there exists an s0-optimal action sequence. The sequence .Vn/

N
1 of value functions

plays a central role for solving DPN . From now on we shall mostly write VN.s/
instead of VN.s0/. Only in rare cases will the value functions have an explicit form.
Of course, s0-optimal action sequences need not exist, and if they exist they need
not be unique.

2.3 The Basic Solution Procedure

In the following generalization of Appendix A.4.5 the set M.b/ is the b-section of
M (cf. Appendix A.3.8).

Lemma 2.3.1 (The joint supremum equals the iterated supremum) Let B and
C be non-empty sets and let v be a function on a set M � B�C for which M.b/ ¤ ;
for all b 2 B. Then

sup
.b;c/2M

v.b; c/ D sup
b2B

sup
c2M.b/

v.b; c/:

Proof Put h.b/ WD supfv.b; c/ W c 2 M.b/g. We have to show that sup v D sup h.
From

v.b; c/ 	 h.b/ 	 sup h

we get sup v 	 sup h. On the other hand, from v.b; c/ 	 sup v we firstly obtain
h.b/ 	 sup v and then sup h 	 sup v. �

The first step towards the value iteration (2.7) is the next result. For a 2 D.s/ and
x 2 An�1.T.s; a// we denote by .a; x/ the n-stage action sequence which first uses a
and then x.

Lemma 2.3.2 (The reward iteration, RI for short) The following holds

V1a.s/ D r.s; a/C ˇV0.T.s; a//; .s; a/ 2 D;

Vn;.a;x/.s/ D r.s; a/C ˇVn�1;x.T.s; a//;

n � 2; .s; a/ 2 D; x 2 An�1.T.s; a//: (2.5)

Proof The form of V1a follows from (2.3) with N WD 1 since a1 D T.s; a/. Now
assume n � 2. For 0 	 t 	 n � 2 put s0

t D stC1 and a0
t D atC1, and put s0

n�1 WD
sn. Then s0

t D T.s0
t�1; a0

t�1/ and x D .a0
t/

n�2
0 . It follows easily that x and .s0

t/
n�1
0

satisfy (2.1) with N WD n � 1 and with .st/
N
1 and .at/

N�1
0 replaced by .s0

t/
n�1
1 and

.a0
t/

n�2
0 , respectively. This means that .a0

t/
n�2
0 2 An�1.s0

0/ and that .s0
t/

n�1
1 is the
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decision process generated by .s0
0; x/. Now (2.3) yields Vn;.a;x/.s0/ D r.s0; a0/Cˇ �B

where

B WD
n�1X

tD1
ˇt�1r.st; at/C ˇn�1V0.sn/ D

n�2X

tD0
ˇtr.s0

t; a
0
t/C ˇn�1V0.s0

n�1/

D Vn�1;x.s0
0/ D Vn�1;x.T.s0; a0//:

Inserting B into Vn;.a;x/.s0/ D r.s0; a0/C ˇ � B completes the proof. �

The RI expresses the following fact: The n-stage discounted reward for the initial
state s under the action sequence .a; x/ equals the sum of the reward in the first
period and the discounted .n � 1/-stage reward for the initial state T.s; a/ under
the action sequence x. Thus the recursion (2.5) exhibits the sequential structure of
the objective functions y 7! Vny.s/. Moreover, in case of finite S and A the RI is a
convenient recursive algorithm for evaluating VNy.s/ on a computer.

We often use the functions WnW D ! .�1;1�, defined by

Wn.s; a/ WD r.s; a/C ˇVn�1.T.s; a//; n � 1: (2.6)

A mapping f from S into A is called a decision rule if f .s/ 2 D.s/ for all s. Denote
the set of all decision rules by F. A decision rule f n at stage n such that fn.s/
is a maximum point of a 7! Wn.s; a/ for all s is called a maximizer at stage n.
Intuitively, fn.s/ is an optimal action at state s when n periods are still ahead. A
sequence . fn/1N WD .fN ; fN�1; : : : ; f1/ 2 F

N of decision rules fn at stage n is called an
N-stage policy and it is called an N-stage maximizing policy if fn is a maximizer at
stage n for 1 	 n 	 N.

Of course, a maximizing policy need not exist, and if it exists, it need not
be unique. Sometimes we need the following generalization of the concept of a
maximizer at stage n: If w is a function on D, we call a decision rule f a maximizer
of w if f .s/ is a maximum point of a 7! w.s; a/ for all s.

Theorem 2.3.3 (Basic Theorem for stationary DPs)

(a) The value functions Vn satisfy the following recursion, called value iteration
(VI for short):

Vn.s/ D supfr.s; a/C ˇVn�1.T.s; a// W a 2 D.s/g;
D supfWn.s; a/ W a 2 D.s/g; n � 1; s 2 S: (2.7)

(b) Let N � 1, let s0 be an arbitrary initial state, let the action sequence y� D
.a�

t /
N�1
0 be admissible for s0 and let .st/

N
1 be the decision process generated

by s0 and y�. Then y� is s0-optimal if and only if a�
t is a maximum point of

a 7! WN�t.st; a/, 0 	 t 	 N � 1.
(c) The Optimality Criterion (OC for short): Let N � 1, let s0 be an arbitrary

initial state. If there exists a maximizing policy . fn/1N then:
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(c1) An s0-optimal action sequence .a�
t /

N�1
0 is given by the following forward

procedure

a�
t WD fN�t.st/; stC1 WD T.st; a

�
t /; 0 	 t 	 N � 1: (2.8)

If the maximizing sequence . fn/1N is unique, then .a�
t /

N�1
0 is the unique s0-

optimal action sequence.
(c2) Vn, n � 1, is determined by fn and Wn, since

Vn.s/ D Wn.s; fn.s//; s 2 S:

Proof

(a) Fix s. Equation (2.7) follows for n D 1 immediately from (2.5). For n � 2 we
use Lemma 2.3.1 for b WD a, B WD D.s/, c WD x, C WD An�1, M WD An.s/ and
v.a; x/ WD Vn;.a;x/.s/. From the recursive property (2.2) of An.s/ we see that the
a-section M.a/ of M equals An�1.T.s; a//. Using the RI (2.5) and noting that
ˇ > 0, we obtain

Vn.s/ D supfVn;.a;x/.s/ W .a; x/ 2 Mg
D sup

a2D.s/
sup

x2An�1.T.s;a//

Œr.s; a/C ˇVn�1;x.T.s; a//�

D sup
a
Œr.s; a/C ˇ sup

x
Vn�1;x.T.s; a//�

D sup
a
Œr.s; a/C ˇVn�1.T.s; a//�:

(b) From the VI we infer for 0 	 t 	 N � 1, since stC1 D T.st; a�
t /, that

VN�t.st/ � r.st; a
�
t /C ˇVN�t�1.stC1/;

with equality if and only if a�
t is a maximum point of WN�t.st; �/. Thus

VN.s0/ � r.s0; a
�
0 /C ˇVN�1.s1/

� r.s0; a
�
0 /C ˇr.s1; a

�
1 /C ˇ2VN�2.s2/

� : : : �
N�1X

0

ˇtr.st; a
�
t /C ˇNV0.sN/ D VNy�.s0/;

and equality holds throughout if and only if for 0 	 t 	 N � 1 the action a�
t is

a maximum point of WN�t.st; �/.
(c) (c1) follows from (b) since .a�

t /
N�1
0 satisfies the condition in (b); the assertion

about uniqueness is obviously true. (c2) is obvious from (2.6). �
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Remark 2.3.4 The VI says that the maximal reward for n periods and initial state
s equals the maximum—over the initially admissible actions a—of the sum of the
reward earned in the first period and the discounted maximal reward for the last n�1
periods and the next state T.s; a/ as initial state. This fact is intuitively plausible to
such an extent that part of the literature refrains from a proof. Þ

Remark 2.3.5 The computation of VN.s0/ for some N � 2 by the VI also yields
Vn.s/, 1 	 n 	 N � 1, s 2 S. Yet the solution of DPn.s/ requires in addition the
computation of an s-optimal y 2 An.s/ by means of (2.8). Þ

Remark 2.3.6 The OC yields an s0-optimal action sequence y� for each s0. If only
an s0-optimal action sequence for a single s0 is required, it follows from (2.8) that
it suffices to compute a maximum point fN.s0/ of WN.s0; �/ instead of a whole
maximizer fN at stage N.

The s0-optimal action sequence obtained by (2.8) is called the action sequence
generated by s0 and the maximizing policy .fn/1N . Þ
Remark 2.3.7 We call Theorem 2.3.3 the Basic Theorem as it will play a dominant
role throughout Part I and in modified form in the other chapters. Other names used
in the literature include DP algorithm, method of backward induction and above
all, Bellman’s principle of optimality. We reserve the latter name for another result,
see Supplement 3.6.1. Þ

Remark 2.3.8 While the Basic Theorem 2.3.3 reduces the global N-stage problem
to a sequence of N interconnected parametric one-stage optimization problems it
does not tell us anything about how to solve the latter problems. For these one
depends on methods of non-dynamic optimization. Þ

Remark 2.3.9 The VI holds whether or not there exist s0-optimal action sequences.
Since r is finite, the right-hand side of (2.7) is also defined in the case
Vn�1.T.s; a// D 1 by our convention x C 1 WD 1 for real x. Þ

The essence of the proof of the VI may be phrased in the simple equation

sup
.a;x/
Œg.a/C ˇh.a; x/� D sup

a
Œg.a/C ˇ sup

x
h.a; x/�:

Unfortunately this simple method is not applicable for stochastic DPs.
For s 2 S and n � 1 we call the (possibly empty) set D�

n .s/ of maximum
points of a 7! Wn.s; a/ the set of optimal actions for stage n and at state s.
Thus . fn/1N is maximizing if and only if fn.s/ 2 D�

n .s/ for 1 	 n 	 N and
all s. The sequence .Dn/

1
N determines for each s0 all solutions of DPN.s0/ since

by Theorem 2.3.3(b) .a�
t /

N�1
0 is s0-optimal if and only if a�

t 2 D�
N�t.st/ for

0 	 t 	 N � 1.
Only in rare cases will the value functions and s0-optimal action sequences

have an explicit form. Therefore, the computer-aided numerical solution, possibly
after suitable discretization of the state and action space, is important. Assume
for simplicity that both S and A are finite. We call the method provided by
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the Basic Theorem for solving problem DPN.s0/ the VI algorithm. It runs as
follows.

One computes, starting with V0, recursively by means of the backward procedure
(2.7) (i.e. backward in stages) the value functions V1, V2, : : :, VN�1 by maximizing
the (possibly infinite) functions a 7! Wn.s; a/ for all s 2 S and 1 	 n 	 N � 1.
After having computed Vn, the function Vn�1 can be deleted from the memory. In
the final step one computes VN.s0/ by maximizing a 7! WN.s0; a/. In practice one
often computes VN.s0/ for all s0 2 S.

The computation of an s0-optimal action sequence .a�
t /

N�1
0 for given initial state

s0 according to Theorem 2.3.3(b) cannot be done simultaneously with the recursive
computation of the value functions, as one does not know in advance which
sequence of states s1, s2, : : : is generated by s0 and the optimal action sequence to
be constructed. However, while maximizing Wn.s; �/, s 2 S, for 1 	 n 	 N � 1 and
WN.s0; �/ one can compute and store a maximum point fn.s/ and fN.s0/, respectively.
Then one obtains an s0-optimal action sequence by the forward procedure in the
OC.

2.4 First Examples

Example 2.4.1 (Solution of Example 2.1.1) We treat this problem for arbitrary K 2
N and N rather than only K D 10 and N D 4.

(a) After the definition of a DP we have seen that S D A D N0;K , D.s/ D N0;s,
T.s; a/ D s�a, r.s; a/ D u.a/ and V0 D d �u for some d 2 RC and an arbitrary
function u on N0;K . Note that AN.s0/ D f.at/

N�1
0 2 AN W PN�1

0 at 	 s0g since
PN�1

0 at 	 s0 implies at 	 s0 � Pt�1
iD0 ai D st for 0 	 t 	 N � 1. Because

of T.s; a/ 	 s, .s; a/ 2 D, the solution of DPN.s0/ is the same for each DP
with S D A D N0;K whenever K � s0; even S D A D N0 could be used. As a
consequence, it suffices to solve DPN.K/ with the choice S D A D N0;K .

From now on assume that u is increasing and that u.0/ D 0 < u.K/. (The
case u.K/ D 0, i.e. u 
 0, is trivial.) By Theorem 2.3.3(a) the VI has the form

Vn.s/ D maxfu.a/C ˇVn�1.s � a/ W a 2 N0;sg; n � 1; s 2 N0;K : (2.9)

This implies by induction on n � 0 that Vn.0/ D 0. Due to the discreteness
of S and A, even for simple utility functions u one can expect only in
very rare cases an explicit solution. However, for arbitrary u we can find a
numerical solution by means of (2.9). As we show below, for u with sufficient
structure we also can find structural properties of the solution, i.e. of Vn, of
the smallest maximizer fn at stage n and of those s0-optimal action sequences
y� D yN.s0/ 2 AN.s0/ which are generated by s0 and . fn/1N .
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Table 2.1 Vn.s/, s � K WD 8, for u.a/ D p
a, d D 1:5, ˇ D 0:8

s

n 0 1 2 3 4 5 6 7 8

1 0:000 1:200 2:200 2:697 3:111 3:493 3:814 4:132 4:415

2 0:000 1:000 1:960 2:760 3:174 3:572 3:903 4:221 4:526

3 0:000 1:000 1:800 2:568 3:208 3:622 3:954 4:272 4:590

4 0:000 1:000 1:800 2:440 3:054 3:566 3:981 4:312 4:630

5 0:000 1:000 1:800 2:440 2:952 3:444 3:858 4:267 4:599

6 0:000 1:000 1:800 2:440 2:952 3:366 3:776 4:169 4:500

7 0:000 1:000 1:800 2:440 2:952 3:366 3:776 4:107 4:435

8 0:000 1:000 1:800 2:440 2:952 3:366 3:776 4:107 4:435

9 0:000 1:000 1:800 2:440 2:952 3:366 3:776 4:107 4:435

Table 2.2 fn.s/, s � K WD 12, for u.a/ D p
a, d D 1:5, ˇ D 0:8

s

n 0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 1 1 2 2 2 3 3 4 4 5 5

2 0 1 1 1 2 2 2 3 3 4 4 4 5

3 0 1 1 1 1 2 2 2 3 4 4 4 4

4 0 1 1 1 1 1 2 2 3 4 4 4 4

5 0 1 1 1 1 1 2 2 2 3 4 4 4

6 0 1 1 1 1 2 2 2 2 2 3 4 4

7 0 1 1 1 1 2 2 2 2 3 3 4 4

8 0 1 1 1 1 2 2 2 2 3 4 4 4

9 0 1 1 1 1 2 2 2 2 3 4 4 4

(b) The Tables 2.1 and 2.2 and Fig. 2.2 show the result of computations for u.a/ Dp
a, d D 1:5 and ˇ D 0:8. We denote by fn the smallest maximizer at stage n.

One quickly obtains by the forward procedure (2.8) the subsequent K-optimal
action sequences y�; the resulting terminal state sN can be used as control,
since the sum of the actions and of sN equals K.

N D 4; K D 8; y� D .3; 2; 1; 1/; s4 D 1; V4.8/ D 4:630

N D 6; K D 8; y� D .2; 2; 1; 1; 1; 0/; s6 D 1; V6.8/ D 4:500

N D 9; K D 12; y� D .4; 2; 2; 1; 1; 1; 1; 0; 0/; s9 D 0; V9.12/ D 5:548:

From the Tables 2.1 and 2.2 below one will conjecture that Vn D V7 and that
fn D f7 for n � 8. This rare property can be confirmed by Proposition 4.1.4.

(c) In later sections we systematically study structural properties of the solution of
general DPs and apply these to our allocation problem. Here we give several
results (c1)–(c7) which were suggested either by intuition or by numerical
computations. Some of these results can be proved already here, and some
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Fig. 2.2 Functions Vn for n D 1, n D 3 and n D 1 (limit function V) for K D 8, u.a/ D p
a,

d D 1:5 and ˇ D 0:8

use an ad hoc method rather than the Basic Theorem. Discrete concavity and
discrete convexity are defined in Appendix (D.4).

(c1) Vn.s/ is increasing in s. This is plausible since we expect from a larger initial
resource a larger maximal reward. A proof can be given by Theorem 6.3.5, by
Example 6.4.1(c1) or directly as in Problem 2.5.1.

(c2) The number s WD maxf0 	 x < K W u.x/ D 0g can be interpreted as follows: If
one allocates energy to a technical system, then sC1 is the minimal allocation
which causes the system to work with profit. For 0 	 s 	 s and n � 0 we have
Vn.s/ D 0 D fnC1.s/. Moreover, each y 2 AN.s/ is s-optimal. These statements
are simple consequences of Problem 2.5.1(d) and of the VI (2.7).

(c3) Vn.s/ is increasing in n for small d [decreasing in n for large d], e.g. if d 	 1

[if ˇ < 1, d � 1=.1�ˇ/]. (As seen from Table 2.1, Vn.3/ is in general neither
increasing nor decreasing in n.)

For the proof one easily derives from the VI (2.7) by induction on n � 0

that Vn.s/ is increasing [decreasing] in n if V1 � V0 D d �u [V1 	 V0 D d �u].

(i) If d 	 1 then the VI yields for s 2 N0;K :

V1.s/ D max
0�a�s

Œu.a/C ˇdu.s � a/� � u.s/ � du.s/ D V0.s/:

(ii) Recall that u is increasing on N0;K (cf. Definition 6.2.1(vii)). Then if ˇ <
1, d � 1=.1� ˇ/ we have:

V1.s/ 	 max
0�a�s

u.a/C ˇd max
0�a�s

u.s � a/ D u.s/ � .1C ˇd/ 	 du.s/:
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(c4) Let u be discretely concave (cf. Appendix (D.1)). Then all value functions Vn

are discretely concave, fn is increasing and its upward jumps have size one; see
also Table 2.2. Moreover, if gn denotes the largest maximizer at stage n � 1,
then a mapping f WN0;K ! N0;K is a maximizer at stage n if and only if fn 	
f 	 gn. All results follow from Theorem 7.1.2 below by using as actions the
investments.

(c5) Let u be discretely convex. In Theorem 7.3.3 below we compute the value
functions explicitly and show that either .0; 0; : : : ; 0/ or .s0; 0; : : : ; 0/ are
s0-optimal. These two action sequences are extreme in the sense that they
prescribe to consume nothing at all times 0 	 1 	 N � 1 or to consume
everything at time t D 0, respectively. Moreover, Example 7.3.5 below shows
in case ˇ < 1 and s > s0 that Vn D u for all n � m and some m 2 N, and
that for each s0 the action sequence .s0; 0; : : : ; 0/ 2 AN.s0/ is s0-optimal for
all N � m. In particular, if ˇ < 1, then for some m 2 N we have Vn D u for
n � m, and .s0; 0; : : : ; 0/ 2 AN.s0/ is s0-optimal for N � m.

(c6) The value functions Vn, n � 1, are Lipschitz continuous in d and also in ˇ,
both uniformly in s. In fact, for each s and for d, d0 2 RC we get, using
Appendix A.4.4

jVn.s; d/� Vn.s; d
0/j D j max

y
Vny.s; d/ � max

y
Vny.s; d

0/j

	 max
y

jVny.s; d/� Vny.s; d
0/j D ˇnjd � d0j � max u:

Moreover, for each s and for ˇ, ˇ0 2 .0; 1� we get

jVn.s; ˇ/ � Vn.s; ˇ
0/j 	 max

y
jVny.s; ˇ/ � Vny.s; ˇ

0/j

	
 

n�1X

0

jˇt � ˇ0tj C djˇn � ˇ0nj
!

max u

	 n.n � 1C 2d/ � max u � jˇ � ˇ0j=2:

Here we used that jˇt � ˇ0tj D jˇ � ˇ0j �Pt�1
iD0 ˇiˇ0t�i 	 tjˇ � ˇ0j, t � 1.

(c7) If u is discretely concave and if ˇ D d D 1 one expects that it is optimal to
allocate the resources among the N stages as evenly as possible in the sense
that there exists an s0-optimal action sequence y� 2 AN.s0/ whose actions
differ from each other by not more than one unit. This is true as one can show,
using b WD bs0=.N C 1/c, that y� is s0-optimal if .N C 1/.b C 1/ � s0 of the
components of y� equal b, and if the remaining ones equal b C 1. �

We conclude our investigation of the allocation problem from Example 2.4.1 by
studying the asymptotic behavior of the solution for n ! 1. Such problems are
studied in detail for general DPs in Chap. 10; here we can solve it by an ad hoc
approach.
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Proposition 2.4.2 (Asymptotic properties of Example 2.4.1) Assume that ˇ < 1
and V.0/ WD 0 and define V.s/, 1 	 s 	 K, by induction on s according to

V.s/ D max
1�a�s

fu.a/C ˇV.s � a/g; 1 	 s 	 K: (2.10)

Then:

(a) Vn.s/ converges for n ! 1 to V.s/, s 2 N0;K.
(b) V is increasing and, if u is discretely concave, also discretely concave.
(c) Let f .s/ be a maximum point of a 7! u.a/C ˇV.s � a/, 0 	 s 	 K. For n � 1

and 1 	 s 	 K put Vnf .s/ WD Vny.s/, where y 2 An.s/ is generated by s and the
policy . f /n�1

0 . Then the decision rule f is asymptotically optimal in the sense
that for 1 	 s 	 K

jVn.s/ � Vnf .s/j ! 0 for n ! 1: (2.11)

Proof

(a1) Firstly, assertion (a) holds for s D 0 since Vn.0/ D 0 ! 0 D V.0/ for n ! 1.
Next, V is real-valued on the finite set S D N0;K , hence bounded. The same
holds for the value functions since 0 	 Vn 	 Œ1=.1�ˇ/Cd��max u. In fact, the
lower bound holds trivially since u � 0 and Vn.0/ D 0, and the upper bound
follows from (2.10).

(a2) Fix 1 	 s 	 K. Since ˇ < 1 and V � 0 we see, using W.s; a/ WD u.a/ C
ˇV.s � a/ for 0 	 a 	 s, that

V.s/ D max
1�a�s

W.s; a/ 	 max
0�a�s

W.s; a/ D maxfˇV.s/;V.s/g D V.s/;

hence V.s/ D max0�a�s W.s; a/. Let k � k be the maximum-norm on S. Now
we get, using Appendix A.1.3(b)

jVn.s/� V.s/j D j max
a
Œu.a/C ˇVn�1.s � a/� � max

a
Œu.a/C ˇV.s � a/�j

	 ˇmax
a

jVn�1.s � a/� V.s � a/j 	 ˇkVn�1 � Vk:

Here a runs overN0;s. Now induction on n � 0 implies kVn�Vk 	 ˇnkV0�Vk,
which proves (a).

(b) This follows from (a) and properties (c1) and (c4) from Example 2.4.1 above
since isotonicity and discrete concavity of Vn are easily seen to be preserved
when n tends to 1.

(c) Firstly, from the definition of f we know that V.s/ D u. f .s//C ˇV.s � f .s//.
The RI (2.5) shows that Vnf .s/ D u. f .s//C ˇVn�1;f .s � f .s//, n � 1, where
V0f WD V0. Now one easily obtains, using induction on n � 0, that kV �Vnf k 	



30 2 The Stationary Deterministic Model and the Basic Solution Procedure

ˇnkV � V0k. Finally the assertion follows, using (a2), from

kVn�Vnf k D kVn�VC.V�Vnf /k 	 kVn�VkCkV�Vnf k 	 2ˇnkV�V0k: �

Relation (2.11) means that for each s the performance of the stationary policy
consisting of n copies of the decision rule f becomes arbitrarily close to the
performance of each s-optimal action sequence in An.s/ when n tends to 1.

Now we turn to continuous DPs. There are problems such as the freighter
problem from Example 4.1.1 below where only a discrete model makes sense. On
the other hand, for many problems both a discrete and a continuous version may be
formulated; see the allocation problems Example 2.4.1 and Example 2.4.3 below or
the linear-quadratic problems in Example 3.1.2 and Example 4.1.7 below.

Here are a few comments on the appropriateness of discrete or continuous
versions and on their solutions.

(i) From a rigorous point of view continuous DPs cannot be completely realistic
models for applications since they assume infinite divisibility of states and/or
of actions. This does not hold in reality; e.g. in the allocation problem arbitrary
small investments do not make sense.

(ii) Continuous versions are often considered as good approximate descriptions of
a discrete model in the sense that the solution of the continuous version is a
good approximation to the solution of the latter model. In fact this seems to be
true in many cases where the actions are measured in small units, e.g. in micro
seconds when the resource means time. However, the discrete version often
describes the problem equally well or even better than the continuous version.

(iii) We mention some difficulties when using continuous versions according to (ii)
as approximations:

(a) The solution of the continuous version requires, except for a few cases
where an explicit solution exists, a discretization of the state and/or action
space. Examples of this approach in the literature often include an analysis
of the discretization error.

(b) However, in the literature one rarely cares about the continuation error
made when approximating the discrete version by the continuous version.
Moreover, the continuation error and the discretization error should be
added.

(c) In continuous versions one must care about the existence of s0-optimal
action sequences or maximizers, a question often connected with the
question of continuity of the value functions.

In view of the preceding comments we emphasize discrete DPs, and keep the
treatment of the continuous versions brief. We now treat a continuous counterpart
of the discrete Example 2.4.1. The only essential difference in the assumptions is
the inclusion of a deterioration/expansion factor z 2 R

C.
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Example 2.4.3 (Continuous allocation with utility function u)

(a) Consider the following DP: (i) the momentary resource s, consumption a and
investment s � a are non-negative reals; D.s/ D Œ0; s�; (ii) the resource at time
t C 1 equals T.st; at/ WD z � .st � at/ for some z 2 R

C. Denote by s0 the initial
resource. We distinguish case 1: z 	 1 and case 2: z > 1. As an example,
if the resource consists of a perishable good, z < 1 may be a factor for the
deterioration of the investment st � at. On the other hand, z > 1 occurs as
interest factor for the investment when the resource is a capital. The maximal
resource after N stages equals s0 in case 1 and zNs0 in case 2. Therefore in case
1 we use S D A D Œ0;K� where K � s0, and S D A D RC in case 2.

Again r.s; a/ WD u.a/ with increasing and non-negative utility function u
and V0 D d � u for some d 2 RC. By Theorem 2.3.3 the VI holds and it reads

Vn.s/ D sup fu.a/C ˇVn�1.z � .s � a// W a 2 Œ0; s�g ; s 2 S: (2.12)

Again fn denotes the smallest maximizer at stage n, provided it exists.
Sometimes another choice of actions a0 (not applicable for the discrete version)
is useful: If s > 0, then a0 WD the proportion a=s of the momentarily available
amount s of resource, which is consumed; if s D 0, then a0 may be chosen
arbitrarily in Œ0;K�. The resulting DP0 differs from the original DP in the
following data: A0 D Œ0; 1� D D0.s/, T 0.s; a0/ D s � .1 � a0/, r0.s; a0/ D u.sa0/.
Then DP0 has the value functions, starting with V 0

0 WD du,

s 7! V 0
n.s/ D sup

˚
u.sa0/C ˇVn�1.zs � .1 � a0// W a0 2 Œ0; 1�� ; n � 1;

(2.13)

which intuitively equals Vn. A formal proof uses induction on n � 0, and for
fixed s > 0 the bijective substitution a0 WD a=s in W 0

n.s; a
0/.

As seen from (2.12) and (2.13), a function hn from S into Œ0; 1� is a
maximizer at stage n in DP0 if and only if s � hn.s/ is a maximizer at stage
n in DP.

We often use the following abbreviation: for x 2 R and n 2 N0 put

�n.x/ WD
n�1X

tD0
xt D

�
.1 � xn/=.1 � x/; if x 6D 1;

n; if x D 1I (2.14)

in particular, �0.x/ D 0 and �1.x/ D �n.0/ D 1 for n � 1.
(b) Explicit solutions exist rarely, e.g. if u.a/ D p

a (cf. Example 4.1.6(a)) or
if ˇz D 1 (cf. Problem 4.3.1). However, as we now indicate, for relatively
general utility u the subsequent structural properties (b1)–(b7) of the solution
are valid.
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(b1) Vn.s/, n � 1, is increasing in s, non-negative and finite. Moreover,

Vn.s/ 	
nX


D0
ˇ
u.z
s/C ˇndu.zns/; s 2 S; in case 1 and 2;

Vn 	 Œ�n.ˇ/C ˇnd�u in case 1 ;

Vn 	 Œ1=.1� ˇ/C ˇnd�u in case 1 and if ˇ < 1:

(b2) In case 1, if 0 	 s 	 s WD maxf0 	 x 	 K W u.x/ D 0g and n � 0, then
Vn.s/ D 0. Moreover, each y 2 AN.s/ is s-optimal. These statements may be
proved as in Example 2.4.1(c2), observing that u.s/ D 0 by continuity of u.

(b3) Vn.s/ is increasing in n [decreasing in n] if d 	 1 [if ˇ < 1, d � 1=.1 � ˇ/].
This may be proved as in Example 2.4.1(c3).

(b4) Let u be concave. Then all value functions Vn are concave, the smallest
maximizers fn, n � 1, exist and are increasing and fn.s0/ � fn.s/ 	 s0 � s
for s 	 s0. This follows from Example 8.2.14 below with �1 D u2 
 0,
�2.x/ D zx, and u1 D u.

(b5) Let u be convex and ˇ < 1. Then for some m 2 N we have Vn D u for
all n � m, and for each s0 the action sequence .s0; 0; : : : ; 0/ 2 AN.s0/ is s0-
optimal for all N � m. This is shown in Example 7.3.5.

(b6) The value functions Vn, n � 1, are Lipschitz continuous in d and also in ˇ,
both uniformly in s. This may be proved as Example 2.4.1(c6).

(b7) As in the discrete version (see Proposition 2.4.2), in case ˇ < 1 the sequence
of value functions converges for n ! 1 uniformly to some function V .
However, the proof given in Theorem 10.1.10 differs from the proof of
Proposition 2.4.2, and V cannot be defined recursively. �

2.5 Problems

Problem 2.5.1 Consider a DP where S D A D N0;K for some K 2 N, D.s/ D N0;s,
T.s; a/ D s � a, r.s; a/ D u.a/ for some function u on A, V0.s/ D d0 � u.s/ for some
d0 2 RC, ˇ 2 Œ0; 1�. Then for n � 1 and s 2 S:

(a) y D .at/
n�1
0 2 An belongs to An.s/ if and only if

Pn�1
0 at 	 s.

(b) if s 	 s0 then An.s/ 	 An.s0/.
(c) if s 	 s0 and if u is increasing then Vny.s/ 	 Vny.s0/.
(d) if u is increasing, then s 7! Vn.s/ is increasing.

Problem 2.5.2 Consider a DP where S D RC, A D Œ0; 1�, D.s/ D Œ0;minf1; sg�
and T.s; a/ D s � a. Then for n � 1 and s 2 S:

(a) y D .at/
n�1
0 2 An belongs to An.s/ if and only if

Pn�1
0 at 	 minf1 C

Pn�2
0 at; s0g;

(b) the properties (b)–(d) from Problem 2.5.1 remain true.
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Problem 2.5.3 (Existence of an optimal action sequence without existence of
maximizer) Consider the DP with S D A D Œ0; 1�; D.s/ WD Œ0; s�; r.s; a/ D 0 for
s D a D 1 and D a=2 else; T.s; a/ D .1 � a/ � s; V0 
 0 and ˇ D 1. Show that
.s; .1� s/ � s/ is the (unique) s-optimal action sequence for DP2.s/, s 2 S, and there
exists no maximizer at stage 1.

2.6 Supplements

Supplement 2.6.1 (The discount factor) In economical applications ˇ is usually
smaller than one. In particular, if the length l of each period equals the k-th part of a
year, if the annual interest rate equals i percent and if compound interest per period
is assumed, then, since discounted rewards correspond to cash values at time zero,
we have 1Ci D 1=ˇk D 1=ˇ1=l, hence ˇ D 1

.1Ci/l
< 1. Thus the larger l and/or i, the

smaller ˇ, and ˇ approaches 1 when l tends to zero. If e.g. i D 8% then ˇ D 0:981

if l is a quarter of a year and ˇ D 0:9936 if l is one month. Moreover, if e.g. l WD
one hour and if N is not too large, let’s say N D 40, then ˇ can be practically taken
equal to one.

If the N periods have nothing to do with time but mean that a certain activity is
executed N times, then only ˇ D 1 is meaningful.

The case ˇ > 1 models the situation where the genuine discount factor equals
some � < 1 and where the one-stage reward increases from period to period (and
similarly for the terminal reward) by the factor ˇ=� .

Supplement 2.6.2 (Changing the definition of an action) By another definition
of the action in the continuous allocation problem from Example 2.4.3 one obtains
three other formulations as follows, where S, V0 and ˇ remain unchanged.

(a) If a denotes the amount of the resource not allocated momentarily then A D
RC, D.s/ D Œ0; s� for all s, T.s; a/ D z � a and r.s; a/ WD u.s � a/ for .s; a/ 2 D.

(b) If a denotes the momentarily allocated proportion of the resource then A D
Œ0; 1� D D.s/ for all s, T.s; a/ D zs.1� a/, r.s; a/ WD u.s.1� a// for .s; a/ 2 D.

(c) A further formulation is obtained if a denotes the momentarily not allocated
proportion of the resource.

For some investigations the above formulations (a)–(c) have slight advantages over
the formulation in Example 2.4.3.
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